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Abstract 

We propose a method to realize the dynamic manipulation of a string with unknown characteristics via a high-
speed robot arm. We use a mass-spring-damper model for the string and repeat three steps: motion generation, 
real manipulation, and parameter estimation. Robot motion is given by the joint angular velocities expressed by 
the Bezier curves. Their control points are randomly positioned to generate various robot motion for dynamic string 
manipulation. The generated motion is performed by a wire-driven robot arm and, real string movement is captured 
by the camera. These time-series images are used for the parameter estimation of string. The best parameter set is 
determined via comparison between real and simulated string movement after changing parameter randomly and 
logarithmically. This parameter set is not unique, but it simulates the actual string movement well. Since the estimated 
string parameter is used for the robot motion generation after repeating the above 3 steps, the motion generation 
reflects string property and motion objective can success without special tests in advance. This is an advantage of our 
method because it is difficult to know all of string property with very complicated non-linearity beforehand. We focus 
on realizing the momentary string shape in 2 dimensions in this paper. We confirmed the effectiveness of our pro-
posed method by realizing five momentary shapes and 3 kinds of string properties. We also discussed the reproduc-
ibility and compatibility of estimated parameters and motion generation.
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Introduction
Previously, robots were primarily used for assembly tasks 
in factories. However, their use in homes, offices, and 
shared spaces has recently increased. These environ-
ments feature a variety of flexible objects, such as cloth-
ing, blankets, curtains, paper, and cables. Therefore, 
manipulation of flexible objects is currently critical in 
the field of robotics. Flexible objects differ from machine 
parts which can be handled as rigid bodies by robot. 
These objects can easily deform under small forces. The 
deformation takes different forms and varies with the 
nature of the flexible object as well as the conditions 

involved. For instance, string motion can include three 
types of deformations: simultaneous stretching, bending, 
and twisting. String knitting and fibers vary depending 
on the type, which means that strings have significantly 
different properties. Thus, prediction and recognition of 
deformation for motion planning are challenging.

Studies have been conducted on tying a knot, which is a 
task involving flexible objects. For robot knot-tying tasks, 
Takamatsu et  al. described the intersection topology of 
the string in the form of reversible P-data based on the 
P-data changes and identified it depending on which of 
the four motion primitives could be executed. However, 
the information was not based on the position and shape 
of the string [1]. Wakamatsu et  al. similarly expressed 
the process of knotting/unknotting a string as crossing 
state transitions based on four basic operations. They 
further proposed a method for automatically generating 
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attainable grasping points and direction of motion of a 
string [2]. Katano et al. proposed breaking up a knotting 
sequence into steps, which combine stable states that can 
handle ambiguous string states of the same category, with 
subsequent string operations. They obtained five types 
of knotting using a dual-arm robot [3]. Nair et  al. pro-
posed manipulating a rope using a method that combines 
a human providing a robot with a sequence of images 
recorded from an initial to a target configuration with 
a learned inverse dynamics model in a CNN to execute 
actions and follow the demonstrated trajectory [4].

Furthermore, there are examples of insertion tasks of 
linear objects similar to a string. Rambow et  al. used a 
variable admittance controller adjusted by tactile infor-
mation during training to realize insertion tasks for soft 
linear objects by correcting the training trajectory using 
tactile information during the task [5]. Similarly, many 
studies have been conducted on static manipulation 
of strings or linear objects. String states can be treated 
in topologies. The basic actions are limited, and string 
parameters have little effects on the manipulation. There-
fore, tasks can be realized through a combination of basic 
actions.

However, some tasks are greatly affected by the string 
parameters. For instance, both the knotting of the string 
and the shape of the knot need to be considered. Even for 
identical knotting actions, the ease of operation depends 
on the string properties, i.e., whether the string is easy or 
difficult to knot. Other operations include tasks such as 
assembling during substantial deformation or dynamic 
operations involving swinging of the string. For these 
types of manipulations, an action plan is necessary for 
modeling the string. Moreover, the string deformation 
and dynamics that are calculated based on the model 
are considered. The mass-spring model is a useful tech-
nique for this case and has been frequently used. This 
model can be applied to fabrics. Desbrun et  al. realized 
movements requiring a dynamic approach regarding the 
collision between fabrics and objects using computer 
graphics [6]. Studies applying the technique of adding 
bending properties that vary depending on the string 
elongation to a simple mass-spring model include that 
by Sawada et  al. on the casting of a rubber string [7]. 
Lloyd et  al. proposed formulas for the dynamic param-
eters of a mass-spring model, which relate to the physi-
cal constitutive laws from continuum mechanics, and 
then identified the damping coefficients analytically [8]. 
In addition to the method employing the mass-spring 
model, other methods have been used. Yamakawa et  al. 
formulated an equation of motion and demonstrated that 
when one end of a string is grasped and moved at a high 
and constant speed, the string motion follows the trajec-
tory of the robot arm. They used this to achieve dynamic 

