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Abstract 

The last 50 years have seen an impressive development of mathematical methods for the analysis and processing of 
digital images, mostly in the context of photography, biomedical imaging and various forms of engineering. The arts 
have been mostly overlooked in this process, apart from a few exceptional works in the last 10 years. With the rapid 
emergence of digitisation in the arts, however, the arts domain is becoming increasingly receptive to digital image 
processing methods and the importance of paying attention to this therefore increases. In this paper we discuss a 
range of mathematical methods for digital image restoration and digital visualisation for illuminated manuscripts. 
The latter provide an interesting opportunity for digital manipulation because they traditionally remain physically 
untouched. At the same time they also serve as an example for the possibilities mathematics and digital restoration 
offer as a generic and objective toolkit for the arts.
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Introduction
The digital processing, analysis and archiving of data-
bases and collections in the arts and humanities is 
becoming increasingly important. This is because of a 
myriad of possibilities that digitisation opens up that go 
well beyond the organisation and manipulation of the 
actual physical objects, allowing, for instance, the crea-
tion of digital databases that are searchable with respect 
to several parameters (keywords), the digital processing 
and analysis of objects that are non-destructive to the 
original object, and the application of automated algo-
rithms for sorting newly found objects into existing digi-
tal databases by classifying them into pre-defined groups 
in the database. These possibilities go hand-in-hand with 

ever-growing advances in data science that are develop-
ing mathematical methodology for analysing and pro-
cessing digital data. A large component of digital data in 
the arts and humanities is composed of digital images. 
Despite many developments of mathematical image anal-
ysis methods in applications like biomedicine, the physi-
cal sciences and various forms of engineering, the arts 
and humanities have been mostly overlooked as an appli-
cation in need of bespoke mathematical image analysis 
methods. Still, a few examples in this context exist and 
encompass works on forgery detection [1], the digital 
restoration of paintings with the Ghent Altarpiece [2–7] 
and Van Gogh’s Field with Irises [8–10] being prominent 
examples in these efforts, the digitally guided restoration 
of frescoes as done for the Mantegna frescoes [11, 12] 
and the Neidhart frescoes [13, 14], the algorithm-based 
analysis and classification of texture in paintings [15, 16], 
learned representations of artists’ styles and painting 
techniques [17, 18], and multi-modal image registration 
and colour analysis in paintings [19–23], just to name a 
few.
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In this work we discuss a range of mathematical meth-
ods for correcting and enhancing images of illuminated 
manuscripts. In particular, we consider automated and 
semi-automated models for digital image restoration 
based on partial differential equations, exemplar-based 
image inpainting and osmosis filtering, and their trans-
lation to the digital interpretation of illuminated manu-
scripts. Here, we refer to mathematical image processing 
as the task of digital image restoration (or reconstruc-
tion), that is the digital processing of a given image to 
correct for its visual imperfections. Generally, this is 
done with the main intention of producing a final result 
where imperfections have been corrected in a visually 
least distracting way. This is the case for several imaging 
tasks such as image denoising, deblurring and also image 
inpainting.

Medieval and Renaissance illuminated manuscripts 
present a particular challenge, but also an opportunity to 
transform current understanding of European visual cul-
ture between the 6th and 16th century. Illuminated man-
uscripts are the largest and best preserved resource for 
the study of European painting before 1500. Neverthe-
less, the images in some manuscripts have been affected 
by wear-and-tear, degradation over time, iconoclasm, 
censorship or updating. Unlike the conservation of other 
painted artefacts, the conservation of illuminated manu-
scripts preserved in institutional collections is non-inva-
sive, usually restricted to repairs of the binding and of 
torn parchment or paper, and rarely involves the consoli-
dation of flaking pigments. For the study of illuminated 
manuscripts, physical restoration and repairs are often 
disregarded. This minimal approach is due largely to the 
fact that when compared to wall or easel paintings, the 
images in illuminated manuscripts are relatively small 
and their pigment layers are few and very delicate. It is 
not possible to remove over-painting without damaging 
or completely removing the original painting beneath. 
The removal of even the smallest sample or the restora-
tion of even the smallest painted area would constitute 
a considerable change to the overall image. As a conse-
quence, pigment losses are often not filled in and over-
paintings added on top of the superficial layers can often 
not be removed to reveal the original images. Virtual res-
toration is thus the only way to recover damaged illumi-
nations, whether by infilling paint losses or by removing 
over-painted layers or indeed both. Bringing the images 
as close as possible to their original form would ensure 
both their accurate scholarly interpretation and their full 
appreciation by wider audiences. Damaged or inaccu-
rately restored illuminations can lead to the exclusion of 
seminal works of art from academic debates or to incom-
plete and misleading interpretations of the dating, origin 
and artists involved. Preserving the current state of the 

