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Abstract

A substorm is a transient phenomenon that lasts for only 1–2 h. One significant manifestation of the substorm is a
sudden brightening of the aurora on the nightside. Simultaneously, the auroral electrojets are abruptly intensified in
the ionosphere, disturbing the geomagnetic field in the polar region. The near-Earth space environment is highly
disturbed, which manifests as an earthward fast flow of plasma, a sudden change in the magnetic field, or a
sudden increase in hot plasma. Such disturbances are known to severely affect human society. The ultimate
cause of the disturbances is the solar wind, but an explanation of the chain of processes leading from solar
wind to the ionosphere is problematic. Here, the evolution of the auroral substorm is reviewed based on the
results of a global magnetohydrodynamics (MHD) simulation, called a REProduce Plasma Universe (REPPU)
code. The REPPU code is shown to reproduce many aspects of the auroral substorms and to be useful for
understanding the primary chain processes from the solar wind to the ionosphere.
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Introduction
A substorm is a transient, complex phenomenon that
takes place in the magnetosphere and the ionosphere. It
starts with a growth phase, followed by an expansion
phase, and a recovery phase. Usually, the substorm lasts
for 1–2 h. The terms “polar magnetic substorm” and
“auroral substorm” were first suggested by Sydney
Chapman (Akasofu, 1968) to represent polar magnetic
disturbances and the sudden activation of aurora.
Later, Neil M. Brice and Kinsey A. Anderson introduced
the term “magnetospheric substorm” to represent mag-
netospheric disturbances that coincide with both polar
magnetic and auroral substorms (Akasofu 1968). The
term “substorm” was originally intended to mean an ele-
ment of a magnetic storm, which is a worldwide magnetic
disturbance lasting for a few days. This would mean that a
magnetic storm develops when substorms occur
frequently. However, some counterexamples are provided
(Kamide 1992; McPherron 1997), and the storm-substorm
relationship is still an unsolved problem.
One of the most striking and remarkable phenomenon

throughout the entirety of the substorm is an explosive

brightening of aurora followed by expansion (Akasofu
1964; Akasofu et al. 1965), known as auroral breakup.
Once the auroral breakup begins, a large amount of
energy, exceeding 1011W, is consumed in the polar iono-
sphere (Ahn et al. 1983; Sun et al. 1985; Kamide et al.
1986; Richmond et al. 1990; Palmroth et al. 2005). The
auroral substorm is a subset of the polar substorms, in-
cluding polar magnetic substorms, ionospheric substorms,
X-ray substorms, proton aurora substorms, VLF emission
substorms, and micropulsation substorms (Akasofu 1968,
references therein). Substorm-associated magnetospheric
disturbances have also been identified such as hot plasma
injection into the inner magnetosphere (DeForest and
McIlwain 1971), high-speed flow in the plasma sheet
(Hones and Schindler 1979), and a dipolarization front
(Nakamura et al. 2002). Auroral kilometric radiation
(Gurnett 1974) is also a notable feature. These distur-
bances are often used as proxies for the substorm onset,
but cannot provide consistent timing for it (Liou et al.
1999). Liou et al. (1999) suggested the use of auroral
breakups as a common reference time frame for substorm
onset. Therefore, the auroral substorm is of particular
focus in this paper.
Global magnetohydrodynamics (MHD) simulation studies

have been conducted to understand the evolution of
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substorms. The following is a summary of previously
reproduced features and results obtained based on the
global MHD simulations: (1) an intensification of au-
roral electrojets in the ionosphere (Lyon et al. 1998;
Wiltberger et al. 2000b; Lopez et al. 2001; Raeder et
al. 2001; Tanaka et al. 2010), (2) a midlatitude posi-
tive bay of ground magnetic disturbance (Tanaka
2015), (3) Pi2 magnetic pulsation (Tanaka 2015), (4)
ground magnetic disturbances from pole to equator
including overshielding conditions (Ebihara et al.
2014), (5) the global evolution of auroral patterns
(Fedder et al. 1995; Palmroth et al. 2006; Tanaka
2015; Ebihara and Tanaka 2016), (6) localized auroral
patterns (Raeder et al. 2012), (7) the evolution of the
polar cap boundary (Lopez et al. 2001), (8) an earth-
ward fast flow and associated enhancement of the
magnetic fields in the plasma sheet (Hesse and Birn
1994; Tanaka 2000b; Slinker et al. 2001; Raeder et al.
2010; Birn et al. 2011), (9) the formation of a current
wedge (Hesse and Birn 1991; Birn et al. 1999; Birn
and Hesse 2014), (10) a tailward moving current
surge (Ohtani and Raeder 2004), (11) evolution of
multiple near-Earth neutral lines (El-Alaoui et al.
2009), (12) energy transfer from solar winds
(Papadopoulos et al. 1999; Ebihara and Tanaka 2017),
(13) energy conversion in the tail region (Birn and Hesse
2005; Ebihara and Tanaka 2017, and (14) the injec-
tion of energetic particles into the inner mag-
netosphere with the aid of particle simulations, or
Fokker-Planck simulations (Birn et al. 1998; Kim et al.
2000; Fok et al. 2006; Ebihara and Tanaka 2013;
Nakayama et al. 2017).
In this paper, the simulation results obtained using the

REProduce Plasma Universe (REPPU) code (Tanaka 2015)
are used to demonstrate recent understanding of the
auroral substorm. Detailed information about REPPU is
described in the Appendix.

General overview of simulated substorm
The simulation results overviewed in this paper are
obtained using the REPPU code with the following solar
wind and IMF parameters (Ebihara and Tanaka 2015a,
2016, 2018) unless otherwise mentioned. Initially, a north-
ward IMF condition was imposed for 2 h to establish a
quasi-steady state magnetosphere: a solar wind density of
5.0 cm−3, a solar wind speed of 372 km s−1, the Y-compo-
nent of the interplanetary magnetic field (IMF B) at
− 2.5 nT, and the IMF Bz at 4.3 nT. IMF Bx was held
at 0 throughout the calculation. IMF Bz was changed
to − 3.0 nT after 2 h.
Figure 1 shows the H-component of magnetic distur-

