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Arabidopsis and rice showed a distinct 
pattern in ZIPs genes expression profile 
in response to Cd stress
Xin Zheng1, Liang Chen1 and Xiaofang Li1,2* 

Abstract 

Background: Plant ZIP genes represent an important transporter family involved in metal transport. Evidence has 
implied that some ZIPs may contribute to plant Cd uptake, but a genome-wide examination of ZIPs’ role in Cd toler-
ance and uptake has rarely been reported. In this study, a genome-wide bioinformatic screening of candidate ZIP 
genes in Arabidopsis and rice was performed, followed by a systematic determination of their expression profile in 
response to Cd stress. Typical up-regulated ZIPs genes were then expressed in yeast cells to examine their effect on 
hosts’ Cd uptake.

Results: A total of 27 ZIP genes in Arabidopsis and rice were screened out based on sequence similarity. In Arabidop-
sis, Cd exposure strongly impacted the expression of most ZIPs, among which AtIRT1, AtIRT2, AtIRT4 AtZIP9, AtZIP10 
and AtZIP12 were sharply up-regulated and AtIRT3, AtIRT5 were significantly down-regulated in root. In rice, all tested 
genes in shoot except for OsIRT1 and OsIRT12 were sharply up-regulated, while OsIRT1 and OsZIP1 in root were sig-
nificantly down-regulated. Interestingly, some genes like AtIRT3, AtZIP5, AtZIP12, OsIRT1 and OsZIP1 showed converse 
expression regulation when subject to the tested Cd stress. When expressed in yeast cells, three ZIPs, AtIRT1, OsZIP1 
and OsZIP3, caused a substantial increase in Cd sensitivity and Cd accumulation of the host cells.

Conclusions: In conclusion, this study revealed a distinct pattern in ZIPs family genes expression between Arabidop-
sis and rice in response to Cd stress. Arabidopsis mainly up-regulated root ZIPs genes, while rice mainly up-regulated 
shoot ZIPs genes. Three genes, AtIRT1, OsZIP1 and OsZIP3, conferred an increased Cd accumulation and sensitivity to 
Cd stress when expressed in yeast cells, further implying their roles in Cd uptake in plants.
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Background
The zinc(Zn)-regulated/iron(Fe)-regulated transporter-
like family proteins (ZIPs) are membrane-located pro-
teins for cations transport (Eng et  al. 1998; Guerinot 
2000). They have been found to exist broadly in prokary-
otic cells, fungi, plants and mammalians. In plants, ZIPs 
have been identified in both dicots and monocots, such 
as Arabidopsis (Grotz et  al. 1998; Milner et  al. 2013), 

rice (Chen et al. 2008), maize (Li et al. 2013), medicago 
(Lopez-Millan et al. 2004; Stephens et al. 2011) and barely 
(Tiong et al. 2015). Grotz et al. identified five ZIP genes 
(IRT1, ZIP1-4) in Arabidopsis (Grotz et  al. 1998), and 
later up to 11 ZIP genes from Arabidopsis were detected 
bioinformatically (Guerinot 2000). Roles of ZIP1-12 
from Arabidopsis in Zn transport were explored experi-
mentally (Milner et  al. 2013). More recently, 18 ZIPs 
from Arabidopsis and 16 ZIPs from rice were annotated 
(Ivanov and Bauer 2017).

In Arabidopsis and rice, only a small number of ZIPs 
have been examined for biological functions in plant till 
now. Arabidopsis IRT1 is a well-studied ZIP gene first 
identified as a crucial transporter for plant Fe uptake 
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(Varotto et  al. 2002; Vert et  al. 2002). Arabidopsis IRT1 
can be induced by iron deficiency (Korshunova et  al. 
1999; Connolly et al. 2002), and may play a role in Mn/
Zn transport as well (Korshunova et al. 1999; Rogers et al. 
2000; Connolly et  al. 2002). Biological functions in Zn/
Fe transport of AtIRT2 (Vert et al. 2001, 2009), AtZIP1/2 
(Grotz et al. 1998; Wintz et al. 2003; Milner et al. 2013), 
OsIRT1 (Nakanishi et  al. 2006; Lee and An 2009; Ishi-
maru et  al. 2006; Bughio et  al. 2002) and OsZIP4/5/8 
(Ishimaru et al. 2005; Chen et al. 2008; Lee et al. 2010a, 
b; Yang et al. 2009) have also been examined in the past 
decade.