string operation and cloth folding operations [9–11]. This 
method has the advantage that string motion can be real-
ized with only few parameters. However, the applicable 
types of strings and motions are considerably limited. 
Yoshida et al. performed a task where a flexible ring was 
fitted onto a cylindrical object. They used a finite element 
model, which can express large deformations of the ring, 
to optimize the operation trajectory and minimize ring-
object sliding and collision as well as the deformation 
energy of the ring [12]. Jangir et  al. used reinforcement 
learning to realize dynamic cloth manipulation, demon-
strated the importance of speed and trajectory in the case 
of dynamic manipulations, and investigated the effective-
ness of different textile state representations [13]. Yang 
et al. demonstrated a method of moving a rope to match 
a desired target state specified by an image in combina-
tion with model predictive path integral control and a 
dynamics model [14].

Designing a motion plan through these types of string 
models mainly requires identification of the model 
parameters. Specifically, it is important to know the 
properties of the string used to realize its manipulation. 
The aforementioned study by Sawada et  al. determined 
the actual stretching properties through tensile testing 
[7]. However, this special identification task conducted 
in advance for establishing string properties is ineffi-
cient. To estimate the model parameters, Yabunouchi 
et  al. used a string mass-spring model to propose a 
method that uses a camera to continuously observe the 
static shapes of the string that change with a quasi-static 
operation. The method progressively estimates the model 
parameters capable of reproducing these shapes using a 
real-coded GA [15]. Caldwell et  al. proposed a method 
for optimally identifying the model parameters of a flexi-
ble object manipulated by a robotic arm and applied it for 
identifying the stiffness characteristics of a flexible loop 
[16]. Alverz et al. used the static shapes of a flexible lin-
ear object before and after manipulation to estimate the 
model parameters corresponding to those shapes [17].

From the foregoing, many studies considered the static 
deformations of a string to estimate string properties, 
but only few included estimations of dynamic deforma-
tion. Additionally, although some studies have achieved 
dynamic manipulation, they often identify or assign 
string parameters beforehand. In essence, there are 
no significant attempts made to achieve manipulation 
that satisfies specific motion objectives for strings with 
unknown parameters by estimating the string properties 
during manipulation for those given motion objectives.

Therefore, the present study proposes a method 
of achieving dynamic manipulation for strings with 
unknown properties. We used motion simulation of a 
string to achieve the desired string motion by reiterative 
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motion generation, manipulation, and string parameter 
estimation. Various motion objectives can be considered; 
however, for this study, the objective is to dynamically 
manipulate a string to achieve specific shapes at a certain 
instant.

Realizing dynamic manipulation of an unknown 
string and string modeling
Proposal for realizing dynamic manipulation 
of an unknown string
We propose a method for achieving the dynamic manip-
ulation of an unknown string as outlined in Fig. 1. First, 
the motion objective is provided as an image of the 
desired shape by the momentary operation of the string. 
Simultaneously, the initial parameters of the string model 
are randomly set. In motion generation, the movement 
of the robot arm is generated randomly, and the move-
ment of the string is simulated from finger movements. 
The robot arm movement is given based on the joint 
angular velocity, and the initial arm position is randomly 
determined within the movable range for each joint. The 
simulated string movement and the desired string shape 
are compared to determine the achievement in the simu-
lation. If a generated arm motion obtains a high achieve-
ment, the motion generation is terminated. Next, the 
generated motion is performed by an actual robot arm. 
At this stage, the manipulation is filmed using a cam-
era. Image processing is used to extract the motion of 

the string alone and then, it is saved. Subsequently, the 
actual string motion and desired string shape are com-
pared. This evaluation of the actual manipulation is con-
sidered as the achievement. When the manipulation can 
attain the desired shape, the achievement is good. In 
the first manipulation, the string model parameters and 
the actual string properties do not match. Therefore, 
we estimate the parameters. By providing string param-
eters randomly, we simulate the string motion based 
on the actual arm movement. The matching rate of the 
simulated and actual string movements is examined. The 
parameter combination with the highest matching rate is 
retained. From the second manipulation onward, motion 
generation and actual manipulation are performed 
using the estimated string parameters. By repeating 
this procedure, actual and simulated string movement 
gradually approach each other. Then manipulation was 
generated to reflect string property and it realize the 
desired momentary shape. If the achievement rate does 
not increase after repeating this procedure several times, 
the manipulation is regarded as failed.

