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Abstract

Background: This study was aimed to assess whether ultrasonic spectrum analysis of radiofrequency (RF) time
series using a clinical ultrasound system allows for early differentiating between the chemotherapy responders and
nonresponders in human breast cancer xenografts that imitate clinical responding and nonresponding tumors.

Methods: Clinically responding (n = 20; MCF-7) and nonresponding (n = 20; MBA-MD-231) breast cancer
xenografts were established in 40 nude mice. Ten mice from each group received either chemotherapy
(adriamycin, 4 mg/kg) or saline as controls. Each tumor was imaged longitudinally with a clinical ultrasound
scanner at baseline (day 0) and subsequently on days 2, 4, 6, 8 and 12 following treatment, and the
corresponding RF time-series data were collected. Changes in six RF time-series parameters (slope, intercept, S1,
S2, S3 and S4) were compared with the measurement of the tumor cell density, and their differential
performances of the treatment response were analyzed.

Results: Adriamycin significantly inhibited tumor growth and decreased the cancer cell density in responders (P < 0.001)
but not in nonresponders (P > 0.05). Fold changes of slope were significantly increased in responders two days after
adriamycin treatment (P = 0.002), but not in nonresponders (P > 0.05). Early changes in slope on day 2 could differentiate
the treatment response in 100% of both responders (95% CI, 62.9–100.0%) and nonresponders (95% CI, 88.4–100%).

Conclusions: Ultrasonic RF time series allowed for the monitoring of the tumor response to chemotherapy and could
further serve as biomarkers for early differentiating between the treatment responders and nonresponders.
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Background
Among the various treatment modalities for patients di-
agnosed with malignant tumors, chemotherapy has been
reported to be one of the most effective approaches.
However, inherent or acquired chemoresistance (i.e., re-
sistance to anticancer drugs) has become a major chal-
lenge in cancer therapies that could lead to poor
treatment outcomes and survival rates [1]. Therefore, an
urgent need exists to explore and verify identifiable im-
aging biomarkers to early differentiate between drug-
sensitive tumors and drug-resistant tumors to decrease
unnecessary treatments, avoid adverse side effects and
reduce wasted medical resources.
According to the Response Evaluation Criteria in Solid

Tumor (RECIST), the evaluation of the treatment
response frequently depends on changes in the tumor
size measured by computed tomography (CT) or mag-
netic resonance imaging (MRI) examination after the
end of a therapeutic protocol [2]. However, these
changes tend to be apparent several weeks to months
later, thus limiting the use of the early differentiation be-
tween reatment responders and nonresponders. Previous
studies have suggested that chemotherapy induce cell
death, blood flow decrease and cell metabolism changes,
and these changes usually occur before tumor size
changes [3]. Consequently, based on the detection of
such changes, functional imaging techniques such as dy-
namic contrast-enhanced CT and MRI, diffusion-
weighted MRI and positron emission tomography (PET)
have been shown to be promising in the early differenti-
ation of a treatment response in previous studies [4, 5].
Nevertheless, the application of such imaging techniques
can be limited by the relative expensive cost, risks of
exposure to radiation, possible allergies to contrast
agents, and injection of radioactive tracer isotopes.
Ultrasound (US) is relatively inexpensive and lacks

radiation risks, which allows for repeatable examination
during the treatment course. US imaging systems are
also portable and with high resolution on superficial tis-
sues, a special advantage for animal studies and superfi-
cial tumors such as breast cancers. Unlike B-mode
ultrasound (BUS), which conveys anatomical informa-
tion, quantitative ultrasound (QUS) conveys tissue
microstructure characteristics by quantitatively analyzing
the radiofrequency (RF) data backscattered from tissues
[6]. Spectrum analysis of single-frame RF signals and RF
time-series are the most common types of quantitative
ultrasound used for the analysis of ultrasonic RF back-
scattered signals. Ultrasonic spectrum analysis of single-
frame RF data in tissue characterization has been well
investigated to date and has been shown to be promising
in diagnosing prostate cancer [7], ocular tumors [8], and
cardiac abnormalities [9], as well as evaluating the early
response to anticancer therapies such as radiotherapy

and chemotherapy based on characterizing tumor micro-
structure changes and cell death in tumor xenografts
and clinical patients [10–12].
Unlike spectrum analysis of single-frame ultrasonic