A few studies have also implied that ZIPs may be 
involved in Cd transport. Yeast cells expressing AtIRT1 
showed increased Cd sensitivity (Rogers et al. 2000; Vert 
et al. 2001), and IRT1-dependent Fe/Mn/Zn uptake was 
inhibited by excess Cd (Eide et al. 1996; Korshunova et al. 
1999). The Arabidopsis IRT1 knock-out mutant irt1-1 
exhibited reduced Cd sensitivity and Cd accumulation 
(Vert et al. 2002; Fan et al. 2014), while overexpression of 
AtIRT1 increased Cd sensitivity in Arabidopsis (Connolly 
et  al. 2002). AtIRT2, phylogenetically similar to AtIRT1, 
increased Cd uptake when overexpressed in Arabidop-
sis (Vert et  al. 2009), though the yeast cells expressing 
AtIRT2 exhibited no altered Cd sensitivity (Vert et  al. 
2001). In rice, expression of OsIRT1 and OsIRT2 made 
the cells more sensitive to Cd and increased Cd accumu-
lation (Nakanishi et  al. 2006; Lee and An 2009). None-
theless, we still know little about the roles of most of the 
ZIPs genes in Cd stress response in Arabidopsis and rice.

In this study, genome-wide ZIPs identification in 
Arabidopsis and rice was performed with rigorous evo-
lutional analysis. A comparative examination of genome-
wide expression profile of ZIPs in Arabidopsis and rice 
in response to Cd stress were carried out. Their role in 
Cd uptake of typical ZIPs responding to Cd stress was 
further tested by expressing them in yeast. As expected, 
most identified ZIPs gene expression responded remark-
ably to Cd stress, while unexpectedly it was found that 
Arabidopsis and rice showed a distinct pattern in ZIPs 
genes expression profile. These results may help to elu-
cidate the plants’ genetic basis for Cd translocation via a 
ZIPs-dependent pathway.

Materials and methods
Bioinformatics
Genomic query of Arabidopsis and rice ZIP family genes 
was performed online using the PLAZA database (http://
bioin forma tics.psb.ugent .be/plaza /). The sequences of 
27 ZIP genes were retrieved manually from the TAIR 
database (http://www.arabi dopsi s.org/index .jsp) and the 
TIGR database (http://rice.plant biolo gy.msu.edu/index 
.shtml ).

TM regions and other domains of the identified ZIPs 
gens were predicted through the TMHMM Server 
(http://www.cbs.dtu.dk/servi ces/TMHMM -2.0/) and 
UniProtKB database (http://www.unipr ot.org/), following 
a routine procedure.

Experimental design
Arabidopsis thaliana ecotype Col-0 and Oryza sativa 
ssp. japonica (cv. Taichung65) were subject to Cd inhi-
bition test. For Arabidopsis, plants were germinated 
on Murashige and Skoog (MS; pH 5.7) solid medium 
containing 1% (w/v) sucrose. A total of 60 1-week-old 
seedlings were transferred to MS (control) or MS with 
300 μM  CdCl2 (Cd stress treatment) solid medium, and 
grown for 3  days in a controlled chamber environment 
under a 16/8 h photoperiod at 22 °C. For rice, seedlings 
were germinated hydroponically in distilled water. A total 
of six 10-day-old seedlings were then subject to a hydro-
ponic culture in distilled water (control) or 300 μM  CdCl2 
solution (Cd stress treatment) for 3  days under 16/8  h 
photoperiod at 25 °C. The Cd concentration used in this 
study was selected based on our pilot experiment.