bance on the ground at 48 magnetic local times (MLTs)
with an interval of 0.5 h at 70 magnetic latitude (MLAT).
The magnetic disturbances were calculated based on the
ionospheric Hall current. The upper envelope of the mag-
netic disturbance can be regarded as Auroral Upper (AU),
and the lower as Auroral Lower (AL) indices (Davis and
Sugiura 1966). “T = 0” is referred to as the moment when
the southward IMF reached X = 40 Re. At T~ 20min, the
AL index starts showing a gradual decrease. At T~ 70min,
the AL starts decreasing abruptly, which can be regarded as
the beginning of the expansion phase of a substorm. These
changes are consistent with observation (McPherron 1970).
Rapid development of the westward electrojet as
manifested by the rapid decrease in AL is also repro-
duced in the other MHD simulations (Fedder et al. 1995;
Pulkkinen et al. 1998; Lyon et al. 1998; Wiltberger et al.
2000a; Lopez et al. 2001; Raeder et al. 2001). The west-
ward electrojet (as seen by AL) peaks in the post-midnight
region, and the eastward electrojet (as seen by AU) peaks
in the post-dusk region. This is consistent with observa-
tions (Silsbee and Vestine 1942; Allen and Kroehl 1975;
Kamide et al. 1994; Guo et al. 2014).
Figure 2 summarizes the field-aligned current (FAC) in

the ionosphere (Ebihara and Tanaka 2018). The simulation
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Fig. 1 The H-component of the magnetic disturbance at 70 MLAT and 48 MLTs. The upper and lower envelops are regarded as AU and AL
indices, respectively
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is the same as that used for Fig. 1. In the global MHD
simulation, the FAC J|| is given by

J∥ ¼ 1
μ0

ð∇� BÞ∥; ð1Þ

where μ0 is the magnetic constant. However, a global
MHD simulation based on the ideal MHD assumptions
cannot deal with the kinetic processes regarding electron
precipitation. The emission from excited atoms and
molecules in the thermosphere was also not calculated.
We used the upward FAC as a proxy of the bright
aurora (discrete aurora) because the upward FAC is
suitably correlated with the brightness of the discrete
aurora (Korth et al. 2014).

1. At T = 1.6 min, the magnetosphere is still exposed
to the northward IMF. The distribution of the
upward FAC (hereinafter, simply referred to as
aurora) is complicated. N-S-aligned structures of
aurora are evident at high latitudes, which resemble
the sun-aligned arcs observed at high latitudes
when the IMF is northward, or close to zero (e.g.,
Ismail et al. 1977). The structure of the aurora
(upward FAC) originates from the structured
plasma pressure in the high-latitude magnetosphere
as explained later in this paper (Ebihara and Tanaka
2016). Detailed explanation for the sun-aligned arcs
is provided in terms of topology of the magnetic
field line (Tanaka et al. 2017b).

2. As the IMF turns southward, the two-cell pattern
of the ionospheric convection, known as the DP2
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Ebihara Progress in Earth and Planetary Science            (2019) 6:24 Page 3 of 24



equivalent current system (Nishida 1968), starts
developing. The N-S aligned structures move
equatorward. For the sake of simplicity, we call
them “high-latitude aurorae,” which represent
structured aurorae inside the main auroral oval,
particularly on the nightside. The high-latitude
aurorae seem to originate from sun-aligned arcs,
and the direction of the high-latitude aurorae can
change to the E-W direction, and vice versa. A quiet
arc is also evident, which is caused by flow shear in
the high-latitude magnetosphere (Tanaka et al. 2017a).

3. At T ~ 69.4 min, the aurora starts becoming bright
in the latitudinally narrow area of the equatorward
part of the preexisting aurora. This may be
regarded as an initial brightening of the aurora
(Akasofu 1964). The brightening occurs at ~ 70
MLAT in the post-midnight sector for this particu-
lar simulation, which is slightly poleward and east-
ward of the median location of the expansion onset
observed by satellite (Liou 2010). Tanaka et al.
(2017a) used the same simulation code with differ-
ent solar wind parameters, showing that the bright-
ening starts at ~ 68 MLAT near midnight. Thus,
the location of the brightening is probably deter-
mined by solar wind parameters and simulation
settings, but the determinant factors that control

the onset location are still unknown. The expan-
sion onset predominantly takes place in the pre-
midnight sector (Liou 2010). The eastward shift
in the location of the expansion onset may be due to
the following two factors. One is the skew of the
magnetic field line depending on IMF By. The results
of the REPPU code show that the skew is maximized
near the equatorial plane near the expansion onset
(Saita et al. 2011). Observations show that the
location of the expansion onset shifts eastward for
negative IMF By in the Northern Hemisphere (Liou
and Newell 2010). The second factor is the eastward
shift of a near-Earth neutral line (NENL), which is
described below. The simulated location of the ex-
pansion onset is not far from that observed and is
within the observational limit as shown in Fig. 3 of
Liou (2010). It should be emphasized that the
processes behind the substorm are confirmed to be
independent of the location of the brightening.

4. After a few minutes, the bright aurora starts
expanding poleward, which may be referred to as a
bulge (Akasofu 1964).

5. As the bulge develops, an additional auroral
structure appears at T ~ 73.4 min, which propagates
westward. This may be referred to as the westward
traveling surge (Akasofu 1964). The calculated AL
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index shows an abrupt decrease (as shown in Fig. 1)
in association with the development of the bright
aurora (Kamide and Akasofu 1975).

Figure 3 shows the FAC as a function of MLAT and
time at the meridian at 22 MLT (Ebihara and Tanaka
2016). After the arrival of the southward IMF (SBZ), the
auroral structures, regarded as high-latitude aurora, start
moving equatorward. After some time, the aurora is
intensified at T ~ 76min due to the arrival of the west-
ward traveling surge. In general, the temporal evolution
of the aurora is consistent with observations by satellite
(e.g., Plate 2 of Brittnacher et al. 1999), although the
steady solar wind and IMF conditions are used to drive
the REPPU code.

Growth phase
The term “growth phase” is used to describe a precursor
or pre-conditioning stage that occurs before the explo-
sive auroral brightening (McPherron 1970; Akasofu and
Snyder 1972). Some auroral structures, such as the quiet
arc, move equatorward gradually. Gradual changes in
the horizontal component of the magnetic field (ΔH) are
observed in the auroral oval. In the magnetosphere, the
strength of the magnetic field in the lobe is gradually
enhanced (Fairfield and Ness 1970), and the magnetic
field lines are gradually stretched in the magnetotail
(Nishida and Fujii 1976). The magnetic energy is stored
in the tail region, which is released in the expansion
phase (Atkinson 1966; Siscoe and Cummings 1969).
The quiet arc is one of the auroral activities that is

often observed during a growth phase (Akasofu 1964;
Meng 1976; Lassen et al. 1977; Johnson et al. 1998;
Lessard et al. 2007; Haerendel et al. 2012). The quiet arc
is also known as a growth phase arc (Haerendel 2010;
Lyons et al. 2011; Nishimura et al. 2012), a preexisting
arc (Jiang et al. 2012), and a quiet evening arc (Pritchett
et al. 2014). On the basis of satellite observation, the
thickness of the quiet arcs are estimated to be ~ 100 km
(Johnson et al. 1998), which may be an upper limit
because of the relatively coarse resolution of
satellite-borne imaging. Ground-based optical cameras
have captured an auroral arc with a thickness of 3.5 km
at 200 km altitude (Dahlgren et al. 2009). Precipitating
electrons with a peak energy of ~ 1–5 keV are thought
to cause the quiet arc, suggesting that the electrons
are accelerated by the field-aligned electric field
(Meng 1976; Lassen et al. 1977; Haerendel et al. 2012)
in the region of the upward field-aligned current
(FAC) (Haerendel et al. 2012; Jiang et al. 2012). The
upward FAC associated with the quiet arc is thought
to originate from an azimuthal gradient in the plasma
pressure near midnight (Lyons and Samson 1992;
Antonova 1993; Stepanova et al. 2002; Haerendel 2008;

