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Abstract

Background: Accidental hypothermia is a critical condition with high risks of fatal arrhythmia, multiple organ
failure, and mortality; however, there is no established model to predict the mortality. The present study aimed to
develop and validate machine learning-based models for predicting in-hospital mortality using easily available data
at hospital admission among the patients with accidental hypothermia.

Method: This study was secondary analysis of multi-center retrospective cohort study (J-point registry) including
patients with accidental hypothermia. Adult patients with body temperature 35.0 °C or less at emergency
department were included. Prediction models for in-hospital mortality using machine learning (lasso, random forest,
and gradient boosting tree) were made in development cohort from six hospitals, and the predictive performance
were assessed in validation cohort from other six hospitals. As a reference, we compared the SOFA score and 5A
score.

Results: We included total 532 patients in the development cohort [N = 288, six hospitals, in-hospital mortality:
22.0% (64/288)], and the validation cohort [N = 244, six hospitals, in-hospital mortality 27.0% (66/244)]. The C-
statistics [95% CI] of the models in validation cohorts were as follows: lasso 0.784 [0.717–0.851] , random forest
0.794[0.735–0.853], gradient boosting tree 0.780 [0.714–0.847], SOFA 0.787 [0.722–0.851], and 5A score 0.750[0.681–
0.820]. The calibration plot showed that these models were well calibrated to observed in-hospital mortality.
Decision curve analysis indicated that these models obtained clinical net-benefit.

Conclusion: This multi-center retrospective cohort study indicated that machine learning-based prediction models
could accurately predict in-hospital mortality in validation cohort among the accidental hypothermia patients.
These models might be able to support physicians and patient’s decision-making. However, the applicability to
clinical settings, and the actual clinical utility is still unclear; thus, further prospective study is warranted to evaluate
the clinical usefulness.
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Background
Accidental hypothermia is an unintentional decrease in
core body temperature below 35 °C with high risks of
fatal arrhythmia, multiple organ failure, and mortality
(24–40%) [1–4]. Therefore, patients with accidental
hypothermia should be immediately evaluated to deter-
mine the severity and to consider the treatment strategy.
However, accidental hypothermia is relatively rare (ap-
proximately 5–10 cases of annual emergency visits in
each emergency department) [2]; thus, it is challenging
for inexperienced medical staff to accurately estimate
the prognosis. Although few prediction models or scales
have been suggested earlier to predict mortality [5–8],
there is no established model.
Recently, the machine learning technique has been de-

veloped and applied to predict the outcome in emer-
gency and critical care settings [9–17]. If machine
learning predicts the clinical outcome promptly and it is
available in the emergency department using the elec-
tronic medical chart along with other applications, it can
help to alert the inexperienced medical staff in advance.
Further, the predicted probability of the clinical outcome
could prove to be essential information for the patients
and their family members to decide the invasive treat-
ment strategy. Although few machine learning-based
predictions have been validated in emergency and crit-
ical care fields [9–20], most of the previous research fo-
cused only on frequent emergencies such as triage in the
emergency department, trauma, sepsis, or cardiovascular
events [9–20]. In contrast, for less frequent emergency
conditions such as accidental hypothermia, the validity
of machine learning has not yet been studied. Therefore,
the present study aimed to develop and validate machine
learning-based models for predicting in-hospital mortal-
ity using easily available data at hospital admission
among patients with accidental hypothermia.

Methods
Ethical considerations
This study complied with the Transparent Reporting of
a Multivariable Prediction Model for Individual Progno-
sis or Diagnosis (TRIPOD) statement regarding the
reporting of the study’s methods and results [21]. Ac-
cording to the Ethical Guidelines for Medical and Health
Research Involving Human Subjects in Japan [22], the
ethics committee of the participating center approved
the registry protocol and retrospective analysis of de-
identified data in this study with a waiver of informed
consent, because this study used only anonymized data
about already-existing specimens or information. Fur-
ther, information about the study was made available to
the public, and the opportunities to refuse participation
in the study were guaranteed (ethical approval ID of

representative institution, Kyoto Prefectural University
of Medicine: ERB-C-633).