String model
The string model is used in motion generation and 
parameter estimation. The mass-spring model was 
selected because of its low computational load. Our 
proposed method requires repeating the string move-
ment simulation for motion generation and parameter 

Fig. 1 Concept of dynamic manipulation for unknown strings
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estimation. Moreover, our method does not aim to com-
pletely express the various string movements, but only 
to generally express a specific string movement. We 
assume that the string is homogeneous; furthermore, 
twisting is not considered because if the string move-
ment and observation plane (see below) are limited to 
two dimensions, the effect of twisting is also contained 
in two dimensions. To represent the properties of elonga-
tion and bending, the string model is composed of mass 
points, springs, dampers, hinge springs, and hinge damp-
ers. The mass point numbers are set as i = 1, .., n starting 
from the grasp point. The equation of motion for mass 
point i is expressed as follows:

The elastic force Fs is proportional to the elongation 
between the mass points. The damping force Fd of the 
damper is proportional to the relative velocity between 
the mass points. These work in the direction connecting 
the mass points. The forces Fb and Fh generated by the 
hinge spring and hinge damper, respectively, represent 
the bending properties of the string, as illustrated in the 
expanded image in Fig. 2. That is, they are proportional to 
the relative angle and relative velocity between the three 
mass points. In the figure, only the bending force gen-
erated around mass point i is presented. For the exter-
nal forces generated on the mass points, we introduce a 
term proportional to the velocity of the mass point as air 
resistance Fc and a term proportional to the square of the 
speed. In addition, we consider the gravitational force Fg.

(1)

mr̈i = F si − F s(i−1) + Fdi − Fd(i−1)

+ F r
b(i−1) − F r

bi − F l
bi + F l

b(i+1)

+ F r
h(i−1) − F r

hi − F l
hi + F l

h(i+1)

+ Fph + Fphc + F g + F ci

Furthermore, we introduce separate hinge springs and 
hinge dampers between the robot hand and the string for 
the grasping part. The forces generated there are Fph and 
Fphc . Both sides of the equation of motion expressed in 
Eq. (1) are divided by mass m of the mass points, and unit 
mass conversion (i.e., designating a value in ks/m to the 
spring constant) is performed for each parameter. Thus, 
we do not need to consider the mass itself, and there 
will be eight string parameters ( kh , ch , ks , cs , Cc1 , Cc2 , kph , 
and cph ). By performing iterative integration of the equa-
tion of motion using Euler’s method, the time-series of 
location vector ri for each string mass point is obtained. 
When the string is manipulated by a robot arm, time 
series data about orientation and position of the robot 
finger are given. A numerical calculation of the equation 
of motion is performed when the time series of the first 
mass point coordinates is given. This is the simulation of 
the string movement.

Robot arm motion generation
This section describes the method of robot arm motion 
generation. Random joint velocity curves are used for 
motion generation. However, the range of random 
change is varied between the initial and succeeding time. 
Moreover, to optimize motion generation, we use the 
previous motion generation results from the succeeding 
time. It is a progressive generation.

Generating motion the first time
The initial angles for each joint of the robot arm are ran-
domly selected from within the movable range and speci-
fied as the initial position. Subsequently, a joint velocity 
curve is generated using a Bezier curve, as illustrated in 
Fig.  3. Time T is determined randomly within a certain 

Fig. 2 String model
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range (e.g., 0.2–1.5 s), and the time from 0 to T is divided 
into five equal parts ( t0 ∼ t5 , t0 = 0, t5 = T  ). Accelera-
tion αk at time tk is randomly determined from a range of 
limit accelerations of the robot arm. We consider that the 
robot moves at a uniform speed in each time interval �t , 
and the joint velocity for the control points is determined 
by Eq. (2).

Note that V0 = V5 = 0 . Using the control points V0 ∼ V5 , 
a Bezier curve is generated and taken as the joint veloc-
ity curve. This is performed for all joints, and we confirm 
that the last generated movement of the arm does not 
exceed the limits of the robot’s movable range or speed. 
When there are no problems, simulation from the robot 
arm motion to the string motion is performed. If the 
achievement in the simulation exceeds a certain thresh-
old, then that arm motion is regarded to have achieved 
the desired motion and the motion generation is termi-
nated. If the desired motion is not yet achieved, a new 
initial position and a joint velocity curve are generated. 
This is repeated until the desired motion is achieved.

Generating motion the second time and onward
For the second and subsequent motion generations, the 
initial position generated during the first time is used 
unchanged. The previously generated velocity curve 
is used for the joint velocity curve with a slight change. 
Specifically, motion finish time T is randomly changed 
within 1/2 of the range of the first one and based on the 
previous value. The joint velocity for each of the control 
points V1 ∼ V4 is randomly changed based on the pre-
vious value and in approximately a fraction of 1 of the 
range of the previous one. At this point also, it is con-
firmed that the finger motion does not exceed the limits 
of the robot’s movable range and speed. The achieve-
ments in subsequent simulations are judged in the same 
manner as that of the first one.