Coroniti and Pritchett 2014). Using the REPPU code,
Tanaka (2015) proposed that the quiet arc is generated by
the FAC associated with flow shear in the Y-direction of
the high-latitude magnetosphere. Convective flow from
the high-latitude lobe towards the equatorial plane is
deflected and divided into the westward and eastward
flows off the equator. Another interpretation of the forma-
tion of the quiet arc is the precipitation of electrons
caused by fieldline curvature scattering (Pulkkinen et al.
1992; Yahnin et al. 1997; Sergeev et al. 2011). The con-
tribution of scattered particles to the formation of the
quiet arc should be investigated in the future.
The high-latitude aurorae, which appear within the

main auroral oval as shown in Fig. 2, resemble the
auroral structures propagating equatorward during the
growth phase (Akasofu 1964; Kadokura et al. 2002;
Kepko et al. 2009; Nishimura et al. 2010; Mende et al.
2011). The high-latitude aurora is elongated in the N-S
or E-W directions. The N-S-aligned high-latitude aurora
can switch to the E-W, and vice versa. This is consistent
with observational results showing that 34% of the arcs
are east-west (E-W) aligned, 48% of them are
north-south (N-S) aligned, and 19% switch from N-S to
E-W alignments over the course of the equatorward
movement (Nishimura et al. 2010). Ebihara and Tanaka
(2016) suggested that the high-latitude aurorae are
closely associated with the flow vorticity near the com-
plicated structure of the plasma pressure region of the
lobe off the equator. Figure 4 shows the evolution of
plasma pressure in the Y-Z plane at X = − 7.0 Re and in
the X-Z plane at Y = − 1.5 Re. At T = 3.7 min, small pro-
tuberances of the plasma pressure distribution appear in
the lobe as indicated by the arrow in Fig. 4a. During the
period from the quiet to the early growth phase (T = 3.7,
14.6 and 29.6 min), protuberances are clearly identified
in the Y-Z plane and are shown to evolve away from the
equatorial plane. Consequently, the plasma pressure dis-
tribution becomes complicated off the equator. Each
complicated structure moves away from the equatorial
plane and towards the east in the Northern Hemisphere
and the west in the Southern Hemisphere. The distribu-
tion of the plasma pressure seen in the Y-Z plane is simi-
lar to the Rayleigh-Taylor type instability.
Figure 5 is a sketch for the evolution of a protube-

rance, as the structured plasma pressure distribution
(Ebihara and Tanaka 2016). A protuberance of the
high-pressure region appears due to some reason (indi-
cated by yellow color in Fig. 5). As the protuberance
moves away from the equatorial plane, it induces flow
vorticities. Counterclockwise vorticity (viewed in the
direction of the field lines) appears at the west of the
protuberance, generating downward FAC. Clockwise
vorticity appears in the east, generating upward FAC.
When these FACs are connected to the ionosphere, the
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eastward electric field develops to satisfy current continuity
in the ionosphere. The eastward electric field propagates
into the magnetosphere, causing further development of
the protuberance. Because of the non-linear nature, the
protuberance (the structure of the high-pressure region)
becomes complicated as shown in Fig. 4.
As the IMF turns southward, the magnetospheric con-

vection is enhanced. The structured high-pressure
region that appeared off the equator moves towards the
equatorial plane due to enhanced convection. Conse-
quently, the high-latitude aurora moves equatorward in
the ionosphere (T = 29.5, 43.7, and 55.7 min). The
high-latitude aurora is elongated in the N-S direction, or
the E-W direction, depending on the structure of the
high-pressure region. The uncertainty of the direction is
consistent with observation (Nishimura et al. 2010).
Figure 6 shows the calculated FACs together with the

ionospheric flow (Ebihara and Tanaka 2016). The
high-latitude aurorae, elongated in the E-W and N-S
directions, resemble observations as shown in Fig. 7
(Nishimura et al. 2010). The high-latitude aurora is
located near the westward edge of the equatorward flow
channel in the ionosphere. However, a downward FAC is
located near the eastward edge of the channel. The equa-
torward flow channel is caused by the westward electric
field arising from the current closure brought by a pair of
the localized FACs. These localized FACs are closely asso-
ciated with the protuberance of the high-pressure region
off the equator (Ebihara and Tanaka 2016), and not the
plasma sheet, as shown in Fig. 8. One may speculate that
the equatorward flow channel is a projection of the earth-
ward flow channel in the plasma sheet and that a pair of
the FACs are connected to both sides of the earthward
flow channel as illustrated by Sergeev et al. (2000). The
simulation result shows that most of the high-latitude
aurorae are located in open magnetic field lines as shown
in Fig. 8. The white lines in Fig. 8 indicate the magnetic
field line extending from the high-latitude aurorae. The

magnetic field lines extending from aurorae 1 and 2 are
open, whereas the magnetic field line extending from aur-
ora 3 is closed. This means that some of these lines cannot
be mapped to the plasma sheet.
The existence of the high-pressure region in the lobe

is not confirmed. One possibility is the highly structured
ions observed by the Cluster satellite in the lobe region
(Shi et al. 2013). These are observed in the northward
IMF, with typical energies in the kiloelectron volt range.
Shi et al. (2013) explained the ions in terms of the entry
of solar wind ions into the high-latitude magnetosphere.
However, there is a possibility that the structured ions
are responsible for the generation of the high-latitude
aurora (Ebihara and Tanaka, 2016). In the global MHD
simulation, the structured high-pressure region develops in
the northward IMF. If the IMF remained northward over a
long time period, the high-latitude magnetosphere would
become filled with the high-pressure region as observed by
(Zhang et al. 2009). This will be investigated in the near
future in terms of the evolution of the high-latitude aurora
and the structure of the magnetosphere.

