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Abstract

Extracorporeal life support (ECLS) encompasses a wide range of extracorporeal
modalities that offer short- and intermediate-term mechanical support to the failing
heart or lung. Apart from the daily use of cardiopulmonary bypass (CPB) in the
operating room, there has been a resurgence of interest and utilization of veno-
arterial and veno-venous extracorporeal membrane oxygenation (VA- and VV-ECMO,
respectively) and extracorporeal carbon dioxide removal (ECCO2R) in recent years.
This might be attributed to the advancement in technology, nonetheless the
morbidity and mortality associated with the clinical application of this technology is
still significant. The initiation of ECLS triggers a systemic inflammatory response,
which involves the activation of the coagulation cascade, complement systems,
endothelial cells, leukocytes, and platelets, thus potentially contributing to morbidity
and mortality. This is due to the release of cytokines and other biomarkers of
inflammation, which have been associated with multiorgan dysfunction. On the
other hand, ECLS can be utilized as a therapy to halt the inflammatory response
associated with critical illness and ICU therapeutic intervention, such as facilitating
ultra-protective mechanical ventilation. In addition to addressing the impact on
outcome of the relationship between inflammation and ECLS, two different but
complementary pathophysiological perspectives will be developed in this review:
ECLS as the cause of inflammation and ECLS as the treatment of inflammation. This
framework may be useful in guiding the development of novel therapeutic strategies
to improve the outcome of critical illness.
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Background
Inflammation is a central facet in the complex pathophysiology of critical illness. Irre-

spective of cause, critical illness initiates the innate and adaptive immune systems,

resulting in systemic inflammatory response syndrome (SIRS) [1–6]. Elevated levels of

pro-inflammatory cytokines have been associated with mortality in trauma, complex

surgical interventions, sepsis, adult respiratory distress syndrome (ARDS), and cardio-

genic shock [7]. Additionally, anti-inflammatory response if unbalanced results in
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anergy and immunosuppression [8]. Furthermore, multiple organ failure has been pos-

tulated to be due to massive activation of inflammatory mediators by critical illness

resulting in vascular endothelial damage, permeability edema, and impaired oxygen

availability to mitochondria [9]. Following the inception of modern intensive care units

(ICU), therapeutic interventions and life support strategies have led to significant re-

duction in inflammatory mediators and hence mortality [10–14].

Extracorporeal life support (ECLS) is a term than has been used interchangeably with

extracorporeal membrane oxygenation (ECMO), but it encompasses all extracorporeal

technologies, including cardiopulmonary bypass (CPB), ECMO in all its configurations,

and extracorporeal carbon dioxide removal (ECCO2R). Since the success of CPB for

short-term circulatory support in the 1950’s, enthusiasm has grown to translate this

technology to intermediate and long-term support for critically ill patients [15]. The

first report of the use of veno-arterial extracorporeal membrane oxygenation

(VA-ECMO) for respiratory failure was two decades later [16]. Although initial ran-

domized clinical trials failed to demonstrate any clinical benefit of this technique [17,

18], with the advancement in technology and improvement in the safety profile, a re-

surgence of ECMO have been seen in the last decade with an exponential expansion in

the number of ECMO centers worldwide. Moreover, improvement in outcomes has

also been reported with survival of 57% to hospital discharge for patients with respira-

tory failure and 41% to hospital discharge for patients with cardiac failure [19].

Although lifesaving in many situations, complications of ECLS, whether mechanical,

pump related, secondary to bleeding, or infection, are common and often contribute to

morbidity and mortality [15, 19]. One of the relevant complications of ECLS is the as-

sociated inflammatory response. A rapid rise in pro-inflammatory cytokines following

initiation of ECLS [20–22] is thought to be associated with an innate immune response

[23], which if severe may lead to end-organ dysfunction and death [24, 25].

It is challenging to discern the extent of the inflammatory response that is solely due

to ECLS or due to critical illness, underlying disease or ICU therapeutic interventions

including complex surgical procedures and mechanical ventilation (MV) [26–30]. Fur-

thermore, while the potential mechanical and inflammatory injury caused by other

means of life support such as MV is well recognized within the critical care community

[31], the importance of the inflammation associated with the application of ECLS is less

understood.