Study design and settings
This study is a secondary analysis of the multi-center
retrospective cohort study (the J-point registry) that in-
cluded patients with accidental hypothermia. The details
of the J-point registry have been previously reported [2,
5, 23–25] and described (see Supplementary Appendix 1
in Additional file 1). In summary, the registry includes
patients who were diagnosed and treated for
hypothermia in 12 emergency departments in urban
areas of Kyoto, Osaka, and Shiga prefectures in Japan
between 1 April 2011 and 31 March 2016.

Study population
This study included all adult patients (≥ 16 years) with a
body temperature of 35 °C or lower at admission to the
emergency department in the J-point registry. We ex-
cluded patients whose body temperature was higher than
35 °C or unknown and with missing fundamental data
regarding age, sex, and mortality. We split the included
patients into two cohorts based on the geographical lo-
cation for model development and external validation
[26, 27]. The development cohort was created using six
emergency departments in Kyoto City, while the valid-
ation cohort was created using the other six emergency
departments from Shiga, Osaka, and Kyoto prefectures
except for Kyoto City. Generally, external validation of
prediction models requires different patient profiles.
Therefore, this validation cohort was considered appro-
priate for external validation because the sample split-
ting was based on geographical location and each cohort
was expected to be heterogeneous and consisted of dif-
ferent patient profiles [26, 28].

Data collection and patient outcomes
We collected the following patient characteristics and
clinical information: sex, age, the activity of daily living
(ADL) and comorbidities, vital signs at hospital arrival
(body temperature, systolic blood pressure, heart rate,
and Glasgow Coma Scales) and initial blood gas assess-
ment, blood test results at hospital arrival, sequential
organ failure assessment (SOFA) score within 24 h after
admission, and rewarming procedures and in-hospital
mortality. Details of these variables are provided in Sup-
plementary Appendix 1, Additional file 1. The outcome
of interest was in-hospital mortality.

Variable selection, data preparation, and handling
missing data
From the collected data mentioned above, we excluded
those variables that were missing for over 30% of the
time, and finally, we selected 29 predictor candidates
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that could be measured at the patient’s hospital arrival.
For continuous variables, we treated outliers and obvious
contradictory values as missing. For dealing with missing
variables, we performed multiple imputations to impute
the missing values using the “missForest” package [29,
30]. This imputation technique is a nonparametric algo-
rithm that can accommodate nonlinearities and interac-
tions, and the single point estimates can be generated
accurately by a random forest [29, 30]. The advantages
of using the random forest model are that it can handle
continuous as well as categorical responses, requires very
little tuning, and provides an internally cross-validated
error estimate [29, 30]. Missingness was imputed using
all predictors, outcomes, and other covariates. We did
not perform the sample size estimation because of the
retrospective nature of the study. There is a consensus
on the importance of having an adequate sample size;
however, there is no generally accepted approach for es-
timating the required sample size when developing and
validating risk prediction models [28].

Statistical analyses
Patient characteristics and predictors
We described the patients’ characteristics and predictor
candidates in each cohort. Continuous variables were
described as medians and interquartile ranges (IQRs),
while categorical variables were described as numbers
and percentages.

Machine learning model
Based on previous studies [9–16], we chose the following
three machine learning techniques to develop the pre-
diction model in the development cohort: (1) logistic re-
gression with least absolute shrinkage and selection
operator (lasso) [9, 14, 15], (2) random forest [9, 15, 16,
31], and (3) gradient-boosting decision tree (gradient
boosting tree) [13, 15, 31, 32]. The details of these tech-
niques have been described earlier. As a summary, lasso
regularization can choose a few relevant variables and ig-
nore others to reduce the model complexity and prevent
overfitting [33–35]. This feature selection can also en-
able us to interpret the model. For the training, we used
10-fold cross-validation by the “glmnet” package [36] to
select the optimal value of the penalty parameter
(lambda) and calculated the beta coefficient of the se-
lected variables. Random forest is an ensemble learning
method that consists of hundreds or thousands of deci-
sion trees [37]. It trains each one on a slightly different
set of observations using bootstrapping, and the final
predictions are made by averaging the predictions of
each individual tree. The gradient boosting tree is an-
other tree-based ensemble learning method similar to a
random forest [32]. One of the differences between them
is how the trees are built. Random forest trains each tree