Onset of the expansion phase
One of the longitudinally elongated auroral arcs, usually
the equatorward arc, starts showing a sudden brighten-
ing followed by a rapid poleward motion (Akasofu
1964). This is called an auroral breakup. The trigger
process leading to auroral breakup is a controversial
issue. Observations show that the NENL is closely asso-
ciated with substorms (Hones et al. 1973; Nishida and
Nagayama 1973). It is natural to consider that intense
FACs appear in the vicinity of the NENL and initiate the
auroral brightening (Baker et al. 1993; Treumann et al.
2006). If this is the case, auroral breakups will start near
the poleward boundary of the auroral oval because this
is thought to be the open-closed boundary of the mag-
netic field line. However, observations show that auroral
breakups start near the equatorward boundary of the
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Protuberance of high-pressure region

Eastward
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field
|| ||

Field-aligned current

Fig. 5 A possible generation mechanism for the structured distribution of plasma pressure, which is associated with the high-latitude aurorae
often observed in the growth phase. (Adapted from Ebihara and Tanaka 2016)
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auroral oval (Lui and Burrows 1978; Elphinstone et al.
1991). To solve this problem, a current disruption model
has been suggested (Lui 1996). Current disruption is
thought to occur in the near-Earth plasma sheet at a ra-
dial distance of ~ 8 Re and is supported by observations
that the magnetic field oscillates in large-amplitude
wavelengths, breaking down the frozen-in condition
(Takahashi et al. 1987; Lui 2011). Ballooning mode in-
stability is one of the plausible mechanisms leading to
the current disruption (Roux et al. 1991; Cheng and Lui
1998; Liu et al. 2012). Once the current disruption
occurs, the current wedge (CW) appears as a diversion
of the cross-tail current (Lui 1996). Considering earth-
ward flow in the plasma sheet (Hones 1979), one can
reasonably regard the formation of the NENL as a trig-
ger of the auroral breakups starting near the equator-
ward boundary of the auroral oval. Examples include the
intrusion of low entropy plasma (Chen and Wolf 1993),
inertial current associated with flow braking (Haerendel
1992; Shiokawa et al. 1997), and flow vorticity (Birn and
Hesse 1991; Birn et al. 2004b; Keiling et al. 2009). Both the
NENL and current disruption models can explain auroral
breakups starting near the equatorward boundary.

Many research efforts aimed at understanding the
whole process from trigger to auroral evolution have
been conducted. However, it was difficult to construct a
synthesis model without contradictions due to the
limited number of observations. Here, the capability of
the MHD model in reproducing the auroral substorm
expansion is briefly overviewed. First of all, it should be
noted that the MHD model cannot deal with the kinetic
processes involved by the current disruption (Lui et al.
1990; Cheng and Lui 1998). Despite this limitation, the
MHD model has successively reproduced many aspects
of substorm expansion (Tanaka, 2015). In the MHD
model, the substorm expansion is triggered by the for-
mation of the NENL. Figure 9 shows an example of the
X-component of the plasma flow velocity perpendicular to
the magnetic field in the equatorial plane at T = 55.7min.
The simulation settings are the same as those used for
Figs. 1, 2, 3, 4, and 6. The NENL is identified at ~ 40 Re
downtail. The NENL appears due to an increase in the
anomalous resistivity that is a function of the local mag-
netic field and the current density (Tanaka et al. 2010).
For this particular simulation, the location of the NENL is
tailward of that typically observed (20–30 Re downtail)
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Fig. 7 a–h Observed high-latitude aurora moving equatorward. Auroral images observed at different sites are mapped to the ionosphere altitude.
(Adapted from Nishimura et al. 2010)
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(Nishida and Nagayama 1973; Angelopoulos et al. 1994;
Baker et al. 1996; Nagai et al. 1998; Machida et al. 2009).
Using the same simulation code with different solar wind
parameters, Tanaka et al. (2017a) suggested that the NENL
appears at ~ 17 Re downtail. The reason why the NENL
starts to appear here is not well known and requires fur-
ther investigation.
An immediate consequence of the formation of the

NENL is the earthward and tailward flows near the
equatorial plane. The earthward flow, known as a bursty
bulk flow (Angelopoulos et al. 1994), is diverted west-
ward and eastward as it approaches the Earth, gene-
rating flow shear (vorticity). The flow shear near the
equatorial plane is observed near the expansion onset
(Keiling et al. 2009). A pair of FACs (Birn and Hesse 1991;
Birn et al. 2004a) are generated near the flow shear

(vorticity). Another type of flow shear appears off the
equator (Ebihara and Tanaka 2015b). When the magnetic
reconnection proceeds, the plasma originating in the lobe
traverses the separatrix (the open-closed boundary of
magnetic field lines) and moves into the closed field line
region. As the plasma traverses the separatrix on the dusk-
side (dawnside), it is immediately deflected westward
(eastward), generating flow shear and upward (downward)
FACs at off-equator. The equatorial shear and the
off-equatorial shear are schematically drawn in Fig. 10.
The spatiotemporal evolution of the magnetospheric flow
is reviewed by Tanaka et al. (2017a) in detail.
The red lines in Fig. 10 schematically indicate the

current line on the basis of result of the line integral of
the current density vector (Ebihara and Tanaka 2015b;
Tanaka, 2015; Tanaka et al. 2017a). In the global MHD
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3 (quiet arc) at T = 43.7 min. The color codes indicate the parallel current density (negative upward in the Northern Hemisphere). (Adapted from
Ebihara and Tanaka 2016)
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simulation, three types of current can be defined:
diamagnetic current, inertial current, and FAC. The
diamagnetic current and the inertial current are given by

Jd ¼ B� ∇P
B2 ;

ð2Þ

and

Ji ¼ ρ
B

B2 �
dV⊥

dt
; ð3Þ

where ρ, V⊥, and P are the mass density, perpendicular
velocity, and the plasma pressure, respectively. The sum
of the three currents (=Jd + Ji + J||) is taken into account
to draw the current line (Tanaka et al. 2010; Ebihara and
Tanaka 2015b). It should be emphasized that current
carriers, such as electrons and ions, do not necessarily
move along the current line. The diamagnetic current
is associated with the cyclotron motion of charged par-
ticles (Parker 1957), and the FAC is associated with
field-aligned motion of the particles. Two types of
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Fig. 10 A schematic of plasma flow (blue line), flow shear (triple circles), and current lines (red line) at the expansion onset
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current line are drawn in Fig. 10, which are closely as-
sociated with the expansion onset. One is found near
the equatorial plane, which is wedge-like in form. The
cross-tail current is diverted from the equatorial plane
due to the FACs associated with the earthward plasma
flow (Birn et al. 1999; Keiling et al. 2009). However, the
leg of the wedge is too short to reach the ionosphere.
The reason why the wedge-like current is incomplete is
that the perpendicular current (mostly the diamagnetic
current) overcomes the FAC, so that the current line is
no longer field-aligned (Ebihara and Tanaka 2015b;
Ebihara and Tanaka 2017). The intensification of the
diamagnetic current is directly associated with an
abrupt increase in the plasma pressure, which is often
observed by geosynchronous satellites around the
expansion onset (Birn et al. 1997). The abrupt increase
in the plasma pressure is also observed in the near-
Earth plasma sheet near the equatorial plane and off
the equator (Yao et al. 2015a; Yao et al. 2015b). An
observer can detect FACs near the equatorial plane
(Nagai et al. 1987), but it does not always mean that
the total current is parallel to the magnetic field line.
Observations are required to confirm whether or not
the current wedge is complete. The direction between
the current density J and the magnetic field B will
provide a significant clue in evaluating the dominance
of the perpendicular current. Interestingly, the short-
legged incomplete current wedge is connected to the pole-
ward half of the Region 2-like FAC that is newly developed
during the substorm expansion (Ebihara et al. 2014). This
current line is consistent with the theoretically obtained
one (Roelof et al. 2004).
The other type of current is drawn in Fig. 10. This

type of current is connected to the ionospheric
location and is more directly related to the expansion
onset for the following reasons (Ebihara and Tanaka
2015b; Ebihara and Tanaka 2017):