In addition to addressing the impact on outcome of the relationship between inflam-

mation and ECLS, two different but complementary pathophysiological perspectives

will be developed in this review: ECLS as the cause of inflammation and ECLS as the

treatment of inflammation (Fig. 1). This framework may be useful in guiding the devel-

opment of novel therapeutic strategies to improve the outcome of critical illness.

ECLS as a cause of systemic inflammation
Upon exposure of blood to the extracorporeal circuit during ECLS an inflammatory re-

sponse might be triggered that mimics SIRS [32]. This is mediated by both humoral

and cellular activation pathways, which are fundamentally interdependent but not fully

understood during ECLS [33]. Most of the investigations on this specific issue have

been developed with the CBP system, and hence a comprehensive evaluation is limited

by the lack of rigorous studies on this issue conducted on ECMO and ECCO2R.
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Additionally, a majority of the studies are conducted in neonates and pediatrics and

used an older technology, with less advanced pumps, circuits, and biocompatible mate-

rials, pre-dating modern ECLS. Therefore, the findings can be only prudently extended

to all the more modern ECLS configurations and uses.

Contact system, coagulation cascade, and complement

Following initiation of ECLS, the contact system becomes activated and subsequent

byproducts of this activation promote coagulation and drive inflammation [33].

This activation process is rapid [34], resulting in neutrophil activation, release of

nitric oxide and pro-inflammatory cytokines, as demonstrated during CPB [35, 36]

and in neonatal ECMO [23]. The contact system activation triggers both intrinsic

and extrinsic coagulation pathways, leading to clot formation and inflammation

[33]. Notably, in simulated closed ECC, the expression of tissue factor (TF) by acti-

vated monocytes, or alternatively the TNF-α- and IL-6-induced release of soluble

TF by endothelial cells, was evident without the need to be triggered by tissue in-

jury and resulted in a 30-fold increase in thrombin formation [37, 38]. The com-

plement system is also triggered upon initiation of ECLS [23, 39]. This mechanism

is usually rapid with a peak in 1–2 h [23, 40–42] but is short lived and limited to

1–2 days following initiation of ECLS [40, 43]. This activation is mediated by C5a,

C3a, C3b, and terminal complement complex and causes an increase in leukocyte

recruitment, vascular permeability, and endothelial dysfunction [40, 43, 44].

Role of platelets

Platelets are a major mediator of inflammation and not just hemostasis during ECLS

[45]. Platelet activation has been extensively studied during CPB [46]. CPB causes

structural and biochemical changes in platelets including differential expression of

membrane receptors and formation of platelet conjugates due to shear forces created

by circulatory pumps [47]. Less is known on the mechanisms of platelet activation

Fig. 1 Pathophysiology ECLS and associated inflammatory response
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during ECMO and ECCO2R. In one of these investigations in neonates supported with

VV-ECMO for respiratory failure, platelets were found to adhere to the fibrinogen

absorbed by the circuit, resulting in a time-dependent platelet activation along with

persistent and progressive platelet dysfunction leading to the release of

pro-inflammatory cytokines and expression of TF [48, 49].

Role of the endothelium and leukocytes

Endothelial dysfunction in critical illness has been associated with poor outcomes [50]

and plays also a major role in ECLS-induced inflammation. Alteration in endothelial

cell gene expression occurs due to the effect of cytokines, complement, and reactive

oxygen species, leading to pro-inflammatory mediators release and increased transmi-

gration of leukocytes [48, 51]. The resulting neutrophil infiltration has been described

to lead to ECLS-associated lung injury and end-organ damage [23–25, 52, 53]. Activa-

tion of neutrophils has been found in an experimental simulated ECC to be instantan-

eous [54], peaking within the first few hours of ECMO initiation and declining

thereafter [55].

Bacterial translocation

Other potential inflammatory mechanisms studied during ECLS are gut barrier dys-

function, bacterial translocation, and endotoxins release. During CPB and ECMO, en-

dotoxins can be released in response to translocation of bacteria from ischemic gut

mucosa into the blood stream [56, 57]. Lipopolysaccharide is released by

Gram-negative bacteria and induces macrophages to release TNF-α and endothelial

cells to release IL-6 [58]. Endotoxins stimulate circulating monocytes to produce cyto-

kines, such as TNF-α [59] and blood-borne TF [60], thereby activating the coagulation

cascade. Additionally, thrombin generation promotes inflammation, leading to a vicious

circle.