independently, while gradient boosting trains one tree
sequentially based on the previous ones. This additive
model works in a forward stage-wise manner, introdu-
cing a tree to improve the shortcomings of the existing
tree. For developing the random forest and gradient
boosting tree models, we performed optimization of the
hyperparameters by grid search strategy using the “ran-
ger” and “caret” packages [38, 39]. To understand the
contribution of predictors to the models, we showed that
the variable importance scaled as the maximum value is
100 [39, 40].

Reference model
To compare the predictive performance, we chose the
SOFA score and the 5A score as a reference. The SOFA
scoring system is the most common severity scale in
critical care to evaluate the degree of multiple organ fail-
ure, and it was reported to perform well to distinguish
the prognosis among the patients with accidental
hypothermia admitted to the intensive care unit [41, 42].
We assumed a linear relationship between the SOFA
and in-hospital mortality; thus, we considered the SOFA
score as a continuous variable and fitted the logistic re-
gression model in the development cohort. The “5A
score” was previously developed to predict in-hospital
mortality using a logistic regression model with variable
selection by clinical experience and validated using the
same development and validation cohort in the J-point
registry [5]. This model consists of the age, ADL status,
hemodynamic status (near arrest), pH, and serum albu-
min level [5]. The equation of the 5A score used to cal-
culate the probability of in-hospital mortality is
described in Supplementary Appendix 2, Additional file
1.

Assessment of the performance
For the assessment of predictive performance, developed
models were applied to the validation cohort as external
validation. The receiver operating curves (ROCs) were
drawn, and the C-statistics (also known as areas under
the curve) with the 95% confidence interval (95% CI)
were calculated as discrimination measures. Further, the
C-statistics were compared to the 5A score using the
Delong test [43]. For assessment of calibration, calibra-
tion plots were drawn using a locally weighted scatter
plot smoothing curve to indicate the relationship be-
tween the predicted and observed probability of in-
hospital mortality in the validation cohort [27]. As an as-
sessment of clinical utility, the net-benefit values of the
models were calculated, and the decision curves were
shown [44, 45]. The details of the net-benefit and deci-
sion curve analysis are explained in Supplementary Ap-
pendix 1, Additional file 1. All analyses were performed
using the JMP Pro® 14 software (SAS Institute Inc., Cary,
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NC, USA) and R software (version 1.1.456; R Studio Inc.,
Boston, MA, USA).

Results
Patient characteristics
Among the 572 patients in the J-point registry, 532 pa-
tients were ultimately included, and those with missing
values data were imputed; finally, the patients were di-
vided into the development cohort [N = 288, six hospi-
tals, in-hospital mortality 22.0% (64/288), median age
(IQR) 79 (69–87)] and the validation cohort [N = 244,
six hospitals, in-hospital mortality 27.0% (66/244), me-
dian age (IQR) 79 (64–87)]. The study flow chart and
other characteristics, and the laboratory data of the pa-
tients are shown in Fig. 1, and Tables 1 and 2, respect-
ively. Missing variables are shown in Supplementary
Table 1, Additional file 1. The predictor candidates are
described by outcomes in Supplementary Table 2, Add-
itional file 1.

Model development
In the final lasso model with the optimal lambda to
minimize the mean squared error, 18 selected variables
and beta coefficient values are shown in Fig. 2. In the
random forest model and gradient boosting tree model,
the importance of the predictors is also indicated in Fig.
2. The other hyperparameters of machine learning
model are described in Supplementary Table 3, Add-
itional file 1. Based on the distribution of outcome by
SOFA score in the development cohort, it was reason-
able to assume the association between SOFA score and
in-hospital mortality as a linear relationship (Supple-
mentary Fig. 1, Additional file 1). The logistic regression
model using the SOFA score showed that the beta-

coefficient value was 0.300 for each point of the SOFA
score, and the intercept was − 2.847. For the 5A score,
we used the previously developed model described in
Supplementary Appendix 3, Additional file 1.