illuminations in line with conservation ethics, faithful 
digital restoration would serve as a reliable surrogate for 
multiple reconstructions, enabling research, teaching and 
wider appreciation for manuscripts.

The reliable processing of illuminated manuscripts 
requires a multi-disciplinary collaboration as the current 
work is based on. In what follows we discuss a range of 
new adaptive, semi-automated restoration methods that 
(a) reconstruct image-structures using partial differ-
ential equations [13, 14, 24–28], (b) mimic the human-
expert behaviour, using texture- and structure patches 
sampled from the intact part of the illuminated manu-
script at hand and integrating them in exemplar-based 
inpainting approaches [29, 30] in order to provide a digi-
tal restoration in agreement with the available informa-
tion and pleasant to the eye (c) exploit infrared imaging 
data, correlating the visible image content with its traces 
in the hidden layers of paint [31, 32], and (d) create new 
3D interpretations of illuminated manuscripts through a 
new 3D conversion pipeline [33]. The pre-sequel of this 
work is an article in the exhibition catalogue [32].

Organisation. In “Retrieving missing contents via 
image inpainting” section we propose a semi-supervised 
approach for the segmentation of damaged areas of col-
our accurate images (in the following referred to simply 
as RGB images) of illuminated manuscripts and for the 
retrieval of missing information via a two-step image 
inpainting model. In “Looking through the layers via 
osmosis filtering” section we consider the mathemati-
cal model of image osmosis to integrate super-painted 
visible image information on a manuscript with hidden 
infrared ones for looking through the layers of a restora-
tion process. Finally, in “Creating a 3D virtual scene from 
illuminated manuscripts” section we present a mathe-
matical pipeline to convert a 2D painting into a 3D scene 
by means of the construction of an appropriate depth 
map.

Retrieving missing contents via image inpainting
The problem of image inpainting can be described as 
the task of filling in damaged (or occluded) areas in an 
image f defined on a rectangular domain � by transfer-
ring the information available in the intact areas of the 
image to the damaged areas in the image. Over the last 30 
years a large variety of mathematical models solving the 
image inpainting problem have been proposed, see, e.g., 
[28, 34] for a review. In some of them, image informa-
tion is transferred into the damaged areas (the so-called 
inpainting domain, denoted by D in the following) by 
using local information only, i.e. by means of suitable dif-
fusion and transport processes which interpolate image 
structures in the immediate vicinity of the boundary of 
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D in the occluded region. Such techniques have been 
shown to be effective for the transfer of geometric image 
structures, even in the presence of large damaged areas 
[28]. However, because of their local nature, such meth-
ods do not make use of the entire information contained 
in the intact image regions. In particular, such methods 
do not take into account non-local image information 
in terms of patterns and textures nor image contents 
located far away of D. For this reason, non-local math-
ematical models exploiting self-similarities in the whole 
image have been proposed [29, 30, 35, 36]. Such models 
operate on image patches rather than single pixels. Small 
patches inside D are iteratively reconstructed by compar-
ison with patches outside D in a suitable distance. Miss-
ing patches are then reconstructed by copy and paste of a 
closest patch (or its centre pixel) from the intact part of 
the image. These models have been proven to be impres-
sively effective in a very large variety of applications and 
rendered computationally feasible in recent years with 
the well-known PatchMatch algorithm [37].