After Cd stress treatment, the shoot and root tissues 
were harvested and frozen immediately in liquid nitro-
gen. Total RNA was isolated from the tissues using Tri-
zol reagent (Invitrogen, Corp., Carlsbad, CA, USA) and 
treated with DNase I (Promega, Madison, WI, USA). 
A total of 5  μg RNA was used for reverse transcription 
with PrimeScript™ RT reagent Kit (Takara Biotechnol-
ogy Co. Ltd., Dalian, China) following the manufacturer’s 
protocol.

Quantitative Real-Time PCR (qPCR) was performed 
in a Bio-Rad CFX Connect™ Real-Time PCR Detection 
System (Hercules, CA, USA) using a SYBR Green Premix 
Ex Taq (Takara). The PCR parameters were set as: 95  °C 
for 5 min, followed by 40 cycles of 95   °C for 10 s and 
60  °C for 30 s. Arabidopsis ACTIN gene (GenBank acces-
sion number NM_179953) and rice ACTIN gene (Gen-
Bank accession number XM_015774830) were used as 
internal references. Relative gene expression levels were 
detected using the  2−ΔΔCT method (Livak and Schmittgen 
2001). Gene expression level was normalized using shoot 
expression level of each gene in the controls as a cali-
brator. All primer sequences are listed in the Additional 
file 1: Table S1.

Cd sensitivity analysis was performed using drop assay. 
Full-length coding sequence (CDS) was obtained via PCR 
amplification (see primers in Additional file 1: Table S2), 
and ligated into pCEV-G1-Km vector under the PGK1 
promoter. The recombinant plasmids were then intro-
duced into Saccharomyces cerevisiae (strain AH109) 
using a lithium acetate-based method. Transformed cells 
were cultured in Yeast Extract Peptone Dextrose (YPD) 

http://bioinformatics.psb.ugent.be/plaza/
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media with 300  μg/mL geneticin (G418), harvested by 
centrifugation, and resuspended in water  (OD600 = 1.0), 
followed by a serial dilution. A total of 5 μL of each dilu-
tion was inoculated onto the YPD plates containing 
300  μg/mL G418 and 50  μM  CdCl2. Cells harbouring 
empty pCEV-G1-Km were used as a negative control. The 
plates were incubated at 28 °C for 5 days and the growth 
of the colonies was subsequently observed.

For the determination of Cd concentration in trans-
formed yeast cells, cells expressing ZIPs were harvested 
after 12  h with 50  μM  CdCl2 treatment. Cd was deter-
mined using a flame atomic absorption spectrometry 
(F-AAS) quantitative method. In Brief, cells in the liq-
uid culture were harvested by centrifugation at 4000×g 
and washed three times with 3% NaCl solution. The cells 
were then oven-dried, weighed and digested using 4 mL 
65%  HNO3. The digested mixture was dissolved in 3 mL 
 Millipore® water and subject to Cd determination using 
a Zeenit 700 P Atomic Absorption Spectrometer (Ana-
lytik Jena, Germany) equipped with a flame atomizer. 
CRM Laver (GWB10023, certified by IGGE) was used as 
a standard reference material for Cd determination.

Data analysis
Phylogenetic analysis was performed using MEGA 7 
(Kumar et al. 2016). The model of ZIP gene structure was 
constructed using Gene Structure Display Server (http://
gsds.cbi.pku.edu.cn/).

Statistical analysis was performed using SPSS 21.0 
(IBM, New York, USA). Unpaired two-tailed t test was 
performed for comparison between the controls and the 
Cd stress group.