(2)
Vk = Vk−1 + αk�t, �t = tk − tk−1, k = 1...4

Judging the end of motion generation based 
on achievement in simulation
We explain how to calculate the achievement in the sim-
ulation, which is used to judge when to terminate the 
motion generation. When images of the desired string 
shapes are provided, the achievement is obtained by 
comparing the mass point positions of the string model 
in the simulation with the desired shape image, as shown 
in Fig.  4. The closer the mass point positions to the 
desired shape image, the higher the simulation achieve-
ment value.

To evaluate in this way, dilation-processing of desired 
shape image is applied multiple times, and weighted 
scores ( pmax,…2, 1, 0) are assigned in accordance with 
the dilation times. A mass point position in the string 
model corresponds to score pi based on the expanded 
area in which it falls. Thus, the achievement in simulation 
As is calculated as follows.

As is calculated in relation to the time series of the string 
model shape obtained during the string simulation. The 
desired motion is deemed to have been achieved during 
the moment when the threshold is exceeded.

Estimation of string parameters
This section describes the parameter estimation follow-
ing the string manipulation. First, the image of the string 
is extracted on the basis of grasp point of the robot arm. 
The angular velocity obtained from the encoder data on 
each joint is used to determine the actual arm motion. 
The value for each string model parameter is selected 
randomly, and motion simulation of the string is per-
formed using the robot arm motion. The matching rate 
E is calculated by comparing the point positions in the 
string model obtained from the simulation and image 
series of the actual string motion. This is repeated while 

(3)As =

∑n
i=1 pi

pmax · n

Fig. 3 How to generate joint velocity curve

Fig. 4 Evaluation of achievement in simulation
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changing the parameters. After a fixed number of rep-
etitions, the eight parameters with the highest match-
ing rates are output as the estimated parameters. This 
method does not estimate the parameter for expressing 
various movements, but only for a specific movement 
in the manipulation. Therefore, the estimated parameter 
depends on the string movement.

Parameter selection method
When randomly selecting each parameter in the string 
model, its value is determined using exponential form. 
This allows varying the parameter range widely. How-
ever, if the range of the estimated parameters is extremely 
wide, parameter convergence will require much time. 
Therefore, we narrow the parameter estimation range in 
a stepwise manner. The parameters are randomly deter-
mined using the following equations: For manipulation 
times M, the number of parameter changes shall be m 
and a certain parameter shall be Pa.

The maximum and minimum parameter values Pmax and 
Pmin , respectively, are determined in advance. χm is varied 
between − 1∼ 1. The initial value χw0 for search range χw 
when determining χm is chosen. RAND(− 1,1) expresses 
random numbers − 1∼ 1. β is a value slightly under 1 and 
works to narrow the search range every time the param-
eters are updated. χbest is the final estimated parameter 
value (exponent) in the previous manipulation. In this 

(4)Pa = Pmin

(

Pmax

Pmin

)χm

(5)χm = χbest + χw · RAND(−1, 1)

(6)χw =
χw0 · β

m

M

way, the parameters can be estimated while narrow-
ing down the search range, focusing on the parameters 
selected in the previous manipulation.

Calculating the matching rate
The method of calculating the matching rate E for the 
actual string motion (image series) and string model 
motion in the simulation is presented in Fig.  5. In the 
same way that the achievement is calculated for a single 
image in an image series, the matching rate is obtained 
for each individual image. The ratio of mass points in the 
string model Ef that fall into the string area of the bina-
rized images is evaluated as follows. Dilation processing 
of the time-series image is performed multiple times, 
and weighted scores are assigned in accordance with the 
application times of dilation; thus, the nearer the area to 
the center, the higher the score ( pmax,…2, 1, 0). The mass 
point positions in the string model correspond to score 
pi based on the expanded area in which they fall. At this 
point, different from calculating the achievement, the 
scores are weighted depending on the mass point num-
ber (i = 1,…, n). This is because if they are evaluated on 
an equal footing without any weighting, then the mass 
points near the grasping area are likely to constantly 
overlap in the simulation and the images because they 
move slightly. Therefore, they would not contribute to 
the parameter estimation. The movement increases near 
the end of the string. Considering that the string prop-
erties are likely to manifest in the score, weighting wi is 
increased toward the end of the string. Here, it should 
be noted that weighting increment is too much, even if 
the mass point around the grasp point does not match 
the actual string shapes, the evaluation value bocomes 
high and this has an adverse effect on the parameter esti-
mation. After weighting each image Ef , the sum for all 
images (1,…, fmax) is calculated. That is, the matching 

Fig. 5 How to estimate parameters of string
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rate E is obtained using the following equation, where the 
weighting increment is �w.