1. The rate of change in the FAC, which is given by

∂ J∥
∂t

¼ −
ð∇� ∇� EÞ∥

μ0
; ð4Þ

is maximized at off-equator along the magnetic field line
extending from the location of the expansion onset.

2. The generation of the FAC as expressed by Eq. (4)
coexists with the dynamo region where J·E < 0.

3. The upward FAC region propagates towards the
Earth along the onset field line with a significantly
slower speed than the local Alfvén speed.

The last two items are direct evidence supporting the
idea that the FACs are generated off the equator, rather
than via the propagation of J|| from the equatorial plane
as an Alfvén wave. For better understanding of Eq. (4),
the following approximation is suggested (Song and
Lysak 2001a; Song and Lysak 2001b) as

∂ J∥
∂t

≈
B � ∇Ω∥

μ0
; ð5Þ

where Ω|| (=(∇ ×V)‖) is the vorticity of flow in the
direction parallel to the magnetic field and V is the flow
velocity. Equation (5) is confirmed to be valid for the
expansion onset (Ebihara and Tanaka 2015b; Ebihara
and Tanaka 2017) and implies that the gradient of the
vorticity along the field line generates the FAC. This vor-
ticity gradient is the flow coming from the lobe region
towards the equatorial plane as schematically drawn in
Fig. 10. The flow is diverted to westward (eastward) off
the equator, so as to generate the flow shear (vorticity),
and the upward (downward) FAC. The off-equatorial flow
shear in the Y-Z plane has been observed by the Cluster
satellite during dipolarization (Nakamura et al. 2014).
Figure 11 shows a schematic of the stream lines pro-

jected onto the meridional plane. Two types of stream
line are shown. One travels near the equator (the equa-
torial path), which is accompanied by bursty bulk flow
and flow braking, and is associated with the equatorial
flow shear shown in Fig. 10. The other travels off the
equator (the off-equatorial path). The off-equatorial path
is associated with the off-equatorial shear. Both the
stream lines participate in the generation of shear and
FACs, but the off-equatorial path is more directly related
to the expansion onset in the ionosphere as illustrated
above, according to the REPPU code.
When the strong upward FAC reaches the ionosphere,

the auroral substorm expansion begins. It begins near
the equatorward border of the preexisting aurora as
shown in Fig. 2 (T = 69.4 min). This is consistent with
observation (Akasofu 1964). The reason why the upward
FAC starts to be intensified near the equatorward border
of the preexisting aurora is that the lobe plasma

Near-Earth neutral line

Off-equatorial path

Equatorial path
Onset

Fig. 11 A schematic of stream lines of plasma at expansion onset.
The blue line indicates the stream line flowing near the equatorial
plane. The red line indicates the stream line flowing at off-equator

Ebihara Progress in Earth and Planetary Science            (2019) 6:24 Page 12 of 24



traverses the separatrix (open-closed boundary) and pe-
netrates deep into the inner magnetosphere (Ebihara
and Tanaka 2015a; Ebihara and Tanaka 2015b) as sche-
matically drawn in Figs. 10 and 11. The simulated initial
brightening is longitudinally elongated. This is also con-
sistent with observation (Akasofu 1964). However,
fine-scale structures such as a distinct ray structure
(Akasofu 1964), a quasi-periodic series of bright spots, or
beads (Elphinstone et al. 1995; Henderson 2009; Rae et al.
2010) are not present in the simulation results. The bal-
looning mode instability is the most plausible mechanism
for the quasi-periodic series of bright spots, or beads
(Elphinstone et al. 1995; Liang et al. 2008). An interesting
result was obtained from the global MHD simulation, with
balloon-like fine-scale structures appearing in the mag-
netotail (Raeder et al. 2012). Further investigations are
necessary to investigate these structures.

Expansion phase
After the initial brightening of the aurora, a bulge forms
around midnight, which expands poleward, westward,
and eastward (Akasofu, 1964). Following the formation
of the bulge, folds of aurora appear, moving westward
rapidly. This is called a westward traveling surge (WTS).
It is pointed out that the bulge dominantly expands
westward, or eastward, depending on the polarity of the
IMF By (Liou et al. 2006; Liou and Ruohoniemi 2006).
The surge is clearly identified in the bulge that is
expanding westward, whereas it is not clear in the east-
ward expanding bulge. Satellite observations show that
the WTS is caused by precipitation of electrons down-
wardly accelerated to ~ 10 keV (Rème and Bosqued
1973; Meng et al. 1978). Intense upward FACs accom-
pany the WTS (Kamide and Akasofu 1975; Fujii et al.
1994). The ionospheric counterpart of the intense FACs
is thought to be connected to the auroral electrojet near
the region where the ionospheric conductivity gradient
is high (Inhester et al. 1981; Baumjohann et al. 1981).
Partial blockage of the ionospheric Hall current is sug-
gested as the cause of the buildup of excess charge near
the surge, which distorts the ionospheric electric field
near the surge (Kan et al. 1984). Electron-ion recom-
bination effects may also play a role in modulating the
intensity of the FACs (Rothwell et al. 1984). The mag-
netospheric counterpart of the intense FACs is suggested
to be connected to the current wedge (CW) system
(Fujii et al. 1994; Birn and Hesse 1996; Keiling et al.
2009). The WTS is also suggested to be a projection of
the structure in the vicinity of the boundary between the
tail lobe and the plasma sheet (Akasofu et al. 1971;
Bythrow and Potemra 1987). Shear instability grows in
the plasma sheet boundary layer, resulting in the intru-
sion of the plasma sheet into the tail lobe.