RF data, RF time-series analysis is based on the
spectrum analysis of sequential RF echo samples ac-
quired from a fixed spatial location in tissue over a
short period of time. Daoud et al. suggested that
when the ultrasonic wave sequence interacts with
the tissue microstructure, the tissue temperature, as
well as the sound speed, would change. Thus, RF
time-series backscatter signals related to these
changes would carry tissue microstructure informa-
tion [13]. Previous studies have found that the fea-
tures originated from RF time-series data were
significantly more sensitive and accurate than single-
frame RF data in tissue characterization [14]. Ana-
lysis of RF time-series data has been tested in the
detection of liver fibrosis, prostate cancer and breast
cancer, as well as in the evaluation of tissue changes
after ablation and chemotherapy, and the results
were promising [13–21]. Our previous study demon-
strated that RF time-series analysis could be used to
monitor the microstructure changes after chemother-
apy [21]. However, only responding tumor model
was used in previous study and it could not fully
simulate the clinical situation in which some cancers
would be responding to treatment and some would
be resistant to treatment. As a results, it is not
known whether early changes in the quantitative pa-
rameters calculated from RF time series enable the
early differentiation between the chemotherapy
responding and nonresponding tumors.
Therefore, this study was aimed to assess whether

ultrasonic spectrum analysis of RF time series using a
clinical ultrasound transducer and system allowed for
the early differentiating between the chemotherapy re-
sponders and nonresponders in two human breast can-
cer models, which imitate clinically responding and
nonresponding tumors.

Methods
Cell culture and animal models
This experiment was approved by the animal care and
use committee of Sun Yat-sen University under the
guidelines of the National Institutes of Health for the
Care of Laboratory Animals. All data supporting the re-
sults reported in this study have been uploaded onto the
Research Data Deposit public platform (www.research-
data.org.cn) for further reference, with approval number
as RDDB2018000283. The human breast cancer cell line
MCF-7, which was reported to be adriamycin-sensitive
in previous studies [22–24], was used to imitate clinically
responding tumors. MBA-MD-231, which was reported
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to be adriamycin-resistant in previous studies [23–25],
was used to imitate clinically nonresponding tumors.
Both cell lines were obtained from the State Key Labora-
tory of Oncology in Southern China and were grown in
DMEM medium (HyClone Co., UT, USA) supplemented
with 10% fetal bovine serum (Gibco, Grand Island, NY,
USA), 50 U/ml penicillin, and 50 μg/ml streptomycin at
37 °C in a humidified 5% CO2 atmosphere. Tumor cells
were digested by trypsin and resuspended at approxi-
mately 5 × 107 in a 1:1 phosphate-buffered saline and
Matrigel mixture (BD Biosciences, San Jose, CA). Tumor
cells were inoculated subcutaneously on the right lower
hint limb of 5- to 6-week-old BALB/c nude female mice
(obtained from Beijing Vital River Laboratory Animal
Technology Co., Ltd.) to avoid the interference of heart
beating during ultrasound data acquisition.

Adriamycin treatment
The workflow of the experiment is illustrated in Fig. 1.
Nude mice bearing MCF-7 tumors (n = 20) and MBA-
MD-231 tumors (n = 20) were randomly divided into 1)
the therapeutic groups (i.e., MCF-7 tumors treated with
adriamycin (n = 10) and MBA-MD-231 tumors treated
with adriamycin (n = 10); 20 tumors total) and 2) the
control groups (i.e., MCF-7 tumors treated with sterile
saline (n = 10) and MBA-MD-231 tumors treated with
sterile saline (n = 10); 20 tumors total). Mice in the
therapeutic group were treated with adriamycin (Shen-
zhen Main Luck Pharmaceuticals Inc., Guangdong,
China) by intraperitoneal injection once every 3 days at
the dose of 4 mg/kg, while mice in the control group
were treated with sterile saline only. Treatments began

when the maximum diameter of the tumor reached ap-
proximately 8 mm.

Ultrasonic data acquisition protocol
All the ultrasound examinations involved in this study
were performed by one radiologist who was blinded to
treatment conditions. The BUS and RF time-series data
were simultaneously acquired on days 0, 2, 4, 8 and 12
using an Acuson S2000 (Siemens, Mountain View, CA)
ultrasound system with a linear array transducer at a
center frequency of 10MHz. All animals were anesthe-
tized with 2% isoflurane mixed with room air at the flow
of 2 L/min during the whole experiment. Centrifugation
of the gel was used to minimize bubble formation in the
gel, and a stand-off gel pad was placed on the skin for
scanning. BUS imaging was performed to measure the
greatest longitudinal (height, H), transverse (width, W)
and anteroposterior (length, L) dimensions of the tu-
mors using electronic calipers. The tumor volume was
calculated using the formula for a prolate ellipsoid:
volume = L ×W×H × π × 1/6.
For the acquisition of RF time-series data, QUS