Results and discussion
In this study, 15 candidate ZIP genes from Arabidopsis 
and 12 from rice were screened out based on sequence 
similarity. The number of ZIPs identified here was simi-
lar to previous studies (Ivanov and Bauer 2017; Guerinot 
2000). Evolutionary analysis further indicated that all of 
these ZIP genes contain 1–3 introns (Additional file  1: 
Figures  S1 and S2), whose protein precursors comprise 
eight TM regions (~ 20 aa length), one variable region 
with a conserved HG repeat and a typical signal peptide 
(SP) located on the N-terminal (Fig.  1). AtZIP13 and 
OsZIP13, which were previously annotated as putative 
Zn transporter (Ivanov and Bauer 2017), contain more 
TM domains. AtZTP29, AtIAR1, OsIAR1, OsZIP11 and 
OsZIP12 contain more than 10 exons. These ZIP-like 
genes seem to be phylogenetically distant from SpZRT1 
and AtIRT1 and were not tested in this study. Phyloge-
netic clustering of the tested 27 ZIPs identified three sub-
groups, which is similar to previous study (Ivanov and 

Bauer 2017), namely the seed plant-specific group, the 
mixed plant group, and the mixed group1/2 (Fig. 1).

Most previous studies on ZIPs’ biological functions 
focused on Zn/Fe/Mn/Cu uptake in yeast cells (Table 1), 
and expression profile of most ZIPs (except for AtIRT1/2 
and OsIRT1/2) in response to Cd remained unknown. 
In this study, the genome-wide expression profile of 
ZIP genes in response to Cd stress in Arabidopsis and 
rice were quantified using qPCR. To induce a substan-
tial stress response, 300  μM Cd in culture medium was 
applied based on our pilot experiment. The 3 days’ treat-
ment obviously inhibited seedling growth and root elon-
gation of both Arabidopsis and rice, and rice seedling 
height was also reduced (Fig.  2a). It was reported that 
even moderate Cd exposure can cause toxic symptoms 
and increased Cd accumulation in Arabidopsis (Fan et al. 
2014) and rice (Rafiq et al. 2014). The Cd level used here 
significantly reduced the root length and seedling dry 
weight (Additional file  1: Figure S3), and was thus sup-
posed to induce rapid expressional changes in the tested 
plants.

In Arabidopsis, Cd exposure impacted the expression of 
all ZIPs significantly. Strikingly, AtIRT1 was induced with 
a 525-fold increase in shoot and a 22-fold increase in root 
(Fig.  2b). As abovementioned, some evidence already 
pointed to the Cd transport role of AtIRT1 in yeast cells 
(Korshunova et  al. 1999; Rogers et  al. 2000; Vert et  al. 
2001; Eide et al. 1996) and in Arabidopsis (Fan et al. 2014; 
Connolly et  al. 2002; Vert et  al. 2002). Considering that 
AtIRT1 is mainly expressed in root (Vert et  al. 2002), 
AtIRT1 may function as a pump absorbing Cd from 
soil into root under sever Cd stress. A sharp increase of 
AtIRT1 expression in shoot was also observed, indicat-
ing its potential role in Cd transport in shoot. Indeed, 
overexpression of AtIRT1 in yeast increased the hosts’ 
sensitivity substantially (Fig. 3). Cd accumulation of yeast 
cells expressing AtIRT1 was also increased by 40.1%, 
compared with the control (Additional file 1: Figure S4). 
Taken together, the results here further confirmed the 
role of AtIRT1 in plant Cd uptake implied in previous 
studies (Rogers et al. 2000).