Human leukocyte antigen sensitization

Another interesting mechanism by which ECLS may promote inflammation is by trig-

gering human leukocyte antigen (HLA) sensitization in subjects bridged to transplant

with extracorporeal means of life support. HLA sensitization has been reported in

pediatric patients supported with a ventricular assist device and ECMO while awaiting

heart transplant [61, 62]. In addition, a recent report indicated that also patients

bridged to lung transplant with ECMO might develop HLA sensitization [63]. However,

the potential etiological mechanisms resulting into allosensitization during ECMO re-

main unclear and speculative.

CBP-specific inflammatory response

CPB involves unique features that further contribute to inflammation (Table 1). The

clamping of the aorta during surgery inflicts an ischemia-reperfusion injury to both the

heart and the lungs and results in a significant inflammatory reaction [64]. Moreover,

the protamine administered at the end of CPB for heparin reversal results in

protamine-heparin complexes that are known to exacerbate the inflammatory response

via activation of the classical and lectin complement pathways [65]. Furthermore,
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hemodilution can be employed in CPB and could lead to increased neutrophil activa-

tion and therefore SIRS [66, 67]. Finally, surgical trauma and the presence of blood-air

interface due to cardiotomy suctioning, venting of blood, and venous reservoirs, which

are incorporated in the circuit contribute to the inflammatory response [68].

CPB and postoperative pulmonary dysfunction

The impact of CPB on postoperative lung function has been debated. Traditional strat-

egies of no MV during CPB might induce pulmonary dysfunction, due to development

of micro-atelectasis, hydrostatic pulmonary edema, and ischemic lung injury secondary

to reduction in bronchial artery flow [69]. Furthermore, ECLS-induced inflammation

has been associated with pulmonary dysfunction. In adults undergoing CPB, IL-8 levels

in the bronchoalveolar lavage were significantly correlated to arterial oxygenation and

intrapulmonary shunt at the end of the surgery [70]. Moreover, the length of MV was

longer in patients with an exaggerated inflammatory response to CPB [71]. Finally,

postoperative concentration of IL-8 was higher in patients ventilated for more than 24

h in comparison to patients ventilated for less than 24 h [72].

Nonetheless, it has been suggested that post-CPB pulmonary dysfunction might be

triggered by anesthesia or surgical technique. In patients with good ventricular function

and without prior pulmonary diseases, coronary artery bypass on or off pump caused a

similar degree of postoperative pulmonary dysfunction [73]. In addition, it has been

speculated that the similar left atrium/right atrium ratio of leukocyte count in venti-

lated and non-ventilated patients during CPB reduces the possibility of the inflamma-

tory response accounting for difference in the incidence of lung injury [74]

Clinical implications of ECLS-associated inflammatory response
Several studies demonstrated a considerable association between inflammation and out-

come during ECLS in its different configurations. In neonates undergoing CPB, Interlu-

kin 6 (IL-6) and IL-8 concentrations correlated with postoperative myocardial

dysfunction [75], lactate concentrations, blood product administration, duration of MV,

and ICU and hospital length of stay [76, 77]. Moreover, in adults post-cardiac surgery,

increased IL-6 levels after CPB were predictive of infection in patients with impaired

left ventricular function [78], and preoperative IL-8 concentrations correlated with pro-

longed postoperative MV [79]. In addition, one specific genetic polymorphism of IL-6

was associated with acute lung injury [80].

During veno-venous extracorporeal membrane oxygenation (VV-ECMO) for severe

ARDS, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) levels were associated with an

Table 1 ECLS modalities

CPB VA-ECMO VV-ECMO ECCO2R

Organ support Cardiac and
pulmonary

Cardiac and pulmonary Pulmonary: oxygenation
and ventilation

Pulmonary:
ventilation

Duration Minutes to hours Days to weeks Days to weeks Days to weeks

Anticoagulation Very high-dose
heparin

Low-dose heparin Low-dose or no heparin Low-dose heparin

Reversal Protamine No No No

Air-blood interface Yes No No No
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increased risk of in-hospital mortality [25]. IL-6 levels were persistently increased in

non-survivors among a mixed group of patients undergoing VV-ECMO and

VA-ECMO [81]. Furthermore, higher levels of TNF-α have been correlated with mor-

tality in neonates undergoing VV- or VA-ECMO [23, 52]. Of note, IL-6 was identified

as a potentially useful prognostic marker for mortality during ECMO support [81], pul-

monary dysfunction after CPB [82], and acute kidney injury after cardiac surgery, both

in children [83] and in adults [84].