Model performance in validation cohorts
For discrimination, the C-statistics [95% CI] of the
models in validation cohorts were as follows: lasso, 0.784
[0.717-0.851]; random forest, 0.794 [0.735–0.853]; boost-
ing tree, 0.780 [0.714–0.847]; SOFA, 0.787 [0.722–
0.851]; and 5A score, 0.750 [0.681–0.820]. The ROCs
were plotted in Fig. 3. There was no significant differ-
ence in C-statistics compared with the 5A score (see
Supplementary Table 4, Additional file 1). For the visual
assessment of the calibration plot in the validation co-
hort (Fig. 4), the boosting tree model and SOFA were
well calibrated to the observed overall range of the pre-
dicted in-hospital mortality. Although the other models
were also calibrated to some extent, the lasso and ran-
dom forest models were slightly underestimated, and the
5A model was partially over- and underestimated in the
range of high predicted in-hospital mortality. In the de-
cision curve analysis, the net-benefit values of the
models were higher than the all treatment and none
strategy (Fig. 4). Although the net-benefit values of the
models were almost the same, the net-benefit of the gra-
dient boosting tree was slightly higher and that of the
5A score was slightly lower than the others.

Discussion
Key observation
This multi-center retrospective cohort study indicated
that machine learning using the lasso, random forest,
and gradient boosting tree had adequate discrimination

Fig. 1 Study flowchart
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and calibration performance in predicting in-hospital
mortality among patients with accidental hypothermia.
Further decision curve analysis showed the net-benefit
can be obtained using these prediction models. These
results suggested the potential clinical usefulness of
these predictions.

Strength of this study
This study has some strengths compared with previous
studies. First, this was the first study to indicate the ma-
chine learning-based prediction models for accidental
hypothermia, which were validated with adequate dis-
crimination and calibration performance using the exter-
nal validation cohort. Previously, some prediction
models were developed for patients with accidental
hypothermia [5–8]; however, to the best of our

knowledge, no study has been conducted for the ma-
chine learning model. Machine learning has potential
advantages in variable selection and modeling in terms
of considering high-order interactions between the pre-
dictors and nonlinear relationships with the outcome
[37, 46]. Therefore, machine learning-based prediction is
expected to predict the outcome more accurately. In our
study, machine learning-based predictions performed at
par with or better than a simple scoring system such as
the 5A score in terms of calibration and net-benefit.
Therefore, this study indicated that machine learning-
based prediction may potentially contribute to better
prediction and decision-making.
Second, this study specifically focused on accidental

hypothermia, which is a relatively less common situation
for investigating the utility of machine learning-based

Table 1 Patients’ characteristics

Variables Development cohort Validation cohort

(N = 288) (N = 244)

Men 144 (50.0%) 126 (51.6%)

Age, years 79 (69–87) 79 (64–87)

< 60 37 (12.8%) 47 (19.3%)

60–69 35 (12.2%) 37 (15.2%)

70–79 75 (26.0%) 48 (19.7%)

≥ 80 140 (48.6%) 117 (48.0%)

Activities of daily living

Disturbance 96 (33.3%) 66 (27.0%)

Comorbidity

Cardiovascular diseases 126 (43.8%) 111 (45.5%)

Neurological diseases 53 (18.4%) 40 (16.4%)

Endocrine diseases 83 (28.8%) 47 (19.3%)

Psychiatric diseases 55 (19.1%) 63 (25.8%)

Malignant diseases 12 (4.2%) 4 (1.6%)

Dementia 57 (19.8%) 51 (20.9%)

Other 56 (19.4%) 38 (15.6%)

External and minimally invasive rewarming

Warm intravenous fluid 223 (77.4%) 168 (68.9%)

Forced warm air 80 (27.8%) 4 (1.6%)