Like AtIRT1, AtIRT2 was induced with a 1452-fold 
increase in shoot and a fourfold increase in root (Fig. 2b). 
Previous studies showed that AtIRT2 overexpression 
increased Cd uptake of transgenic Arabidopsis, prob-
ably through the induction of AtIRT1 expression (Vert 
et  al. 2001, 2009). In this study, while both AtIRT2 and 
AtIRT1 were coincidently sharply induced when subject 
to Cd stress, overexpression of AtIRT2 caused no signifi-
cant changes in neither Cd sensitivity nor Cd accumula-
tion (Fig. 3 and Additional file 1: Figure S4). It is thus very 
likely that AtIRT2 worked indirectly and synergistically 
with AtIRT1 in response to the Cd stress.

http://gsds.cbi.pku.edu.cn/
http://gsds.cbi.pku.edu.cn/
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It was also highlighted that the expression of AtZIP9 
was significantly increased by ninefolds in shoot and 
57-folds in root after Cd stress (Fig.  2b). Till now no 
evidence showed any role of AtZIP9 in Cd uptake. The 
strong induction by Cd stress may imply its role in Cd 
transport, and its overexpression in yeast cells mod-
erately increased hosts’ sensitivity to Cd. Conversely, 
expression of AtZIP9 did not increase the Cd accumu-
lation of host cells (Additional file  1: Figure S4). As a 
hypothetic transmembrane ion transporter, AtZIP9 
might affect the growth of host cells by a Cd-independ-
ent way. In addition, AtIRT3, AtZIP4, AtZIP5, AtZIP11 
and AtZIP12 showed converse expression regulation 
when subject to the tested Cd stress, and AtZIP7 was 
reduced in shoot and was under the detection limit 
in root (Fig.  2b). Their potential roles in Cd transport 
merit a further investigation.

In rice, homologous ZIPs responded differently 
from Arabidopsis to the Cd stress. Unlike in Arabi-
dopsis, Cd stress increased the expression of most rice 
ZIPs in shoot but not root. These results imply that all 
these Cd-induced ZIPs involve in plant response to Cd. 
Except for OsIRT2, all ZIPs were significantly induced 
in rice shoot (Fig. 2b). Like AtIRT3, expression changes 
of OsIRT1 and OsZIP1 were converse in shoot and root 
(Fig. 2b). The positive role of OsIRT1 and OsZIP1 was 
demonstrated in the response of yeast and/or plant 
to Cd stress (Nakanishi et  al. 2006; Lee and An 2009; 
Ramesh et  al. 2003). Rice over-expressing OsIRT1 
showed reduced plant height and increased Cd accu-
mulation under 300  μM Cd stress (Lee and An 2009), 
and the growth of OsZIP1-expressing yeast cells was 
inhibited by 10 μM Cd stress. In this study, the expres-
sion regulation of OsIRT1 and OsZIP1 in response 
to Cd stress was contrary between root and shoot. 

Fig. 1 Phylogenetic relationship of identified ZIPs in Arabidopsis and rice. The Neighbor-Joining tree was generated using MEGA7 with 1000 
bootstrap replicates, and rooted to the AtNRAMP1. Topological structure was predicted using UniProtKB and TMHMM. Black boxes indicate TM 
regions. Pink boxes indicate extracellular regions. Blue boxes represent cytoplasmic regions. Gray boxes represent luminal regions. Yellow boxes 
represent SP region. Uncharacteristic SPs are represented by the white boxes
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Rice might have a feedback regulation of OsIRT1 and 
OsZIP1 in root to prevent increasing Cd uptake from 
soil.

OsZIP1-10 were subject to Cd sensitivity and Cd 
accumulation tests. The expression of OsZIP1 and 
OsZIP3 in yeast caused an increased Cd sensitivity and 
Cd accumulation (Fig.  3 and Additional file  1: Figure 
S4), suggesting their potential roles in Cd uptake. This 
result is different from those by Ramesh et  al. (2003), 
where yeast ZHY3 strains were used and different 
culture medium was applied. It was also noticed that 
OsZIP6 did not caused an obvious increasing in Cd 
sensitivity (Fig.  3). This is not consistence with previ-
ous report, in which Xenopus laevis oocytes was used 
to test the Cd sensitivity (Kavitha et al. 2015). Different 

host and micro-environment may cause the altered 
conformation and activity of tested proteins. Expres-
sion of OsZIP5-10 failed to alter Cd sensitivity and 
Cd accumulation of host cells obviously, implying that 
these ZIPs probably did not uptake Cd individually. 
Considering that AtIRT2 involves in indirect Cd uptake 
in Arabidopsis, these Cd-induced ZIPs may also play 
roles in Cd uptake or transport indirectly. Their poten-
tial roles under Cd stress need further investigation 
using transgenic plants.