Manipulation of a string using a robot and its 
evaluation
Wire‑driven robot arm
Dynamic manipulation of a string requires a robot arm 
moving at high speeds. Therefore, we designed and built a 
4 degree of freedom wire-driven robot arm for this study. 
The robot arm produced is presented in Fig. 6, and Table 1 
lists its specifications. The robot arm has no motors at 
its joints, and only rotary encoders that detect the joint 
angle are provided. To maintain a lightweight robot arm, 
all motors are placed beneath the pivot shaft. The over-
all height of the robot arm is 585 mm and the maximum 

(7)E =
1

fmax
·

fmax
∑

f=1

Ef , Ef =

n
∑

i=1

pi · wi

pmax ·

n
∑

i=1

wi

,

(8)wi = 1+ (i − 1)�w

composite speed of the arm finger is 21.8 m/s. Speed con-
trol (proportional-integral-derivative control) is performed 
for each joint of the arm of the motors. When manipulating 
the string, the arm is moved by providing commands every 
5 ms. Moreover, the joint angle is sampled at the same time 
interval. We showed a comparison of the finger’s target 
trajectory and the actual trajectory when the robot arm 
is made to perform a circular motion of 5 cm radius from 
various positions in 1 s and 0.6 s. The results in Fig. 7 show 
that although some overshoot occurred, a virtually circu-
lar movement was evident, and it was concluded that there 
were no problems with string operation.

Obtaining string movement with a camera and evaluation 
of achievement in real manipulation
To determine whether the desired motion has been 
achieved in actual manipulation, we performed an evalu-
ation by comparing the desired shape images with the 
actual string shapes obtained from the camera images. 
The camera used for the experiment was IDS UI-3580CP-
C-HQ ( 512× 480 pixel), which recorded images of string 
movements at 50 fps. To capture the string movement on 
the basis of the grasp point of robot arm, a round, yellow 
marker was attached to the robot arm finger. Its location 
was detected from the images and used as a reference. An 
area of 240× 250 pixels around the marker was cut from 
the images. After binarization and noise removal, the string 
area was slightly blown up by expanding the image. We 
used these images of a clearly depicted string. The method 
for calculating the manipulation achievement Ar is shown 
in Fig. 8. This method is similar to that of calculating the 
achievement in simulation. Instead of the mass points in 
the simulation, we compared the pixels in the actual string 
image with those of the desired shape images. In other 
words,

For each pixel in the actual string image, a weighted score 
pi(0 ∼ pmax ) for the desired image was attached, and the 

(9)Ar =

∑

S ·pi

S0 · pmax

Fig. 6 Wire-driven robot arm

Table 1 Robot arm specification

Each joint J1 J2 J3

Moveable range (deg) − 10 to + 100 − 100 to + 100 − 100 to + 100

Maximum speed (deg/s) 928 998 3457

Total moment of inertia (g cm2) 88.0 34.7 13.1

Maximum rated torque (Nm) 9.8 3.2 0.9

Used motor EC-4pole(200W) EC-i40(50W) EC-i40(50W)

Total reduction ratio 104 61.3 17.7

Acceleration for motion generation(rad/s2) − 40 to 40 − 60 to 60 − 80 to 80
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total was calculated. S0 is the pixel in the desired motion 
image. In actual string images, the string position is likely 
to shift by a few pixels because of marker detection errors 
and camera lens distortion. Therefore, we compared the 
obtained string images with the desired shape images 
while shifting a few pixels horizontally and vertically. 
Evaluation of manipulation achievement was performed 
for all time-series images. When achievement Ar of some 
images in the time-series image exceeded the threshold, 
the desired shape was deemed to have been achieved. We 
call this the threshold of successful manipulation.

Dynamic manipulation aimed at momentary string 
shape
We examined whether dynamic manipulation to achieve 
a momentary string shape can be realized using the pro-
posed method by repeating the sequence of motion gen-
eration, actual manipulation, and parameter estimation. 
The desired shape images are the five shapes shown in 
Fig. 9 (C, J, d, o, and s). String model was given by ten mass 
points ( n = 10 ). Fewer number of mass points n cannot 
express desired string shape such as s and d. However, if the 
number of mass points are too many, the computational 
load for motion generation and parameter estimation 
bocomes heavy. Therefore, we determined the required 
number of mass points based on the complexity of desired 
images. The range for selecting the robot movement time 
is T = 0.2 ∼ 1.5 s. Table  2 lists the ranges of all param-
eters used in the parameter estimation. The initial values 
used for the first motion generation are the minimum val-
ues given in this table. Furthermore, the convergence fac-
tor is β = 0.995 , the initial search range χw0 = 0.6, and 
the weighting increment used for the matching rate �w = 
0.25. We determined the weighting increment �w via trial 
and error. The actual manipulation image series used for 
parameter estimation are the image series added every 0.2 
s before and after movement time T. However, when the 
string came into contact with the robot during manipula-
tion, the parameters were estimated in the image series just 
prior to the contact. The length of the manipulated string 
was 300 mm. The threshold for successful manipulation 
was defined as Ar = 0.7.