imaging was performed in the research mode with the
following imaging settings: sampling frequency of 14
MHz, mechanical index of 0.6, frame rate of 41 fps, dy-
namic range of 65 dB, and imaging depth of 2.5 cm. The
largest cross-section plane and two adjacent planes of
the tumor were chosen as the imaged specimen to col-
lect RF time-series data. The ultrasound transducer was
positioned to make the focal zone at the same depth in
each imaged specimen to control for any potential at-
tenuation. With these image settings, 150 consecutive
frames of RF data were digitally recorded with the

Fig. 1 Experiment workflow for both responding (MCF-7) and nonresponding tumors (MBA-MD-231). B mode ultrasound (BUS) scanning and
corresponding RF data collecting was performed on days 0, 2, 4, 6, 8 and 12 prior to treatment. Adriamycin or saline was administrated on days
0, 3, 6 and 9. On day 12, all mice were sacrificed and tumors were removed for histopathological examinations
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ultrasound probe and tumors fixed in a stationary pos-
ition for nearly 4 s.

RF time series data analysis
A self-developed MATLAB-based (v. 2009a: Math-
Works, Natick, MA, USA) software system was utilized
to analyze the ultrasonic RF time series data. For each
tumor image, a rectangular region of interest (ROI) was
placed nearly at the focal position of the transducer. The
RF time-series parameters from three representative
ROIs for each tumor sample were averaged for the final
analysis.
An RF time series is formed by temporal ultrasonic

signals that are collected continuously from a steadfast
area of the tumor tissue (Fig. 2a). Based on the method
originally reported by Moradi et al. [16], six parameters,
slope, intercept, S1, S2, S3 and S4, were calculated to
summarize the spectral features of RF time series in this
study. The detailed processes of calculating the six pa-
rameters have been fully illustrated in the study of Mor-
adi et al. [16]. Succinctly, the six parameters were

calculated from the normalized amplitude of RF time
series over an ROI using the Discrete Fourier Trans-
formation (DFT). We divided the power spectrum by its
maximum to obtain normalized spectral values in the
range [0, 1], allowing for comparisons of data from dif-
ferent ROIs. Because all the data were acquired from the
same depth, compensation of the depth-dependent at-
tenuations was unnecessary. The parameters S1, S2, S3
and S4 were the integral of the normalized averaged
spectrum of the amplitude in each quarter of the nor-
malized frequency range, and the other two parameters
were the slope and intercept of the regression line fitted
to values of the spectrum (Fig. 2b). See Additional file 1
for more details.

Histopathological examination
All mice were sacrificed at the end of the experiment
after imaging, and tumors were removed for histopatho-
logical examination. Tumor tissues were fixed in 10%
buffered formalin before paraffin processing. The tumor
specimens were sectioned (5 μm) at the largest cross-

Fig. 2 Method of calculating ultrasonic RF time series parameters. a An RF time series is formed by temporal ultrasonic signals that are collected
continuously from a steadfast ROI (the red rectangle) of tumor tissue. b The parameters S1, S2, S3 and S4 were the integral of the normalized
average spectrum of the ROI in each quarter of the normalized frequency range (divided by the blue line). The parameters slope and intercept
were the slope and intercept of the regression line (the green line) fitted to values of the spectrum
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sections and stained with hematoxylin and eosin (H&E)
to assess changes in the cell density under the micro-
scope. After scanning the H&E stained tumor tissue sec-
tions to locate regions with the highest tumor cell
density under a × 40-power microscope, ten different
fields within the regions of highest tumor cell density
were randomly selected under a 400 × −power micro-
scope. The histology images of each 400× field were
saved in the computer, and the tumor cell density was
measured by calculating the number of nuclei using
Image Pro Plus software (image pro-plus 6.0; Media Cy-
bernetics, Silver Spring, MD, USA). The average number
of nuclei in ten fields was applied for statistical analysis.