The first step of any inpainting algorithm is the decom-
position of the image domain in damaged and undam-
aged areas. This is an image segmentation problem, 
decomposing a given image into its constituting regions, 
cf. for instance [34]. Its solution may be rendered very 
hard in the presence of fuzzy and irregular region bound-
aries and small scale objects.

In the following we describe an algorithm which 
detects damaged areas in images with possibly large and 
non-homogeneous missing regions using few examples 
provided by the user. This is then used as a necessary ini-
tial step for the subsequent application of a two-stages 
inpainting procedure based on total variation inpaint-
ing [38] and exemplar-based image inpainting proposed 
in [36] for the reconstruction of image contents in the 
images of the illuminated manuscripts in Fig. 1. Our pro-
posed segmentation is semi-supervised since user input 
is required for training, while the inpainting procedure is 
fully automated.

Description of the dataset
Our dataset is composed of two manuscripts made by 
William de Brailes in 1230-1250 and now part of the 
collection of the Fitzwilliam Museum in Cambridge 
(UK), see Fig. 1: Last Judgement in Fig. 1a and Christ in 
Majesty with King David playing the harp in Fig.  1b, of 
dimension 196x123mm and 213x135mm, respectively. 
The images are acquired with a Leaf Valeo 22 back uti-
lising a Mamyia RB67 body and the resulting RAW files 
are processed using Leafs own proprietary software, 
where distortions and aberrations are corrected. Also, 
the colour accuracy is provided by using a customized 

Kodak colour separation guide with grey-scale (Q13 
equivalent) and exported in Adobe 98 colour space. The 
final output results in very large .tif images (about 
4008× 5344 pixels and 47 MB each).

A semi‑supervised algorithm for the detection 
of the damaged areas
For identifying the damaged areas in the image (mainly 
missing gold leaves) we propose in the following a two-
step semi-supervised algorithm. Here, a classical binary 
segmentation model is used first for the extraction of a 
small training region as described in “Chan-Vese seg-
mentation” section which subsequently serves as an 
input for a labelling algorithm which segments the whole 
inpainting domain based on appropriate intensity-based 
image features in “Image descriptors: feature extraction” 
and “A clustering algorithm with training” sections.

Chan‑Vese segmentation
In binary image segmentation one seeks to partition an 
image in two disjoint regions, each characterised by dis-
tinctive features. Typically, RGB intensity values are used 
to describe image contents and mathematical image 
segmentation methods often compute the required 
segmented image as the minimiser of an appropriate 
functional.

Let f be the given image. We seek a binary image u so 
that

where C is a closed curve. In this work, we consider the 
Chan-Vese segmentation functional for binary image 
segmentation [39], that is

The functional F  is minimised for constants c1 and 
c2 and the contour C, i.e. the optimal u of the form (1). 
Here, µ, ν, �1, �2 > 0 are positive parameters and 
int(C), ext(C) denote the inner and the outer part of C, 
respectively. In (2) the first and second term penalise the 
length of C and the area of the region inside C, respec-
tively, giving control on the smoothness of C and the 
size of the regions. The two other terms penalise the dis-
crepancy between the fitting of the piecewise constant u 
in (1) and the given image f in the interior and exterior 

(1)u(x) =

{

c1, if x is inside C ,
c2, if x is outside C ,

(2)

F(c1, c2,C) :=µ Length(C)+ ν Area(int(C))

+ �1

∑

x∈int(C)

|f (x)− c1|
2

+ �2

∑

x∈ext(C)

|f (x)− c2|
2.
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of C, respectively. By computing a minimum of (2) one 
retrieves a binary approximation u of f.

Despite being very popular and widely used in applica-
tions, the Chan-Vese model and its extensions present 
intrinsic limitations. Firstly, the segmentation result is 
strongly dependent on the initialisation: in order to get 
a good result, the initial condition needs to be chosen 
within (or sufficiently close to) the domain one aims to 
segment. Secondly, due to the modelling assumption (1), 
the Chan-Vese model works well for images whose inten-
sity is locally homogeneous. If this is not the case, the 
contour curve C may evolve along image information dif-
ferent from the one we want to detect. Images with sig-
nificant presence of texture, for instance, can exhibit such 
problems. Furthermore, the model is very sensitive to the 
length and area parameters µ and ν , which may make the 
segmentation of very small objects in the image difficult.