Warm environment, warm blanket 242 (84.0%) 222 (91.0%)

Other 23 (8.0%) 15 (6.1%)

Active internal rewarming

Lavage 29 (10.1%) 15 (6.1%)

CHDF 4 (1.4%) 17 (7.0%)

VV-ECMO 0 (0%) 2 (0.8%)

VA-ECMO 3 (1.0%) 17 (7%)

In-hospital mortality 64 (22.2%) 66 (27.0%)

Categorical variables: n (%), continuous variables: median [interquartile range]
CHDF Continuous hemodiafiltration, VV-ECMO Veno-venous extracorporeal membrane oxygenation, V-A ECMO Veno-arterial membrane oxygenation
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prediction. Due to the lack of an adequate number of se-
vere cases in some institutions, it may be difficult for
inexperienced clinicians to accurately predict the

prognosis. Meanwhile, some previous studies using ma-
chine learning focused on more common situations such
as triage for emergency conditions, sepsis, and trauma
[9–20]. However, a number of risk stratification systems
have been well established for such cases (e.g., SOFA
score or quick SOFA score for sepsis [42, 47], Canadian
emergency department triage and acuity scale for triage
[CTAS] in the emergency department [48], acute physi-
ology and chronic health evaluation 2 [APACHE2] score
for critically ill patients [49], or revised trauma score for
severe trauma) [50]. Therefore, even if the machine
learning system does not work, clinicians can use alter-
native classic tools in the initial assessment of severity.
However, for accidental hypothermia, there are no com-
monly used models validated with external data. Histor-
ically, the Swiss staging system based on the body
temperature are used for triage; however, the discrimin-
ation performance was reported to be inadequate [5].
Therefore, machine learning that is adapted to patients
with relatively less common conditions such as acciden-
tal hypothermia may fit the requirement in clinical
settings.
Third, we highlighted that machine learning models in

this study were built based on the objective information
that is available easily and immediately in any emergency
department. In some of the previous studies, predictor
candidates were selected based on subjective information
such as patient’s complaint or information that was in-
accurate or unavailable at emergency department admis-
sion [9, 13, 14, 17] Prediction models based on less
certain or unavailable information might have disadvan-
tages concerning their applicability to other settings. On
the other hand, prediction models in this study were
mainly built by using objective information such as
blood test results. Therefore, this study may be expected
to be highly applicable to other settings.

Interpretation and clinical implication
We suggest some explanations for the potential advan-
tages of the good predictive performance of machine
learning models that we have shown in this study. First,
machine learning approaches can incorporate the non-
linear interactions between predictors, which cannot be
addressed by using traditional modeling [37, 46]. In con-
trast, the traditional logistic regression model is not suit-
able to deal with unknown interactions and nonlinear
relationships [37, 46]. Second, this modeling study was
performed to minimize potential overfitting. Generally,
the prediction models developed from the data with a
limited number of outcome events are prone to overfit-
ting, and predictive performance may be worse in the
external validation dataset [35]. To deal with this limita-
tion, we adapted the cross-validation or bootstrap proce-
dures to reduce the overfitting [37, 46]. Further, we used

Table 2 Vital signs and Laboratory data

Variables Development cohort Validation cohort

(N = 288) (N = 244)

Vital signs

Body temperature 30.7 (28.3–32.6) 31 (28–32.7)

Heart rate 65 (50–82) 63 (45–84)

SBP 116 (93–139) 113 (87–136)

GCS 8 (5–11) 8 (4–11)

13–15 105 (36.5%) 103 (42.2%)

9–12 96 (33.3%) 68 (27.9%)

3–8 87 (30.2%) 73 (29.9%)

Cardiac arrest 5 (1.7%) 16 (6.6%)

Blood gas assessment

pH 7.32 (7.26–7.36) 7.31 (7.23–7.37)

PaCO2 42.1 (32.8–47.8) 43.8 (37.3–50.4)

PaO2 115.2 (90.1–156) 115.6 (76.3–183.8)

HCO3 21 (15.6–25.4) 21.6 (16.7–25.3)