Data analysis and statistics
We used SPSS version 16.0 (SPSS, Inc., Chicago, IL) to
perform all the data analyses. Tumor size and six RF
time-series parameters after treatment were normalized
to the values of day 0 (before treatment) to show fold
changes. The Kolmogorov-Smirnov test was used to
analyze normal distribution. The Levene test was used
to analyze the homogeneity of variance. Independent
Student’s t-test was applied to evaluate differences in the
tumor sizes and tumor cell densities that were normally
distributed between the therapeutic group and control
group in either the responding and nonresponding tu-
mors. Mann-Whitney U test was applied to evaluate dif-
ferences in the fold changes in six RF time-series
parameters that were not normally distributed. The
paired-samples Wilcoxon rank test was applied to evalu-
ate differences in the six RF time-series parameters on
each day after treatment initiation (days 2, 4, 6, 8 and
12) compared with the baseline (day 0). To evaluate
whether an early change in the RF time-series parame-
ters at day 2 compared with day 0 could differentiate
chemotherapy responders from nonresponders, the true
positive and negative proportions were evaluated, and
95% confidence intervals (95% CI) were constructed
using the exact method because of the small sample size.
A P value < 0.05 was considered significant.

Results
Effect of chemotherapy on the tumor volume
All mice were included in the final analysis. No significant
differences were found in the mean tumor volume between
the therapeutic group and control group for both respond-
ing (MCF-7, P = 0.449) and nonresponding breast tumors
(MBA-MD-231, P = 0.733) before treatment (day 0). For
MCF-7 breast cancers, the mean tumor volume of the
therapeutic group (by 387.96%) was increased significantly
less than that of the control group (by 657.26%, P < 0.001)
at the end of treatment (day 12). The fold changes in the
tumor volume of the therapeutic group were significantly
smaller than those of the control group on days 6, 8, and

12 (for day 6, P = 0.003, for day 8, P < 0.001, and for day 12,
P < 0.001), whereas no significant differences were found on
days 2 and 4 (for day 2, P = 0.207; for day 4, P = 0.165).
By contrast, for the nonresponders of MBA-MD-231

breast cancers, the mean tumor volume of both the
therapeutic group (by 777.14%) and control group (by
902.95%) were significantly increased (P = 0.191) at the
end of treatment (day 12). No significant differences
were observed in the fold changes of the tumor volume
between the therapeutic and control group at the 5 time
points post-treatment (P from 0.089 to 0.482) (Fig. 3).

Changes in the RF time-series parameters during the
treatment course
The fold changes of the RF time-series parameters are
shown in Figs. 4 and 5. Before treatment (day 0), no sig-
nificant differences were found in the slope, intercept
and S1, S2, S3, and S4 between the therapeutic and con-
trol groups in both the responding and nonresponding
tumors (P from 0.247 to 1.000). In the responding breast
cancers of MCF-7, comparing the fold changes in six RF
time-series parameters between the therapeutic and con-
trol groups, the slope, intercept and S1 were significantly
increased on days 2, 4, 6, 8 and 12 (for slope, P from <
0.001 to 0.002; for intercept, P from < 0.001 to 0.029; for
S1, P from 0.001 to 0.043), while S2, S3 and S4 were sig-
nificantly increased on days 8 and 12 (for S2, P = 0.019
and 0.015; for S3, P = 0.009 and 0.003; for S4, P = 0.009
and 0.004) but not on days 2, 4 and 6 (for S2, P from
0.165 to 0.579; for S3, P from 0.190 to 0.971; for S4, P
from 0.075 to 0.529). In contrast, in the nonresponding
breast cancers of MBA-MD-231, no significant differ-
ences were found in the fold changes of the slope, inter-
cept, S1, S2, S3, and S4 between the therapeutic and
control groups at any time point after treatment (for
slope, P from 0.075 to 0.436; for intercept, P from 0.353
to 0.912; for S1, P from 0.190 to 0.971; for S2, P from
0.796 to 1.000; for S3, P from 0.436 to 0.912; for S4, P
from 0.353 to 0.739).
Compared with the baseline (day 0), the fold changes

of slope were significantly increased two days after initi-
ation of chemotherapy and on subsequently time points
(P = 0.002), and the fold changes of intercept and S1 sig-
nificantly were increased on days 4, 6, 8 and 12 (P from
0.002 to 0.020) but not on day 2 (P = 0.084), while the
fold changes of S2, S3 and S4 were significantly in-
creased on days 8 and 12 (P from 0.002 to 0.020) but
not on days 2, 4 and 6 (P from 0.193 to 1.000) in adria-
mycin-treated responding tumors. By contrast, in saline-
treated responding tumors, adriamycin-treated nonre-
sponding tumors and saline-treated nonresponding tu-
mors, no significant difference was found in the fold
changes of the six RF time-series parameters at any time
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point after treatment initiation compared with the base-
line (P from 0.065 to 1.000).