For our application, we make use of the Chan-Vese 
model1 to segment a sub-region D1 of D that will serve 
as a training set for the classification described in the fol-
lowing two subsections. To do that, we ask the user (typi-
cally, an expert in the field) simply to click on a few pixels 
inside the inpainting domain D to identity a candidate 
initial condition for the segmentation model (1), which is 

then run to segment the subregion D1 . In Fig. 2 we show 
the results of this approach with a superimposed mask of 
the computed region D1 for some details cropped from 
the original images.

Because of the intrinsic limitations of the Chan-Vese 
approach, we observe that the segmentation result is not 
satisfactory (see, for instance, the example in the first row 
of Fig.  2) since it generally detects with high precision 
only the largest uniform region around the user selection. 
To detect the whole inpainting domain D in this man-
ner, the user should in principle give many initialisation 
points, which may be very demanding in the presence of 
several disconnected and possibly tiny inpainting regions.

For this reason, we proceed differently and make use of 
a feature-based approach to use the area D1 as a training 
region for a clustering algorithm running over the whole 
set of image pixels. This procedure is described in the 
next two sections.

Image descriptors: feature extraction
In order to describe the different regions in the image 
in a distinctive way, we consider intensity-type fea-
tures. Namely, for every pixel x in the image we apply 
non-linear colour transformations to compute the HSV 
(Hue, Saturation, Value), the geometric mean chroma-
ticity GMCR [40], the CIELAB and the CMYK (Cyan, 
Magenta, Yellow, Key) values (see [41] for more details). 

a b

Fig. 1  Illuminated manuscripts. These two illuminated manuscripts show large and non-homogeneous damaged areas, mainly removal of gold 
leaves, see “Retrieving missing contents via image inpainting” section for more details

1  For our computation we used the inbuilt MATLAB Chan-Vese segmenta-
tion code.
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Once this is done, we append all these values and store 
them in a feature vector ψ of the form

For our purpose the feature vector (3), essentially based 
on RGB intensities, rendered precise segmentations. For 
more general segmentation purposes, one could add tex-
ture-based features and, if available, multi-spectral meas-
urements such as infrared IR or ultraviolet UV images.

A clustering algorithm with training
Once the feature vectors are built for every pixel in 
the image, we use the training region D1 detected as 
described in “Chan-Vese segmentation” section as a dic-
tionary to drive the segmentation procedure extended to 
the whole image domain. We proceed as follows. First, 
we run a clustering algorithm over the whole image 
domain comparing the features defined in (3) in order to 
partition the image in a fixed number of K clusters. To do 

(3)
ψ(x) = [HSV(x), GMCR,CIELAB(x), CMYK(x)].

that, we use the well-known k-means algorithm.2 After 
this preliminary step, we check which cluster has been 
assigned to the training region D1 and simply identify in 
the clustered image which pixels lie in the same cluster. 
By construction, this corresponds to finding the regions 
in the image ‘best-fitting’ the training region in terms of 
the features defined in “Image descriptors: feature extrac-
tion” section, which is our objective. After a refinement 
step based on erosion/dilation of extracted regions, so as 
to remove or fill-in possibly misclassified pixels, we can 
finally extract the whole area to inpaint D. We report the 
results corresponding to Fig. 2 in Fig 3a, b.

