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Background
From the view of probability, “two events X1 and X2 have no relationship” is described as 
two random variables X1 and X2 that are independent in their corresponding joint dis-
tribution p(x1, x2) = p(x1)p(x2). Away from this end, X1 and X2 must get some depend-
ence, which can be one of the different types. In most of the existing big data mining 
efforts, what considered is correlation. Without correlation E[X1X2] = E[X1]E[X2] or 
Cov[X1X2] = E[X1X2] − E[X1]E[X2] = 0 means that there is no dependence of the sec-
ond order between two events, but they may be still dependent in one of higher order 
types.

Particularly, the correlation E[X1X2] is symmetric, while there also exists some rela-
tionship that is asymmetric and even more interesting. One example is the causality, i.e., 
the occurrence of the event X1 causes occurrence of the event X2, but not inversely. But 
an asymmetric relationship is not necessarily a causal relation. One example is a regres-
sion E(x2|x1) that is widely considered in data analysing studies. However, a regression 
does not necessarily represent a causal relation.

In fact, whether X1 and X2 have a causal relation also depends on their environment 
W, which was first made precise by the common cause principle of Reichenbach (1956). 
This principle makes it possible to infer causal relation from statistical relation. Specifi-
cally, it follows from the non-correlation

(1)E[X1,X2|W ] = E[X1|W ]E[X2|W ]
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or the conditional independence

that we can infer that there must exist one of the three causal relationships 
X1 ← W → X2, X1 → W → X2, X1 ← W ← X2, though we can not identify spe-
cifically which one. We may identify Eq. (1) or even Eq. (2) from samples of variables 
x1, x2,w when they are binary variables. However, it becomes increasingly difficult when 
the variables take multiple values or even continuous values, for which a kernel-based 
approach has been proposed to deal with such a task in Fukumizu et  al. (2008). Even 
worse, the environment typically consists of a set of features W1, . . . ,Wk , which makes 
the task become even much more difficult. Alternatively, the Rubin Causal Model was 
first proposed in 1974 by Rubin and subsequently studied for many years (Rubin and 
Rubin 2011), which considers the so-called average causal effect (ACE) by computing 
E[X2|X1,W ] or its differences with X1,W  taking different values.

Pearl (1986) has shown that the following decomposable distribution

of dichotomous variables x1, x2, x3,w can be identified by examining whether the observ-
able three-variable distribution

satisfies a necessary and sufficient condition on seven joint-occurrence probabilities of 
one, two, and three dichotomous variables, where these joint-occurrence probabilities 
are estimated from samples of x1, x2, x3. Moreover, a necessary but not sufficient condi-
tion for p(x1, x2, x3) to be star-decomposable (as illustrated in Fig. 1a, b and to be further 
described in "Methods") is that all correlation coefficients ρji, i, j ∈ {1, 2, 3} obey the fol-
lowing triangle inequalities:

Furthermore, for a tree-decomposable distribution (as illustrated in Fig.  1c and to be 
further described in "Methods") of dichotomous variables, it is also shown in Pearl 
(1986) that the topology of this tree can be uncovered uniquely from the observed cor-
relation coefficients between pairs of variables, based on the following TETRAD condi-
tions (Spearman 1904; Anderson and Rubin 1956):

Subsequently, Xu (1986) and Xu and Pearl (1987) further proceeded to study the distri-
bution Eq. (3) of Gaussian variables x1, x2, x3,w with three new results as follows:

1.	 The analysing tool used in Pearl (1986) stems from Eqs. (3) and (4) on dichotomous 
variables (i.e., Eq. 24 in Pearl 1986) that considers the products of conditional inde-
pendence indirectly in a linear mixture, led to a set of constraint equations that are 

(2)p(x1, x2|w) = p(x1|w)p(x2|w)

(3)p(x1, x2, x3,w) = p(w)p(x1|w)p(x2|w)p(x3|w)

(4)p(x1, x2, x3) =
∑
w

p(x1, x2, x3,w)

(5)ρjk ≥ ρjiρik , with ρjkρikρji ≥ 0, i �= j �= k .