Base Excess − 4.3 (− 10.2–0.1) − 4.4 (− 9.6–0.2)

Lactate 2.6 (1.4–5.1) 3.2 (1.6–6.6)

Blood test results

WBC 82.1 (53.3–127.3) 83 (51.3–120.8)

Hgb 11.7 (10–13.4) 12 (10.3–13.5)

Hct 35.3 (30–40.3) 36.4 (32–40.7)

PLT 17.1 (12.2–22.8) 19.4 (13.5–24.5)

Glu 127.5 (88.8–178) 141.7 (101–195)

Na 139 (135–143) 140 (137–143)

K 4.2 (3.6–4.7) 4 (3.5–4.6)

Cl 103 (99–107) 103 (100–107)

Ca 8.8 (8.4–9.3) 8.8 (8.3–9.2)

Cr 1.1 (0.6–2) 0.9 (0.6–1.6)

BUN 38 (20.4–60) 28.2 (17–51.7)

TP 6.5 (5.8–7) 6.4 (5.7–7.2)

Alb 3.4 (2.9–3.9) 3.5 (3–4)

T-bil 0.6 (0.5–1.1) 0.6 (0.4–0.9)

CK 503 (142.3–1388) 418.5 (129–1281.5)

CRP 1.8 (0.4–6.2) 1.1 (0.1–4)

Score

SOFA 4 [3–6] 4 [2–7]

5A score 4 [3–5] 4 [2–5]

ADL Activity of daily living, BT Body temperature, SBP Systolic blood pressure,
GCS Glasgow coma scale, WBC White blood cell count, Hgb Hemoglobin, Hct
Hematocrit, PLT Platelet count, BUN Blood urea nitrogen, TP Total protein, Alb
Serum albumin, T-bil Total bilirubin, CK Creatine kinase, SOFA Sequential organ
failure assessment score, categorical variables: n (%), continuous variables:
median [interquartile range]
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the ensemble method which is obtained by combining
multiple learning algorithms such as random forest or
gradient boosting tree, and obtained the flexibility to
avoid overfitting [37, 46]. These may contribute to good
predictive performance even if the dataset was small. On
the other hand, some previous studies reported that the
predictive performance of machine learning techniques
was not superior to that of the traditional logistic regres-
sion model [51–53]. Similar to earlier studies, this study
did not show that the machine learning-based model
was much better than the 5A score or SOFA model
based on the logistic model. However, we believe that
these machine learning methods are advantageous espe-
cially when background knowledge of the clinical ques-
tion is lacking. It is because background knowledge or
clinical experience is necessary to choose optimal pre-
dictors in the logistic model from among many predictor
candidates [27]. The 5A score was developed based on
background knowledge and clinical experience, and the
SOFA score is a well-established scale to assess multiple
organ failure. We believe that a machine learning-based
model may be convenient for predicting the outcome in
the case of accidental hypothermia, in which the number
of studies investigating the risk factors or predictive fac-
tors is limited.

Fig. 2 The features of the models. Beta coefficients value in lasso and importance of variables in random forest and gradient boosting tree were
shown. ADL: activity of daily living, BT: body temperature, SBP: systolic blood pressure, GCS: Glasgow coma scale, WBC: white blood cell count,
Hgb: hemoglobin, Hct: hematocrit, PLT: platelet count, BUN: blood urea nitrogen, TP: Total protein, Alb: serum albumin, T-bil: Total bilirubin, CK:
creatine kinase