Dynamic manipulation to achieve a d shape of the string
In the first example, we attempted to manipulate the 
string to form a d shape. The string used was a braided 

Fig. 7 Circle trajectory at some positions

Fig. 8 Evaluation of achievement in real manipulation Fig. 9 Desired image of string shapes
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acrylic string (diameter of 5 mm). We illustrated the 
changes in the estimated parameter for each manipu-
lation series to achieve the desired shape as well as 
the associated changes in motion generation. The first 
manipulation generated the motion shown in Fig. 10a. 
The period in which the desired shape was achieved in 
the simulation was 0.33 s after the start of motion, but 
as can be seen from the actual string movement, the 
string is not curving near the 0.33 s mark. This demon-
strates that the actual string properties are more resist-
ant to bending than the initial parameter. Actually, in 
the results for the first string parameter estimation, 
the hinge spring constant kh , which indicates the ease 
of string bending, was estimated to be approximately 
eight times the initial parameter (Table 3). The results 
of the second motion generation and manipulation 
using the values obtained through this parameter esti-
mation are shown in Fig.  10b. The desired shape was 
achieved in the third motion generation and manipula-
tion ( Fig. 10c).

Figure  11 shows the changes of achievements in 
simulation As and real manipulation Ar . The achieve-
ment is low because the simulated string shape and 
desired string shape do not match at the beginning of 
the motion. However, the desired string shape is almost 
achieved at one point, which is the achievement peak. 
It was confirmed that by repeating the parameter esti-
mation and motion generation, the shift in manipula-
tion achievement Ar generally matches the simulation 
achievement As . This indicates that the string parame-
ters are reflected in the motion generation as parameter 
estimation results and the simulation and actual string 
movements correspond more to each other.

Figure  12 depicts the actual robot finger trajectories 
for each of the manipulations. Comparing the first and 
third manipulations, the robot motion generally takes 
the same amount of time, and the form of their tra-
jectories followed are also similar. However, because 
the amount of travel of the robot finger is smaller in 
the third manipulation, a high level of momentary 

acceleration occurs on the string. Therefore, although 
the tendency on the change of string shape is approxi-
mately the same, a higher degree of bending is obtained 
in the third manipulation and the desired motion is 
achieved. This further demonstrates that motion gen-
eration is adjusted in accordance with the estimated 
parameters. Then, Fig.  13a, b display the comparison 

Table 2 Range for parameter estimation

Each parameter Minimum Maximum

Spring constant ks (N/m/kg) 9.0× 103 9.0× 105

Damping coefficient cs (Ns/m/kg) 0.13 1.3× 103

Hinge spring constant kh (Nm/rad/kg) 8.0× 10−3 4.0× 102

Hinge damping coefficient ch (Nms/rad/kg) 3.0× 10−7 0.67

Resistance proportional coefficient Cc1 (Nms/rad/kg) 1.0× 10−4 10

Air resistance squared proportional coefficient Cc2 (Nms/rad/kg) 1.0× 10−4 10

Hinge spring constant of grasp point kph (Nm/rad/kg) 1.0× 10−3 5.0

Hinge damping coefficient of grasp point cph (Nms/rad/kg) 1.1× 10−6 0.37

Fig. 10 Change of generated motion and actual string motion 
(Desired image of string shape: d )
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of the actual and simulated string movements in each 
time of parameter estimation. These figures show that 
both string movements are generally matched. The lin-
ear mass-spring model cannot express a large deforma-
tion basicaly. However, if the number of mass points is 
sufficient, there is no large deformation of the adjacent 
mass point. Therefore, the mass-spring model is capa-
ble of expressing the string movement approximately.

Dynamic manipulation for various desired string shapes
To examine whether other desired shapes can be 
achieved, we attempted manipulation for four shapes, 
namely, letters C, J, o, and s. The previous string was 
used for this test. Consequently, the letters J and C 
were achieved during the fourth manipulation and third 
manipulation, respectively (Figs.  14 and 15). The move-
ment for J is similar to that for d, but slower and with 
more moving distance. For C, a trajectory where the 
robot finger moved substantially in the vertical direction 
was generated. This reveals that the motion is generated 
according to the given desired shape. Figs.  14c and 15c 
show that our model cannot completly express the actual 
string movement but express that near the achieved 
moment of desired shape. String parameters affects more 
the string movement when the movement is large. There-
fore, the estimated parameter changes according to the 
desired string shape.

In contrast, although motion generation was performed 
with the initial parameters for o, motion generation with 
the estimated parameters after actual manipulation was 
not possible. It was possible when changing the vertical 
oval of the desired string shape into a horizontal oval, 
and the desired shape was achieved in the third manipu-
lation (Fig. 16). Forming a string into a circular shape is 
difficult because the positions of the ends of the string 
are restrained as they are grasped by the robot. Because 
the movable range of the robot arm is limited, moving 
the finger directly downward is difficult.