(6)T
(ijkl)
e = ρijρkl − ρilρjk = 0, i �= j �= k �= l.
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solved to get a necessary and sufficient condition. Differently, a new tool is suggested 
in Xu (1986) and Xu and Pearl (1987), which stems from 

 that directly considers the product of conditional independence for inferring the star 
structure or topology of causality, and subsequently identifies the parameters of the 
involved distributions by 

2.	 Instead of following Pearl (1986) that considers join probabilities to form constraint 
equations from Eq. (4), the equation by Eq. (7) is turned into one or a number of 
equations on different orders of statistics. Particularly, for Eq. (7) with Gaussian 
variables x1, x2, x3,w, the block decomposition of covariance matrix (Gigi 1977) is 
adopted with equalities and inequalities on the second orders of statistics as con-
straints, which are further simplified into Eq. (5).

3.	 Specifically, the necessary and sufficient condition for p(x1, x2, x3) of Gaussian vari-
ables to be star-decomposable is simply that the triangle inequalities by Eq. (5), i.e., 
the star-causality by Eq. (3) and the latent structure by Eq. (4) can be recovered from 
merely the second order statistics, i.e., correlation coefficients ρji, i, j ∈ {x1, x2, x3}.

When all the variables are Gaussians, the latent structure by

(7)p(x1, x2, x3|w) = p(x1|w)p(x2|w)p(x3|w)

(8)p(x1, x2, x3) =

∫
p(x1, x2, x3,w) dw.

(9)p(x1, x2, . . . , xn) =

∫
p(x1, x2, . . . , xn,w) dw

Fig. 1  Star-causality and factor analysis: old stories. a Star-decomposable. b Triplet star-decomposable. c Tree 
topology and tree-decomposable distribution. d Factor analysis model
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with the star-causality by

is actually equivalent to the classical factor analysis with only one factor. Pioneered by 
Spearman (1904), whether the factor analysis model (as illustrated in Fig. 1d and to be 
further described in the next section) is identifiable has been a classical topic for more 
than 100 years, from perspectives that are more or less similar to constraints on the 
second-order statistics obtained from Eq. (9). The well-known TETRAD equations or 
differences were discovered already in Spearman (1904) and have been used for con-
structing casual structures not just in Pearl (1986) but also by others (Spirtes and Gly-
mour 2000; Bartholomew 1995; Bollen and Ting 2000). Moreover, Theorem  4.2 in 
Anderson and Rubin (1956) also gave a necessary and sufficient condition for identifying 
whether a covariance matrix can be the one of a factor analysis model with one factor 
and three observation variables, which is actually equivalent to Eq. (5) but expressed in a 
different format.

Methods
Following Pearl (1986), the following decomposition of a joint distribution

is called star-decomposable distribution, as illustrated in Fig.  1a, and particularly tri-
plet star-decomposable in Fig. 1b. Also, w acts as a common cause that emits to affect 
the observable variables x1, . . . , xk; we use star-causality to name such a simple but 
important casual structure. A typical tree-causality is in a tree structure, as illustrated 
in Fig. 1c. Moreover, we say that a distribution p(x1, . . . , xk) is tree-decomposable if it 
is the marginal of a distribution p(x1, . . . , xn;w1, . . . ,wm),m ≤ n− 2 that supports a 
tree-structured, such that W1, . . . ,Wm correspond to the internal nodes of a tree and 
x1, . . . , xn to its leaves.

We further push forward developments of discovering causality along the line of Xu 
(1986) and Xu and Pearl (1987) from three perspectives.