Early differentiation between the chemotherapy
responders and nonresponders
Because the changes in the RF time-series parameter
slope occurred much earlier than those in the tumor vol-
ume in adriamycin-treated responding tumors, whether
the relative change in slope at day 2 compared with day
0 could differentiate the chemotherapy responders from
nonresponders was assessed. Overall, when using 9.00%
or more increase in slope two days after adriamycin
treatment to differentiate chemotherapy responders
from nonresponders, the tumor response to chemother-
apy could be early differentiated in 100% of both
responders (95% CI, 62.9–100.0%) and nonresponders
(95% CI, 88.4–100%).

Histopathological evaluation of the chemotherapy effect
In responders, tumor cell density was significantly de-
creased in adriamycin-treated tumors compared with sa-
line-treated tumors at the end of treatment (day 12, P <
0.001). However, in the nonresponders, no significant
difference was found in the tumor cell density between
adriamycin-treated and saline-treated tumors at the end
of treatment (P = 0.818) (Fig. 6).

Discussion
In the current study, the value of RF time-series ana-
lysis in the differentiation between chemotherapy
responders and nonresponders was tested in human
breast cancer models treated with adriamycin. Our
study showed that during the process of a 12-day
adriamycin treatment protocol, differences in the
tumor volumes could be detected on day 6, while
changes in slope were evident as early as 2 days after

Fig. 3 Changes in the tumor volumes in responding and nonresponding tumors. The parameters were shown as the means ± SD. a In
responders, fold changes in the tumor volumes of the therapeutic group were significantly smaller than those of the control group on days 6, 8,
and 12 after treatment initiation (*P < 0.01, ** P < 0.001), whereas no significant differences were found on days 0, 2 and 4 (P > 0.05). b In
nonresponders, no significant differences were found regarding the fold changes in the tumor volumes between the therapeutic and control
groups on any day (P > 0.05)
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the initiation of therapy. Moreover, an early change
in slope on day 2 differentiated 100% of treatment re-
sponders and nonresponders.
Although chemotherapy is beneficial for most cancer

patients, resistance to chemotherapy can lead to poor
treatment outcomes. To simulate clinical chemotherapy

responders and nonresponders in this study, the human
breast cancer cell lines MCF-7 and MBA-MD-231,
which have been formerly reported to be adriamycin-
sensitive and adriamycin-resistant [22–25], were respect-
ively used. As expected, the tumor growth of adriamy-
cin-treated MCF-7-bearing mice was significantly

Fig. 4 Longitudinal changes in the RF time series parameters in the responding tumors. Bar graph summarize the fold changes of six RF time
series parameters compared with baseline. *P < 0.05, ** P < 0.01, *** P < 0.001 for comparison between control and treated tumors. The
parameters were shown as medians and 25th~75th percentiles

Fig. 5 Longitudinal changes in the RF time series parameters in the nonresponding tumors. Bar graph summarize the fold changes of six RF time
series parameters compared with baseline. No significant difference was observed in slope, intercept and S1~S4 on any time points between
control and treated tumors (P > 0.05). The parameters were shown as medians and 25th~75th percentiles
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inhibited compared with that of saline-treated mice, with
mean tumor volumes increasing by 387.96 and 657.26%,
respectively (P < 0.001) at the end of treatment (day 12).
Furthermore, histopathological examination proved that
adriamycin treatment significantly decreased the tumor
cell density of MCF-7-bearing mice when comparing the
therapeutic and control groups. By contrast, adriamycin
treatment neither significantly inhibited tumor volume
growth nor decreased tumor cell density in MBA-MD-
231-bearing adriamycin- and saline-treated mice. Our
results corroborated the feasibility of using these two
different tumor types to represent treatment responders
and nonresponders.
Tumor microstructure changes related to cancer cell

death, which occurred at the inchoate stage of treatment
[3, 26], have long been suggested to be valid biomarkers
for early differentiating treatment response in most pre-
vious studies [3, 6, 10, 11]. Based on detecting the
decrease in cancer cell density and diffusivity of water
caused by cancer cell death, diffusion-weighted imaging
(DWI)-MRI and its quantitative parameter, the apparent
diffusion coefficient (ADC), were utilized for early differ-
entiation and monitoring of the therapeutic response for
breast cancer and ovarian cancer patients [6, 27, 28].
However, the relative high cost of MRI examination and
low spatial resolution of DWI-MRI limited its extensive
application. By contrast, ultrasound imaging systems are
relatively inexpensive, portable and show high resolution
on superficial tissues, allowing for repeatable examin-
ation during treatment. Conventional ultrasound only
conveys anatomical information, and its differential per-
formance of treatment response has been reported to