In the global MHD simulation, the auroral structures
that resemble the bulge and the WTS appear as shown
in Fig. 2. Based on the simulated WTS, Ebihara and
Tanaka (2015a, 2018) suggest that the WTS is caused by
the mutual interaction between the magnetosphere and
the ionosphere. Figure 12 summarizes the FAC in the
ionosphere, the nondiagonal component of the iono-
spheric conductivity, and the magnetospheric plasma
pressure mapped to the ionosphere. A surge head (as
manifested by the upward FAC) is situated in the
westward-most area of the strong upward FAC region
that is elongated in the east-west direction. In the
REPPU code, the ionospheric conductivity is intensified
in the regions where the upward FAC flows and where
the magnetospheric plasma pressure is high. The former
is a proxy of the discrete aurora, and the latter is a proxy
of the diffuse aurora. It can clearly be seen in Fig. 12b
that ionospheric conductivity is intensified near the
surge head (where the upward FAC is high as shown in
Fig. 12a), and the main body of the auroral bulge where
the magnetospheric plasma pressure is high (as shown
in Fig. 12c, as in the diffuse aurora). This is consistent
with satellite observation (Meng et al. 1978).
The yellow contour in Fig. 12a indicates the region

where the divergence of the electric field is positive
(∇·E > 0, where E is electric field), which coincides with
the surge head. The divergence of the electric field is
negative (∇·E < 0) on the backside of the surge as indi-
cated by the red contour. The positive divergence and
the negative divergence give rise to the development of
positive and negative space charge, respectively. Due to
the space charge represented by ∇·E, the pattern of the
convection is skewed near the surge. The convection
flow tends to be counterclockwise near the surge head due
to a positive space charge, whereas it tends to be clockwise
on the backside of the surge due to a negative one. The
skewed pattern of the convection around the surge head is
similar to that suggested by Weimer et al. (1994).
Figure 13 shows ∇·JH, ∇·JP and (∇·JH+∇·JP)/|∇·JH|,

where JP and JH are the ionospheric Pedersen and the
Hall currents, respectively. (The periodic structures at
67–68 MLATs come from a numerical error.) The solid
contour line indicates the upward FAC, and the dashed
one indicates the downward one. ∇·JH is negative near
the surge head, whereas ∇·JH is positive on the backside
of the surge. This means that the Hall current overflows
near the surge head. ∇·JP is positive near the surge head,
meaning that a part of the Hall current is connected to
the Pedersen current. The bottom panel of Fig. 13 indi-
cates the ratio of −∇·J|| to |∇·JH| (because −∇·J|| =∇·JH
+∇·JP), suggesting that most of the Hall current (~ 90%)
is connected to the upward FAC. This condition can be
regarded as a partial blockage of the Hall current as sug-
gested by Kan et al. (1984). A small amount of the
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positive charge remains in the ionosphere, which is respon-
sible for generating the additional FAC. This means
that the WTS will not develop if the blockage is perfect
(∇·J|| = −∇·JH). And what about the magnetospheric
counterpart of the WTS? The upward FAC associated
with the WTS is connected to the inertial current in
the low-altitude magnetosphere, according to the
REPPU code (Ebihara and Tanaka 2015a).
Figure 14 presents an illustration as an explanation.

Let us suppose that a bright aurora occurs and that a
Hall current traverses the bright aurora from right to left
in the Northern Hemisphere. The intensity of the Hall
current is larger in the bright aurora than in the general
ambience because ionospheric conductivity is high in

the bright aurora (Fig. 12b). Due to the gradient of this
conductivity, the Hall current overflows in the red
region where JH·∇ΣH < 0, where ΣH is the Hall conduc-
tivity. Positive space charge deposits (due to the partial
blockage of the Hall current), giving rise to the condition
that ∇·E > 0. The divergent electric field generates a
counterclockwise flow in the low-altitude magneto-
sphere when the Earth is viewed from space. The coun-
terclockwise flow gives rise to further intensification of
the upward FAC, which results in a bright aurora near
the surge head. The opposite processes take place on the
trailing side of the surge where JH·∇ΣH > 0. Lack of the
Hall current results in a negative charge (∇·E < 0). The
resulting clockwise flow weakens the upward FACs that
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had been intensified in the surge head. By repeating
these processes, the WTS moves towards the direction
of the Hall current. When one views the auroral breakup
from space, it looks as if flames have spread rapidly over
a sheet of paper. It can be said that ignition (near the
surge head) and digestion (near the backside of the
surge) take place simultaneously as the surge moves.
The direction of the Hall current can be locally skewed
by the space charge that deposits near the leading/trail-
ing edges of the surge as a consequence of the partial
blockage. The ratio of −∇·J|| to |∇·JH| (shown in Fig. 13c)
could determine the degree of the skew, but it is un-
clear what determines the ratio.
In reality, the bright aurora is caused by the precipita-

tion of electrons accelerating downwards in the parallel

electric field. The global MHD simulation cannot deal
with electron kinetic processes, such as the formation of
a parallel electric field. A complete explanation for the
WTS will be obtained when the electron kinetic pro-
cesses embedded in the global processes taking place in
the magnetosphere are taken into consideration.

Energy flow and conversion
The Joule dissipation rate exceeds 1011W in the
ionosphere during substorm expansion (Ahn et al. 1983;
Sun et al. 1985; Kamide et al. 1986; Richmond et al.
1990; Palmroth et al. 2005). We know that the ultimate
source of the energy is solar wind. A number of studies
have been conducted to relate the Joule dissipation rate
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to the solar wind energy input (Perreault and Akasofu
1978; Akasofu 1979; Baker et al. 1997; Koskinen and
Tanskanen 2002). However, details of the pathway and
the conversion of energy from the solar wind to the
Earth are still problematic.

Ebihara and Tanaka (2017) suggested a way to re-
present the pathway of the electromagnetic energy from
the solar wind to the ionosphere. The basis of this
principle is to trace the Poynting flux S (=E × B/μ0). The
result is provided in Fig. 15. (The solar wind condition is
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Fig. 14 Schematic drawing for the formation of the westward traveling surge. (Ebihara and Tanaka 2018)