First, the causal tree constructing procedure proposed in Pearl (1986), and also 
adopted in Xu (1986) and Xu and Pearl (1987), may be improved by the following three 
considerations:

(a)	 In that procedure, constructing causal tree is made via joining triplets by check-
ing the TETRAD equations by Eq. (6) while triplets were detected by the triangle 
inequalities by Eq. (5). However, Pearl (1986) pointed out that TETRAD equalities 
are unlikely to be satisfied forever in practice because we often have only sample 
estimates of the correlation coefficients. Though it was also tried in Pearl (1986) to 
decide the 4-tuple topology on the basis of the permutation of indices that mini-
mises the difference T (ijkl)

e , experiments found that the structure which evolves 
from such a method is very sensitive to inaccuracies in the estimates of the correla-

(10)p(x1, x2, . . . , xn) =

∫
p(x1, x2, . . . , xn,w) dw

(11)p(x1, . . . , xn|w) =

n∏
i=1

p(xi|w)
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tion coefficients. Here, we suggest to consider TETRAD equalities by minimising 
the difference T (ijkl)

e  subject to the constraints by Eq. (5).
(b)	 Not limited to consider triplet star-decomposable, star-causality in Fig. 1a may also 

consider in the same line of Xu (1986) and Xu and Pearl (1987), while the neces-
sary and sufficient condition for star-decomposable is not just satisfying the trian-
gle inequalities by Eq. (5) but also 0.5n(n− 1)− n equalities, which is equivalent 
to Theorem 4.2 in Anderson and Rubin (1956) for the identifiability of a covariance 
matrix to be the one of the factor analysis models with one factor in general. In 
other words, the consideration above can be extended to a general case in a similar 
way.

(c)	 Moreover, we may also combine an edge removing procedure as used in the well-
known PC algorithm (Spirtes and Glymour 1993, 2000) by which the link between 
two nodes is removed by testing the independence between them conditioning on 
the rest nodes. This checking also relates to inaccuracies in the estimates of correla-
tion coefficients, for which we may consider to add in minimising T (ijkl)

e  subject to 
the constraints by Eq. (5). Second, in addition to the above improvements, we pro-
ceed to a new method. The existing procedure is featured by making testing based 
on the set of correlation coefficients between observable variables, while the new 
method first estimates another set of correlation coefficients between observable 
variables and latent variables, and then makes testing based on both the sets. Spe-
cifically, we propose the following two suggestions:

(d)	 Equations (11) and (12) in Xu and Pearl (1987) were derived from Eq. (11) and are 
rewritten below: 

 Constructing star-causality can be made by learning σiw , ∀i and σww > 0 (or simply 
setting σww = 1) by the following constrained optimisation 

 which may have different implementations, e.g., by the Lagrange method. Also, 
sparse learning is added via the term 

 which prefers to push σiw towards zero in order to reduce a false or unreliable rela-
tion, where ρ is a coefficient that controls the strength. R(iw) has no action if we sim-
ply set ρ = 0 while a large action when ρ > 0 gets a large value. After learning, we 
test whether this star-causality is justified via testing T (ijw)

e = 0, ∀i �= j or with help of 
some sum 

∑
T

(ijw)
e  as a statistics.

(e)	 Once a star-causality is made, the latent node can be treated in a way similar to 
observable nodes, such that a new star-causality can be constructed from a com-

(12)
T

(ijw)
e = 0, i �= j, and B(iw)

e > 0, ∀i

where T
(ijw)
e = σij −

σiwσjw

σww
, and B(iw)

e = σii −
σ 2
iw

σww
.

(13)max
∑
i

[B(iw)
e − ρR(iw)], s.t. T

(ijw)
e = 0, ∀i �= j,

(14)R(iw) =
∑
i

|σiw|,
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bination of observable nodes and learned latent nodes. Hence, constructing tree-
decomposable causality can be made from star-causality in at least two manners. 
First, a tree-decomposable structure can be grown up from a star-causality by grad-
ually learning and testing newly added observable nodes and latent nodes. Second, 
constructing a number of star-causality structures in parallel, and then combining 
them to form a tree-decomposable structure with help of some composition of the 
above learning and testing.