In addition, motion generation was not performed 
when the desired image was set as letter s. We changed 
the number of control points for the Bezier curve of joint 
velocity from 4 to 7 to generate the complicated motion. 
The manipulation result is illustrated in Fig. 17. Manipu-
lation was achieved in three repetitions. We showed that 
more control points for generating the Bezier curve are 
required to perform more complicated shapes.

As indicated, dynamic manipulation could be achieved 
for various desired string shapes and the achievable shape 
depends on the robot motion performance, string prop-
erty, robot arm restrictions, and so on. When desired 
shape has high curvatures like a Z, higher robot motion 
performance is necessary. If the string is longer and more 
flexible, the possibility to realize the shape with large cur-
vature increases.

Dynamic manipulation for unknown string with different 
properties
We examined the usefulness of the proposed method 
for unknown strings with different properties. For this, 
we prepared two string types (Strings B and C), which 
are different from the string (String A) used previously. 
String B is harder than String A, whereas String C is 
softer than String A  (Fig. 18). The desired string shapes 
were the letters C and J and the results are shown in 
Fig.  19. For both string types, the momentary string 
shape could achieve the desired shape. The C shape was 
generated with approximately the same motion even 
for different string parameters, whereas the J shape was 
generated with motions that differed depending on the 
parameters.

Figures  20 and 21 indicate the typical results of the 
estimated parameters for manipulation using the three 
types of strings. Some differences in the properties were 
observed owing to the type of string. For instance, a 
comparison of the parameters where the desired shape 
was achieved shows that for the softest string, String C, 

Table 3 Estimated parameter values (desired image of string shape:d)

Each parameter Initial parameter 1st time estimation 2nd time estimation

Spring constant ks (N/m/kg) 9.0× 103 1.0× 105 5.2× 104

Damping coefficient cs (Ns/m/kg) 0.13 0.45 6.2

Hinge spring constant kh (Nm/rad/kg) 8.0× 10−3 6.7× 10−2 4.10×−2

Hinge damping coefficient ch (Nms/rad/kg) 3.0× 10−7
8.6× 10−3 6.8× 10−3

Air resistance proportional coefficient Cc1 (Nms/rad/kg) 1.0× 10−4 1.3 0.75

Air resistance squared proportional coefficient Cc2 (Nms/rad/kg) 1.0× 10−4 0.28 3.2× 10−4

Hinge spring constant of grasp point kph (Nm/rad/kg) 1.0× 10−3 5.0 5.0

Hinge damping coefficient of grasp point cph (Nms/rad/kg) 1.1× 10−6 3.0× 10−4 7.5× 10−5

Matching rate E – 0.52 0.62



Page 11 of 17Tabata et al. Robomech J            (2020) 7:39  

the lowest hinge spring constant kh is estimated to be 
independent of the desired string shape. For the hard-
est string, String B, the highest hinge spring constant kh 
among the three types of strings was estimated. Based on 

these results, it can be said that parameter estimation has 
been successful.

If the same string was used, it was expected that the 
same parameters would be estimated regardless of the 
desired string shape. However, parameter estimations 
were observed to vary greatly depending on the desired 
string shape. A comparison of the hinge spring constants 
shows that the estimated values for the desired shape C, 
which involves a gentle curvature of the string, are high. 
In contrast, those for J, which involves sharp curves, are 
low. This is possibly because they are parameters that are 
less affected by the desired string shape, or they have the 
same effect as other parameters, or the non-linearity due 
to velocity and major deformation affect the properties of 
the string itself. However, we have shown that even with 
unknown true parameter values, it is possible to adjust 
them in accordance with the desired string shape and 
generate motion.

Reproducibility of estimated parameters and motion 
generation
To confirm the reproducibility, we conducted experi-
ments repetitively for realizing the momentary shape 
of J. Figure 22a shows the profile of achievement in real 
manipulation in each tiral. Repetition count was varied 
from 2 to 8 until threshold of successful manipulation 
( Ar = 0.7 ) is satisfied, but the achievement Ar tended 
to increase by multiple repetition and motion objective 
was achieved in all trials. However, final achievement Ar 
values in each trial is different. Because of the parameter 
estimation method by random search algorithm, esti-
mated parameter values stay the local solution. The final 
achievement value Ar depends on the property of local 
solution. In addition, it is considered that achievement is 
also affected by the variation of real string movement.

Estimated parameter in each trial is not same value 
as shown in Table  4. The first cause is model redun-
dancy. Even if the same string movement is expressed, 
there are some combinations of parameter sets. 

a

b

c
Fig. 11 Experimental result of achievement Ar , As (desired image of 
string shape:d)

Fig. 12 Finger trajectories for ”d” shape
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Fig. 13 Estimation result of string parameters

a

b
c

Fig. 14 Manipulation result of desired image of string shape: J

a

b

c

Fig. 15 Manipulation result of desired image of string shape: C
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Second, parameter estimation method does not esti-
mate the parameter to express various movement 
but specific movement. Therefore, estimated param-
eter depends on the specific movement of string. Fig-
ure 22b shows the finger trajectories according to the 
number of trials. Even if the momentary shape is same, 
string movement for reaching this momentary shape 
is not same in each trial. This causes different esti-
mated parameters. As a result, although a parameter 
set estimated by each trial does not have reproducibil-
ity, the desired manipulation is achieved successfully 
with acceptable expression of string movement by 
estimated parameter set.