Fig. 15 The principal pathway of electromagnetic energy in the magnetosphere (as shown by the white line) at 15 min before onset (left panel)
and at expansion onset (right panel). The blue shade indicates the region where J•E < 0 (dynamo region). The light blue line indicates the
magnetic field line. The plane indicates the equatorial plane with color given by the X-component of the plasma flow. The yellow line stands for
the magnetic field line extending from the onset location in the ionosphere. (Adapted from Ebihara and Tanaka 2017)
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different from that used in the other figures. After the
southward turning of the IMF, the following parameters
were used: a solar wind density of 5.0 cm−3, a solar wind
speed of 500 km s−1, an IMF By of − 2.5 nT, and an IMF
Bz of − 5 nT.) The integral curve of the Poynting flux is
given by ∫S ⋅ ds/S, where s is a line element. This is
called an S-curve (Ebihara and Tanaka 2017). The color
on the S-curve represents J•E. The S-curve is a snap-
shot; it does not always represent propagation of the
electromagnetic energy. The S-curve comes from the
solar wind. As the S-curve passes through the bow
shock, it meets the dynamo region located in the cusp
and mantle. The cusp/mantle dynamo is responsible for
driving the magnetospheric convection and the Region 1
FACs (Siscoe et al. 2000; Tanaka 2000a). The S-curve
further travels tailward and towards the equatorial plane.
It turns westward on the nightside and continues to
extend sunward. Finally, it becomes a helix, which is like
a cylindrical coil spring. The center of the helix moves
towards the Earth. The earthward propagation of the
S-curve is due to a twist of the magnetic field line in the
presence of the large-scale FAC known as the Region 1
FAC (Iijima and Potemra 1976). The circular curve
around the center of the helix is a manifestation of mag-
netospheric convection. At the expansion onset, an
additional dynamo region appears in the near-Earth
region (Birn and Hesse 2005; Ebihara and Tanaka 2015b;
Tanaka 2015). This near-Earth dynamo is responsible for
the generation of the FACs both at the onset and after-
wards (Ebihara and Tanaka 2015b; Tanaka 2015; Ebihara
and Tanaka 2017). The S-curve shows a sharp kink in
the near-Earth region, which is a manifestation of the
flow shear generating the upward FAC which thereby
causes the onset of the expansion.
In the ideal MHD, three types of energy can be de-

fined as follows (Birn and Hesse 2005). The first one is
the electromagnetic energy represented by the Poynting
flux S as

∇ � Sþ ∂
∂t

B2

2μ0

� �
¼ −J � E

¼ −V⊥ � J� Bð Þ:
ð6Þ

The second one is the kinetic energy

∂
∂t

ρ
2
V 2

� �
þ ∇ � ρ

2
V 2V

� �
¼ V � J� B−∇Pð Þ: ð7Þ

The third one is the internal energy

∂u
∂t

þ ∇ � γuVð Þ ¼ V � ∇P; ð8Þ

where γ is the ratio of specific heat (=5/3). The kinetic
energy flux K and the enthalpy flux H are given by

K ¼ 1
2
ρV 2V; ð9Þ

and

H ¼ γuV; ð10Þ
respectively. Ebihara and Tanaka (2017) investigated the
principal conversion of energy associated with the ex-
pansion onset. Figure 16 summarizes the principal
energy flow and conversion among S, K, and H.

1. S and K are accompanied by the solar wind.
2. In the magnetosheath, a part of K that originated in

the solar wind is converted to H. A small fraction of
it is converted to S (Tanaka et al. 2016).

3. When the IMF is southward, the cusp/mantle
dynamo appears (Siscoe et al. 2000; Tanaka 2000a),
which converts a part of K to S.

4. In the lobe, a part of S is stored in association with
a partial stagnation of the convection as represented
by ∇∙V⊥ < 0 (Ebihara and Tanaka 2017).

5. After the formation of the NENL, S stored in the
lobe is released together with the continuously
supplied S from the cusp/mantle dynamo and the
solar wind (Ebihara and Tanaka 2017).

6. In the vicinity of the NENL, S originating in the
lobe splits to K and H (Birn et al. 2010).

7. In the plasma sheet, K associated with earthward
flow is converted to H and S due to the
compression associated with flow braking (Birn and
Hesse 2005; Ebihara and Tanaka 2017).

8. In the plasma sheet, H propagates earthward along
a field line (Tanaka et al. 2010).

9. Off the equator, S originating in the lobe is converted
to H due to compression. Then, H is converted to K,
followed by S (Ebihara and Tanaka 2017).

10. Off the equator, S propagates earthward along a
field line due to the FACs associated with the near-
Earth dynamo.

Traditionally, two processes have been suggested for
the energy transfer. One is the directly driven process
(Perreault and Akasofu 1978; Akasofu 1979), and the
other is the loading-unloading process (McPherron
1970; Mcpherron et al. 1973; Hones 1979). In the con-
text of electromagnetic energy, the directly driven
process is associated with the energy originating from
the solar wind and that released from the cusp/mantle
dynamo. The loading-unloading process is the energy
storage and release in the lobe. The simulation result
shows that both the energy sources merge together in
the lobe during the expansion phase (Ebihara and
Tanaka 2017). This means that the directly driven
process also participates in the generation of the FACs,
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which deliver electromagnetic energy to the ionosphere
during substorm expansion. The energy consumed in
the ionosphere is not fully sustained by the energy re-
leased from the lobe. This is consistent with the observa-
tion showing that the substorm size is largely controlled
by the directly driven processes (Tanskanen et al. 2002).
Akasofu (2013) pointed out that the energy stored in
the lobe is insufficient to sustain the energy con-
sumed in the ionosphere. The simulation result may
settle this argument.
As inspired by the illustration of Akasofu (2015), the

concept of the energy transfer from the solar wind to
the ionosphere is schematically shown in Fig. 17. The
water (energy) is supplied through a tube. The rate of
flow in the tube is regulated by a valve. The valve is
widely opened when the southward component of the
IMF is strong, and the solar wind speed is high. After
passing through the valve, some of the water flow turns
the first watermill (cusp/mantle dynamo) that generates
electromagnetic energy to light bulb 1 (quiet arc). The
Region 1 FACs (associated with the cusp/mantle
dynamo) are responsible for guiding the electromagnetic
energy to the ionosphere. After passing through the first
watermill (cusp/mantle dynamo), some of the water goes
into a water bucket. Water coming directly from the
tube also goes into the water bucket. When the bucket
is filled up with water, it is tilted so as to release the
water. The released water flows out, turning the second
watermill (near-Earth dynamo). It is emphasized that the
water directly coming from the first watermill and the
tube also turn the second watermill. The second

watermill generates electromagnetic energy to light bulb
2 (initial brightening). The Region-1 sense FACs (asso-
ciated with the near-Earth dynamo) are responsible for
guiding the electromagnetic energy to the ionosphere.
Two photoresistors are serially connected to the bulbs 3
and 4. The photoresistor is an electronic device in which
resistance decreases with the increasing intensity of an
incident light. When the photoresistor serially connected
to bulb 3 detects light coming from bulb 2, its resistivity
decreases, lighting bulb 3. Subsequently, when the
photoresistor serially connected to bulb 4 detects light
coming from bulb 3, its resistivity decreases, lighting
bulb 4. The final chain reaction (bulbs 2, 3, and 4) is
analogous to the surge traveling westward.
Table 1 summarizes characteristics of the typical

auroral structures that can be seen during a substorm
from the growth phase to the expansion phase, together
with possible causes of the auroral structure as
suggested by the global MHD simulation. It seems that
these auroral structures can be reasonably explained by
the MHD processes coupled with the ionosphere. To
date, fine-scale structures, such as distinct ray structures
(Akasofu 1964) or quasi-periodic series of bright spots
or beads (Elphinstone et al. 1995; Henderson 2009; Rae
et al. 2010) are not resolved by the MHD model. Kinetic
simulations will be needed to explain the fine-scale
structures of the aurora.