Greater release of IL-10 after CPB was associated with improved cardiac index and

pulmonary gas exchange [85] and increased chance of survival following cardiogenic

shock in adults supported with ECMO [86]. Additionally, IL-10 levels in ARDS patients

correlated with severity of illness and predicted unsuccessful ECMO weaning and

mortality [87].

Potential therapeutic interventions in ECLS-induced inflammation

A number of different strategies, including pharmacologic agents and non-pharmaco-

logic interventions (i.e., innovative surgical techniques, ECLS circuit modifications, the

conduction of anesthesia and ventilation), have been evaluated in experimental [88]

and clinical trials [33, 89] with the aim of minimizing the impact of ECLS-related sys-

temic inflammation on patients’ outcome in pediatric [89, 90] and adult patients [91].

However, the impact of these strategies on the post-ECLS clinical course has been

conflicting.

Although the administration of steroids during pediatric cardiac surgery has been as-

sociated with the attenuation of CPB-induced inflammation [89], their impact on post-

operative clinical outcome remains modest [92]. The administration of steroids was

associated with a reduction in postoperative infection and duration of postoperative

MV and length of stay, but no beneficial effects on mortality and organ complications

in adult cardiac surgery patients have been reported [93, 94].

Preoperative statin therapy was associated with a reduction in post-CPB inflammation

[95, 96] and an improvement in morbidity and mortality after cardiac surgery [97–99].

However, a recent meta-analysis of randomized control trials (RCTs) found no evidence

of benefit for patients’ outcomes [100]. Patients with high preoperative IL-6 levels

might be the best candidates for the preemptive administration of statins in cardiac sur-

gery with CPB [101]. Other anti-inflammatory pharmacologic strategies, such as prote-

ase inhibitors (i.e., sivelestat, ulinastatin, aprotinin) [102–104] and milrinone [105],

have been associated with improved postoperative clinical outcomes, although add-

itional studies are needed to provide a better perspective regarding future applications.

Monoclonal antibodies have been studied as modulators of ECLS-induced inflamma-

tion. A novel inhibitory antibody against factor XIIa has been shown to reduced inflam-

mation in ex vivo and animal models of ECMO [106]. Moreover, human monoclonal

antibody directed at C5 significantly inhibited neutrophil activation in a model of simu-

lated extracorporeal circuit (ECC) [107]. Mesenchymal stromal cells (MSC) therapy in-

fusion in an animal model of CPB significantly reduced inflammatory cytokines within

3 h and subsequently reduced the harm associated with ischemia-reperfusion injury

[108]. Promising results have also been shown with hemoadsorption during CPB [109]

and ECMO [110]. However, all these therapeutic options remain experimental.

Al-Fares et al. Intensive Care Medicine Experimental 2019, 7(Suppl 1):46 Page 6 of 14



Many technical modifications of the CPB circuit and surgical procedures were imple-

mented to minimize systemic inflammation secondary to the activation of blood com-

ponents after contact with the CPB circuit and pulmonary dysfunction after

ischemia-reperfusion injury [90, 91]. A minimized extracorporeal circulation system

[111] and the circuit coating with poly-2-methoxyethyl acrylate [112] or heparin [113]

have been associated with a decrease in the systemic inflammatory response, thus po-

tentially improving organ function after cardiac surgery. By reducing the ischemic in-

sult to the lungs and inflammatory activation, pulmonary perfusion during CPB may

decrease systemic inflammatory response and have a protective effect on the lungs

[114–117]. However, robust evidence for any beneficial effects is lacking according to a

recent meta-analysis [118].

ECLS as a therapy for systemic inflammation
Despite the fact that different modalities of ECLS have been implicated in driving an in-

tense inflammatory response, ECLS can also be employed to offset it. By replacing the

function of the heart or the lung, ECLS may result into a direct reduction of inflamma-

tion due for instance to improved perfusion and gas exchange or may allow the reduc-

tion of the pro-inflammatory “stress” induced by other life support means, such as MV,

with an indirect effect on treating systemic inflammation.