To confirm the compatibility of estimated parameter, 
the experiment for achieving the desired image of the J 
shape was conducted by using the parameter estimated 

from the C shape manipulation. Fig.  23a, b depict the 
manipulation result and achievement respectively. The 
first manipulation does not realize the string movement 
simulated with parameter from C shape. As mentioned 
previously, parameter estimation method does not esti-
mate the parameter to reproduce various movements 
but the specific movement. Even if string parameter is 
obtained from manipulating for other desired shape, 
manipulation performance is not always satisfying 
because the obtained parameter is tuned to the specific 
movement.

Our proposed method accumulates experience within 
the trial. Previous experience (estimated parameter) does 
not always work well for other manipulation. There-
fore, a parameter that is estimated by specific manipula-
tion does not have compatibility. It should be noted that 
known parameter of string can be used as initial param-
eter, but it also does not always work well like parameter 
estimated for other desired shape.

Conclusion
The present study proposed a method for dynamic 
manipulation of unknown strings by repeating motion 
generation/actual manipulation/parameter estimation 
with a mass-spring model. The desired string shape 

Fig. 16 Effects of correction of desired image of string shape: O

Fig. 17 Effect of increasing control points in Bezier curve for joint velocity (Desired images of string shape: S)

Fig. 18 Strings used in the experiment
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was given by the images representing the momentary 
string shapes. During motion generation by the robot, 
the angular velocity for each joint was represented by 
a Bezier curve, and string movement was simulated 
based on a randomly generated motion. The achieve-
ment in simulation was evaluated to select generated 
motion. For the actual manipulation, we calculated 
the achievement by comparing the actual string shape 

obtained from camera images to the desired shape 
images. String parameters were estimated by random 
search via comparing real string movement with simu-
lated string movement.

When we used the proposed method to perform 
manipulations on a two-dimensional surface for the 
intended momentary string shape, we were able to 
achieve five desired shapes. Moreover, we confirmed that 

Fig. 19 Experimental results about manipulating strings with various properties

a b
Fig. 20 Estimated parameters for each string (desired image of string: C)
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a b
Fig. 21 Estimated parameters for each string (desired image of string: J)

a b
Fig. 22 Reproducibility of manipulation (desired image of string shape: J)

Table 4 Reproducibility of estimated parameters (desired image of string: J)

Each parameter Trial no.0 Trial no.1 Trial no.2 Trial no.3 Trial no.4

Spring constant ks (N/m/kg) 9.0× 105 4.9× 105 4.2× 105 5.2× 104 2.5× 105

Damping coefficient cs (Ns/m/kg) 57 19.1 3.3 4.3 4.1

Hinge spring constant kh (Nm/rad/kg) 0.57 7.0 2.7 8.0× 10−3 1.3× 10−2

Hinge damping coefficient ch (Nms/rad/kg) 2.5× 10−2 2.8× 10−2 5.5× 10−2 8.5× 10−4 9.8× 10−7

Air resistance proportional coefficient Cc1 (Nms/rad/kg) 0.52 1.2× 10−4 1.0× 10−4 1.8× 10−4 1.8× 10−4

Air resistance squared proportional coefficient Cc2 (Nms/rad/kg) 0.26 0.51 6.9× 10−4 1.1 1.7× 10−4

Hinge spring constant of grasp point kph (Nm/rad/kg) 0.27 6.4× 10−3 8.1× 10−3 5.0 7.5× 10−3

Hinge damping coefficient of grasp point cph (Nms/rad/kg) 7.3× 10−3 9.6× 10−5
1.4× 10−2 7.7× 10−5

4.6× 10−3
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the desired shape could be achieved by manipulating 
three types of strings with different properties. However, 
string parameter was not uniquely estimated, despite of 
same desired shape and same string. The desired manip-
ulation cannot be achieved with the parameter estimated 
from other manipulation. Althogh our proposed method 
is lack of reproducibility and compatitivety about param-
eter estimation, estimated parameter express the specific 
string movement and it realize desired momentary shape 
of string. Even without prior testing to examine the string 
properties, we demonstrated the possibility that manipu-
lation can be achieved.

This method can be expected to apply other manipu-
lation types apart from momentary string manipulation. 
In addition to extending this study to three-dimensional 
manipulation, our future tasks are its application to cyclic 
movements such as string turning or manipulations to 
control shape and trajectory after throwing a string.
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