Conclusion
Large- and meso-scale structures of the aurora that evolve
during the substorm can be reasonably reproduced using
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the global MHD simulation (Tanaka 2015; Ebihara and
Tanaka 2015a, 2015b, 2016; Tanaka et al., 2017a, b).
During the growth phase, a quiet arc and high-latitude
aurorae (found in the main auroral oval) appear in the
simulation. The quiet arc is attributed to the flow shear
off the equator. The high-latitude aurorae are attributed
to fine structures in the plasma pressure distribution of
the lobe region (open field line region). The expansion on-
set is triggered by the formation of a near-Earth neutral
line (NENL). Plasma flow off the equator seems to be re-
sponsible for the generation of a field-aligned current that
causes the onset of expansion. The initial brightening
starts near the equatorward boundary of the preexisting
aurora, which is consistent with observation. During the
expansion phase, an excess of space charge near the bright
aurora generates an additional field-aligned current, which

manifests the westward traveling surge (WTS). Coupling
between the magnetosphere and the ionosphere is essen-
tial for formation of the WTS. The energy consumed in
the ionosphere during the expansion phase is not fully
supplied by the lobe. The continuous supply of energy
from the solar wind and the cusp/mantle dynamo also
participates in the energy input into the ionosphere. Most
importantly, the primary chain reactions from the solar
wind to the WTS are reasonably explained by the MHD
processes. Of course, contribution from non-MHD pro-
cesses to the evolution of auroral substorms should be
investigated in the future.
Fundamental properties and observable effects of the

substorms came to be understood by numerical simula-
tions. The next step is to understand the storm-substorm
relationship by considering the comprehensive processes

Table 1 Cause and effect relationship for substorm-associated aurora as suggested by the global MHD simulation

Substorm
phase

Characteristics of aurora Possible cause

Growth
phase

Quiet arc Flow shear at off-equator (Tanaka et al., 2017a)

High-latitude aurora within main
auroral oval

Non-linear interaction between magnetosphere and ionosphere (Ebihara and Tanaka 2016)

Onset Initial brightening Enhanced flow shear at off-equator (Ebihara and Tanaka 2015b)

Expansion Westward traveling surge Coupling of partial blockage of Hall current and MHD magnetosphere (Ebihara and Tanaka 2015a;
Ebihara and Tanaka 2018)

Valve regulated by
IMF Bz and solar wind speed

Near-earth dynamo

Partial storage
and release

Cusp/mantle dynamo

bulb 1

bulb 2 3 4

Breakup aurora

Quiet arc

Surge

(Photoresistor)
Downtail

Fig. 17 Conceptual illustration of the possible chain reaction of auroral substorm in terms of energy transfer from the solar wind to the ionosphere.
The quiet arc (bulb 1) is associated with the cusp/mantle dynamo. The breakup aurorae (bulbs 2, 3, and 4) are connected to the near-Earth dynamo.
Illustration is based on Akasofu (2015)
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occurring from the ionosphere to the solar wind. Such
efforts have already begun (Fok et al. 2006; Welling et al.
2011; Glocer et al. 2011; Ouellette et al. 2013; Lotko et al.
2014; Nakayama et al. 2017). Substorms should influence
the development of magnetic storms, and vice versa. In
this sense, the magnetic storms and substorms are mani-
festations of magnetospheric and the ionospheric distur-
bances. Our goal should be to understand the overall
system from the solar wind to the Earth. Obviously, the
non-linear and complex system makes it difficult to
understand the storm-substorm relationship quantita-
tively. Key processes include ionospheric ion outflow, the
kinetics of auroral electron precipitation, global magneto-
spheric processes with multispecies plasmas, and
non-adiabatic transport and acceleration. The numerical
simulations, which are verified to be consistent with
observations, are a powerful tool to help us. Mutual con-
nections among the processes involved by the substorms
are becoming clear. Some of them are probably applicable
to the space environment near planets with an inherent
magnetic field.

Appendix
The global magnetohydrodynamics (MHD) simulation
developed by Prof. Takashi Tanaka, called a REPPU
(REProduce Plasma Universe) code, solves a set of ideal
MHD equations using the finite volume total variation
diminishing (TVD) scheme (Tanaka 1994). The inner
boundary is located on the sphere at a geocentric dis-
tance of ~ 3 Re. Although the MHD equations are not
solved in the region between the inner boundary and the
ionosphere, the magnetosphere-ionosphere coupling is
taken into consideration by exchanging quantities along
the dipole magnetic field line. The following calculation
is performed at every time step (~ 0.03 s). First, the
field-aligned current (FAC) and the plasma pressure at
the inner boundary are mapped from the inner boundary
of the magnetospheric domain to the ionosphere.
Secondly, the ionospheric conductivities (Pedersen and
Hall conductivities) are calculated on the basis of the
mapped values (the FAC and the plasma pressure), and
the solar zenith angle. The ionospheric conductivity is
increased where the upward FACs flow and the plasma
pressure is high. Thirdly, to satisfy the current continuity
conditions in the ionosphere, an elliptic partial differen-
tial equation is solved for the given FACs and the iono-
spheric conductivity. The conjugate residual method was
used to solve the partial differential equation. Fourthly,
the electric field is mapped from the ionosphere to the
inner boundary of the magnetospheric domain along the
dipole magnetic field line. Fifthly, the velocity corre-
sponding to the electric field is imposed on the inner
boundary as one of the boundary conditions. For
detailed explanations concerning this calculation, readers

may refer to Tanaka 1994; Tanaka 1995; Tanaka, 2000a, b;
Tanaka 2015).
The simulation employs a grid system having no sin-

gularity. A sphere with a radius of ~ 3 Re (where the
inner boundary of the magnetospheric domain is lo-
cated) is divided into 12 pentagons. Each pentagon is
divided into five triangles. The number of the triangles
is 60. This is called Level 1. Each triangle is further di-
vided into 4 triangles. This is called Level 2, in which
the number of the triangles is 240. We used Level 6
(61,440 triangles), or Level 7 (245,760 triangles). The
triangular prisms are stacked outward from the inner
boundary to the outer boundary located at 300 Re. For
a detailed explanation of the grid system, readers may
refer to Moriguchi et al. (2008).
The coordinate system is essentially the same as the

Solar Magnetospheric coordinates. The X-axis points
towards the Sun, and the Z-axis is anti-parallel to Earth’s
dipole moment. The Y-axis is defined as the cross-prod-
uct of the Z- and X-axes.
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