ARDS, VV-ECMO, and ECCO2R

In ARDS, pulmonary and systemic inflammation exacerbated by high MV settings, the

so-called ventilator-induced lung injury, can be reduced by a lung-protective ventilation

strategy [12], which has been demonstrated to increase patients’ survival [119]. In an

interesting recent observational trial, the initiation of VV-ECMO support in mechanic-

ally ventilated patients for ARDS was associated with a remarkable decrease in cytokine

levels, potentially explained by the achievement of “lung rest” with less alveolar stress

and strain [25].

Recently, the hypothesis that the implementation of ultra-protective MV may allow

the achievement of minimal alveolar stress and strain, thus further reducing pulmonary

and systemic inflammation in ARDS, has been addressed in experimental and observa-

tional clinical studies utilizing different ECLS strategies [120–122]. The use of ECCO2R

has been reported to significantly reduce ARDS patients’ inflammatory response [123,

124]. In an interesting proof-of-concept clinical study, patient with ARDS with high

plateau airway pressure despite the delivery of protective MV with tidal volumes of 6

cc/kg of predicted body weight were treated with ECCO2R for 3 days in order to further

decrease tidal volumes and alveolar distending pressures. ECCO2R allowed the tidal

volume to be decreased to less than 4 cc/kg of predicted body weight with the conse-

quent significant reduction of the plateau airway pressure, while maintaining normal

pH and PaCO2. Reduction in the MV intensity resulted in the decrease of alveolar over-

distension, as demonstrated by CT scan imaging, and in the significant decreases of the

bronchoalveolar inflammatory cytokines IL-6, IL-8, IL-1b, and IL-1Ra [124]. These re-

sults were confirmed in a more recent randomized controlled trial that, comparing

ultra-protective MV facilitated by ECCO2R to conventional lung-protective ventilation,

resulted in significant reduction in IL-6 within 24 h of initiation of pumpless
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arterio-venous ECCO2R, but no effect on ventilator-free days or mortality [125]. How-

ever, rigorous clinical trials on this topic are needed before this approach can be recom-

mended in clinical practice [126–128].

Mechanical ventilation during CPB

Although the impact of protective MV during CPB on cytokine levels, pulmonary func-

tion, and clinical outcomes is still controversial [129–131], most studies described its

beneficial effect on post-CPB systemic inflammatory response [132–135] and lung

function [74, 136], thereby potentially improving clinical outcomes [74]. For example,

in adult patients undergoing CPB, IL-6 and IL-8 levels in the bronchoalveolar lavage

fluid and plasma were higher with high tidal volume/low positive end-expiratory pres-

sure than with low tidal volume/high positive end-expiratory pressure [132]. However,

the interesting results of a pilot randomized controlled trial, comparing MV versus no

MV during CPB, showed that the group treated with MV had less pulmonary edema

and shorter overall duration of MV [74]. It has been proposed that this benefit derives

from the partial preservation of bronchial arterial flow. Despite a recent meta-analysis

of randomized controlled trials showing that ventilation during CPB may improve

post-CPB oxygenation and gas exchange [137], the positive effects of the designated

MV techniques are probably short-term and with a questionable impact on the clinical

outcome [137, 138].

VA-ECMO and cardiogenic shock

Institution of ECLS has been associated with reduction inflammation in patients with

cardiogenic shock. This was reported to result in hemodynamic improvement in pa-

tients with left ventricular assist device used for cardiogenic shock [139]. Furthermore,

a significant reduction in the levels of IL-6 and IL-10 was reported in patients following

institution of VA-ECMO for post-cardiotomy syndrome and myocarditis [53]. The re-

sultant hemodynamic stability was theorized to lead to improved end-organ perfusion

and contributed to recovery from multiple organ failure. Moreover, the use of

heparin-coated biocompatible circuits was thought to minimize blood-material inter-

action and result in reduction of ECMO-induced systemic inflammation.

Conclusions
Critical illness-associated inflammatory process is complex. It can be secondary to

acute illness or due to complex ICU therapeutic interventions. ECLS can induce an in-

flammatory process that has been associated with morbidity and mortality. On the

other hand, it can offer a therapeutic benefit in facilitating lung and cardiac support,

which might limit the determinants of inflammation. In the future, the development of

progressively more advanced ECLS technology will certainly provide a safer means of

advanced life support with potentially higher chances to demonstrate their therapeutic

benefit.
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