(f )	 The above studies may be further extended to consider non-Gaussian variables in 
a two-stage approach. At the first stage, the topology of the star-causality and even 
generally tree-decomposable causality can be obtained from the correlation coef-
ficients. At the second stage, the conditional probabilities and the marginal prob-
abilities of each latent node can be estimated from Eq. (9) in a way similar to that 
in Xu (1986) and Xu and Pearl (1987). Specifically, each link can be still a linear 
equation and the conditional distribution p(xi|w) or p(xi|wk) is still Gaussian, while 
each inner node w or wk can even come from a non-Gaussian distribution. More-
over, we may also obtain constraint equations of higher order statistics from Eq. 
(11). Third, beyond causality between variables, we further proceed to considering 
causality between sets or blocks of variables. Lumping latent factors {Wk} into one 
vector factor W, the factor analysis model in Fig. 1d may be turned into a block 
star-decomposable structure still in the format of Fig. 1a, with w in Eq. (10) simply 
replaced by W = [W1, . . . ,Wk ]

T. In the sequel, we address further details.
(g)	 In a way similar to that adopted in Xu (1986) and Xu and Pearl (1987), we may 

obtain a necessary and sufficient condition for such a star-decomposable based on 
Theorem  1 given in Fig.  2c. For the block star-decomposable problem in Fig.  2a, 
this is equivalent to that the solution �XW ,�WW ,D of the following matrix equa-
tion is unique: 

 where �XX = [σxixj ] is the covariance matrix of the vector X = [x1, . . . , xn]
T, 

�XW = [σxiwk
] is the covariance matrix between the vector X and the lumped latent 

vector W, and D = diag[d1, . . . , dn], dj > 0, ∀j is a diagonal matrix. Getting such a 
unique solution is generally difficult, but possible when �XW ,�WW  have some par-
ticular structures. A typical example is �WW = diag[σw1w1 , . . . σwmwm ], which equiva-
lently leads to getting the necessary and sufficient condition for identifying the factor 
analysis model X = AW + µ+ ε with a diagonal covariance matrix of ε, e.g., Theo-
rem  4.1 in Anderson and Rubin (1956). Additionally, from the same motivation as 
getting Eq. (12) we can get 

(15)�XX −�XW�−1
WW�T

XW = D,

(16)

T
(ijw)
e = σxixj −

∑
k

σxiwk
σxjwk

σwkwk

,

B(iw)
e = σxixi −

∑
k

σ 2
xiwk

σwkwk

.



Page 7 of 8Xu ﻿Appl Inform  (2017) 4:17 

 Then, constructing block star-causality can be made by learning σxiwk
,∀i, k and 

σwiwi > 0, ∀i (or simply setting each σwiwi = 1) again by the constrained optimisation 
Eq. (13) with R(iw) =

∑
i |σiwk

| and the subsequent testing.
(h)	 Similar to what addressed in the above e and d, constructing tree-decomposable 

causality can be made from star-causality. Moreover, a tree decomposable struc-
ture Fig. 2a can be turned into not only a problem of star-decomposable causality 
in Fig. 1a by lumping latent factors {Wk} into one vector factor but also a problem 
of triplet star-decomposable causality in blocks as illustrated in Fig. 2b. Then, we 
get �XW  in a block structure, which increases the chance that Eq. (15) becomes 
uniquely solved. Considering variables of W in some structure, we may also extend 
this line to study a linear causal structure (Zhang et al. 2017; Shimizu et al. 2011) 
with both latent variables and loading variables in structures. Also, discovering cau-
sality may be further made within each subsets of variables. In other words, we may 
discovery causality on multiple levels of a hierarchy in a top-down manner, or even 
trading off the top-down manner with the bottom-up manner addressed in the first 
two perspectives.

Fig. 2  Star-causality and factor analysis: new perspectives. a Lumping factors into a vector W = [W1, . . . ,W4]

. b Triplet star-decomposable in blocks. c Block decomposition of covariance matrix [see pp 51–53 in Gigi 
(1977)].
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Concluding remarks
Considers minimising the TETRAD differences by T (ijkl)

e  subject to the constraints by 
Eq. (5) may motivate a new road for learning a causal model from samples to approxi-
mate tree decomposable causality. Instead of making tests based on the set of correlation 
coefficients between observable variables, as typically made in the existing procedure, 
we first perform the optimisation by Eq. (13) to estimate another set of correlation coef-
ficients between observable variables and latent variables, and then make tests based 
on both the sets. We may further proceed along this road to make block star-causality 
analysis on factor analysis and block tree decomposable analysis on linear causal model.
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