Fig. 3 ROC of the models. The C-statistics [95% CI] of the models;
lasso: 0.784 [0.717–0.851], random forest: 0.794 [0.735–0.853],
boosting tree: 0.780 [0.714–0.847], SOFA: 0.787 [0.722–0.851], and 5A
score: 0.750 [0.681–0.820]. CI: confidence interval, ROC: receiver
operating curve
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The clinical implication of this study is that the ma-
chine learning-based prediction model would play an
important role as an accurate early warning system and
convey valuable information that is needed to consider
the treatment strategy. If these algorithms are imple-
mented in the electronic medical record system, it can
enable clinicians to identify the possibility of in-hospital
mortality and to manage the patients appropriately. Fur-
ther, the actual number of probabilities of in-hospital
mortality may be informative to the patients and family
members. Especially, most of the patients with accidental
hypothermia in urban settings were elderly, and some of
them might even withdraw the invasive treatment if they
are informed of a high probability of in-hospital mortal-
ity. Hence, this study may support machine learning im-
plementation in actual clinical settings. However, some
obstacles arise when introducing these techniques in
clinical settings. The algorithm of machine learning is so
complicated that it is termed a “black box,” and it is not
easy to interpret how the probability is calculated. Thus,
implementation in clinical settings requires certain soft-
ware or application. Further, to enable the use of ma-
chine learning techniques in a timely manner, a
standardized format to extract clinical data would be es-
sential. Although some systems have been used to col-
lect data structurally in the emergency and critical
medicine fields, they are not normally dedicated for use
in such fields in most institutions in Japan [54, 55].

Therefore, when ease and speed of prediction without
special software are considered, traditional prediction
models such as the 5A score or SOFA score may be
valuable. A possibility could be that machine learning is
not superior to traditional prediction in some situations;
however, if it is used flexibly and combined with the
traditional prediction model, it may prove to be valuable
in most clinical settings.

Limitations
This study has some limitations. First, we attempted to
include all the patients with hypothermia admitted to
the emergency department using diagnosis coding; how-
ever, we might have missed some of the patients who
were not coded as hypothermia. This may result in a risk
of selection bias. Second, because of the retrospective
nature of the data collection by chart review, the validity
of the variables and measurement was unclear. For ex-
ample, the blood test was defined as “initial blood test at
hospital arrival”; however, the exact timing was unclear.
Further, some variables were missing. For example, sat-
uration was not recorded in the registry, and respiratory
rate was not measured in many cases. Although we
double-checked the data validity and imputed missing
values using rigorous multiple imputation techniques
[30], this process may lead to a measurement bias.
Third, the exact cause of death in most cases was un-
clear, because this study did not collect information

Fig. 4 Calibration plot and decision curve analysis. Left: calibration plot, right: decision curve analysis. Calibration plot, X-axis: predicted probability,
Y-axis: observed frequency in validation cohort. Decision curve analysis, X-axis: threshold probability, y-axis: net-benefit. The detail of net-benefit
and decision curve analysis is described in Supplementary Appendix 3 in Additional file 1
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about autopsy or whether autopsy was performed.
Therefore, caution is necessary when interpreting this
result. Fourth, the sample size and the number of events
were limited, as accidental hypothermia is generally rela-
tively rare. This study has the largest database of infor-
mation on accidental hypothermia in urban settings;
however, the sample size was relatively small. This may
cause overfitting of the models and decrease the
generalizability of the findings. Finally, the applicability
of the model to clinical settings and the actual clinical
utility remain unclear. Most clinicians may hesitate to
believe that machine learning-based prediction using
factors that are not clinically relevant is valuable in clin-
ical decision-making, and we agree to that. Further, we
understand that they may prefer to use commonly ac-
cepted prediction methods such as the SOFA score even
if the performance is the same as that of new techniques.
It should be noted that clinical utilization of machine
learning techniques is still in a process of development,
and a discussion about its clinical utility compared to
the traditional way would be necessary. We hope that
this study would trigger discussions about the imple-
mentation of machine learning-based prediction in the
emergency or critical care field. Therefore, further pro-
spective studies would be necessary to overcome these
limitations and to identify the generalizability and use-
fulness of the models in clinical settings.

Conclusions
This multi-center retrospective cohort study indicates
that the prediction model using machine learning can
accurately predict in-hospital mortality in the validation
cohort in accidental hypothermia patients. The applica-
tion of these models to actual clinical settings could sup-
port physicians’ and patients’ decision-making. However,
their applicability to clinical settings and their actual
clinical utility remain unclear and warrant further pro-
spective studies.
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