Indeed, this study showed that many ZIPs were sig-
nificantly induced by Cd stress even the growth of 
seedling was inhibited obviously, and some of them 
increased hosts’ Cd sensitivity or Cd accumulation. 
These results will help to elucidate the genetic basis 

Fig. 2 Expression profiles of ZIP genes of Arabidopsis and rice in response to Cd stress. a 1-week-old and 10-day-old seedlings of Arabidopsis 
and rice were treated with 300 μM  CdCl2 for 3 days. Scale bars indicate 1 cm. b Changes in the expression of the 26 ZIP genes in response to Cd 
exposure Gene expression level was normalized using shoot expression level of each gene in the controls as the calibrator. (n = 3, Student t test, 
*indicates P < 0.05, **indicates P < 0.01)
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for Cd accumulation via a ZIP-dependent pathway in 
plants. Further analysis using transgenic plants will 
clarify the biological function of these ZIPs in plant Cd 
uptake and transport.

Conclusions
In conclusion, this study revealed a distinct pattern 
in ZIPs genes expression regulation in response to Cd 
stress between Arabidopsis and rice. Arabidopsis mainly 
up-regulated root ZIPs genes, while rice mainly up-
regulated shoot ZIPs genes. Interestingly, some genes 
like AtIRT3, AtZIP5, AtZIP12, OsIRT1 and OsZIP1 
showed contrary expression regulation when subject to 
the tested Cd stress. Three genes, AtIRT1, OsZIP1 and 
OsZIP3, conferred an increased sensitivity to Cd stress 
and more Cd accumulation when expressed in yeast 
cells, implying a role in direct Cd uptake in plants.

Additional file

Additional file 1: Table S1. The qPCR primers used in this study. 
Table S2. Primers used in plasmid construction. Figure S1. Genome 
locations of 27 ZIP genes in Arabidopsis (A) and rice (B). Information were 
acquired in the PLAZA database and plotted using Photoshop CS6. Figure 
S2. Evolutionary relationships of ZIP family genes and their structures. The 
Neighbor-Joining tree was produced using MEGA7 with 1,000 bootstrap 
replicates, and the gene structures was predicted using Gene Structure 
Display Server. Dark blue boxes indicate exons; black lines indicate introns; 
light blue boxes indicate untranslated regions. Figure S3. Effect of Cd 
stress on root length (A and B) and dry weight (C and D) of Arabidopsis 
and rice. (for root length, n=20; for dry weight, n=3. Student t test, * 
indicates P<0.05). Figure S4. Effect of ZIPs on Cd accumulation. Cells 
expressing ZIPs were incubated using liquid YPD medium plus 300 μg/
mL G418 and 50 μM Cd for 12 h, after which the Cd concentration of each 
strain was measured by an atomic absorption spectrometer method. Cells 
harboring empty pCEV-G1-Km (Vector) was used as a negative control. 
(n=3, student t test, * P < 0.05).
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Fig. 3 Drop assay for Cd sensitivity of yeast cells (S. cerevisiae AH109) 
expressing representative ZIPs tested in this study. The transformed 
cells expression ZIPs were subjected to a serial dilution (0–10−4) drop 
assay on YPD plates. 300 μg/mL G418 was added to maintain the 
vectors. Plates containing 50 μM  CdCl2 were incubated at 28 °C for 
5 days and growth state was subsequently observed. This experiment 
was performed three times
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