be relatively low [6]. Ultrasonic spectrum analysis of RF
data backscattered from tissues, including single-frame
RF data and RF time-series data, is a novel tissue
microstructure characterization technique. The applica-
tion of single-frame ultrasonic RF spectral analysis for
early assessment and differentiation of the treatment
response by characterizing chemotherapy-induced
tumor microstructural changes has been well investi-
gated by both preclinical and clinical studies [10–12,
29].
RF time-series parameters are fundamentally different

from single-frame RF parameters, which are calculated
depending on the spectrum analysis of sequential RF
echo samples acquired from a fixed spatial location in
tissue within several seconds. RF time-series analysis
out-performed single-frame RF analysis in tissue typing
[13, 14]. Although the underlying mechanism of the en-
hanced performance is unclear, the cause might be due
to the alterations in the tissue temperature as well as
sound speed caused by the interaction between the
ultrasonic wave sequence and tissue microstructure in
the process of the scanning [13]. Such alterations will
not occur during single-frame RF scanning procedures
because of the instantaneous interaction time. Addition-
ally, another superiority of the RF time series over sin-
gle-frame RF analysis is that RF time-series analysis
needs no signal compensation for depth-dependent
effects [30].
Our previous study investigated the usefulness of RF

time-series data in the oncology therapy setting, showing
that the parameters calculated from ultrasonic RF time-
series was significantly changed after chemotherapy and

Fig. 6 Ex vivo evaluation of the microstructure changes after chemotherapy. a Adriamycin treatment significantly decreased the tumor cell
density in the responders but did not in the nonresponders. The parameters were shown as the means ± SD (* P < 0.001, for comparison
between control and treated tumors). b Representative H&E-stained tumor micrographs (original magnification, × 400) show tumor cell density
which significantly decreased in the treatment responders as compared with the nonresponders. Scale bar, 50 μm
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RF time-series parameters were significantly correlated
with tumor cell density, which indicated that ultrasonic
RF time series analysis could be utilized to detect
chemotherapy-induced microstructure changes [21].
However, only treatment responding tumor model was
used in previous study to test the possible relationship
between changes in RF time-series parameters and
underlined microstructure changes, and this could not
fully simulate the clinical situation in which some can-
cers would be responding to treatment and some would
be resistant to treatment. In the current study, two dif-
ferent breast cancer mice models were used to simulate
clinical responders and nonresponders, respectively, and
the ability of RF time series analysis in early differenti-
ation between the chemotherapy responders and nonre-
sponders was tested. The results were promising: an
early change in slope on day 2 could differentiate 100%
of treatment responders and nonresponders, which
implied the possibility of further clinical translation.
We declare some limitations of our study. First, the

two-dimensional ultrasound imaging used in this study
could not represent the whole tumor volume, which
may lead to sampling errors. Hence, we chose the largest
cross-section plane and two adjacent planes of the
tumor imaging to extract RF time-series data. This
would help to reduce bias as much as possible. Further
studies should use three-dimensional ultrasound im-
aging to extract the RF time-series signals of the whole
tumor volume, thus improving the detection capability.
Second, the amplifier noise effects have not been com-
pensated in the current study. However, a previous ana-
lysis showed that with the ROI placement close to the
transducer (no more than 3 cm), there was no significant
drop in the accuracy of tissue typing [14]. Because the
ROIs of our study were placed nearly at the fixed focal
position of the transducer less than 2.5 cm, it is reason-
able to believe that no compensation was needed for the
signal attenuations.

Conclusion
In conclusion, this preclinical study suggests that ultra-
sonic spectrum analysis of the RF time series using a
clinical ultrasound transducer and system allowed for
the early differentiation between the chemotherapy
responders and nonresponders in two human breast
cancer models that imitate clinical responding and non-
responding tumors. Because ultrasound imaging pro-
vided several major benefits such as the relatively low
cost, portability and repeatability, and lack of radiation
risks, our study built the foundation of further transla-
tional research to assess the clinical application of the
RF time series to differentiate between the treatment re-
sponders and nonresponders in cancer patients without
using any contrast agents.

Additional file

Additional file 1: Detailed process of RF time series data analysis.
(DOCX 32 kb)
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