Inpainting models
Once an accurate segmentation of the damaged areas 
is provided, the task becomes the actual restoration of 
the image contents in D by means of the available infor-
mation in the region � \ D . A standard mathematical 
approach solving such an inpainting problem consists in 
minimising an appropriate function E defined over the 
image domain � , i.e. in

(4)finding u s.t. u ∈ argminv E(v).

a b c

d e f
Fig. 2  First step in the detection of the damaged regions. This detection is based on the Chan-Vese segmentation described in “Chan-Vese 
segmentation” section. The user clicks on the damaged region to select training pixels (in blue) which serve as initialisation of the Chan-Vese model 
(1). The segmentation algorithm is run and the training region D1 inside the damaged area is segmented. The result is superimposed on the given 
image and coloured in yellow for better visualisation

2  The popular k-means algorithm is classically used to partition a set of N 
observations (in our case, the image pixels) into K clusters such that each 
observation is grouped to the cluster having the closest mean value. Each 
resulting cluster is labelled in order to distinguish it from the others.
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A standard choice for E in the case of local inpainting 
models is the functional

where f denotes the given image to restore, � · �2 is the 
Euclidean norm, � and appropriately chosen positive 
parameter and χ�\D denotes the characteristic function 
of the non-occluded image areas, so that for every pixel 
x ∈ �:

The second term in (5) is as a distance function between 
the given image f and the sought after restored image u in 
the intact part of the image. The multiplication of f − u 
by the characteristic function χ implies that this term is 
simply zero for the points in D, since there is no informa-
tion available, while f − u for all the points in � \ D has 
to be as small as possible. The term R typically encodes 
local information (such as gradient magnitude) which 
is the responsible of the transfer of information inside 
D by means of possibly non-linear models [28, 34]. The 
transfer process is balanced with the trust in the data by 
the positive parameter � . A classical choice of a gradient-
based inpainting model consists in choosing

i.e. the Total Variation of v [38]. As mentioned above such 
an image inpainting technique is not designed to transfer 
texture information. Furthermore, it fails in the inpaint-
ing of large missing areas. For our purposes we use (6) as 
an initial ‘good’ guess with which we initialise a different 

(5)E(v) = R(v)+ ��χ�\D(f − v)�22,

χ�\D(x) =

{

1 if x ∈ � \ D
0 if x ∈ D.

(6)R(v) = �∇v�1 =
∑

x∈�

|∇v(x)|

approach based on a non-local inpainting procedure as 
described in the following section.

Exemplar‑based inpainting
We describe here the non-local patch-based inpainting 
procedure studied in [30, 36] and carefully described in 
[42] from an implementation point of view.3 In the fol-
lowing, we define for any point x ∈ � the patch neigh-
bourhood Nx as the set of points in � in a neighbourhood 
of x. Assuming that the patch neighbourhood has cardi-
nality n, by patch around x we denote the 3n-dimensional 
vector Px = (u(x1),u(x2), . . . ,u(xn)) where the points 
xi, i = 1, . . . n belong to patch neighbourhood Nx . In 
order to measure ‘distance’ between patches, a suitable 
patch measure d can be defined, so that d(Px,Py) stands 
for the patch measure between the patches around the 
two points x and y. We define then the Nearest Neigh-
bour (NN) of Px as the patch Py around some point y 
minimising d.

For an inpainting application the task consists then in 
finding for each point x in the inpainting domain D the 
best-matching patch Py outside D. Assuming that each 
NN patch can be characterised in terms of a shift vector 
φ defined for every point in � (i.e. assuming there exists 
a rigid transformation φ which shifts any patch to its 
NN), the problem can be formulated as the minimisation 
problem

Heuristically, every patch in the solution of the problem 
above is constructed in such a way that in the damaged 
region D the patch has a correspondence (in the sense 

(7)min E(u,φ) =
∑

x∈D

d2
(

Px,Px+φ(x)

)

.

a b
Fig. 3  Second step in the detection of the damaged region. The k-means clustering algorithm is run on the whole image selection in terms of 
intensity-based image features, cf. “Image descriptors: feature extraction” and “A clustering algorithm with training” sections. The outputs of the 
binary segmentation algorithm shown in Fig. 2 are used as guidance for the clustering algorithm

3  The code is freely available at Image Processing On-Line (IPOL) Journal: 
https​://doi.org/10.5201/ipol.2017.189.

https://doi.org/10.5201/ipol.2017.189
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of the measure d) with its NN patch in the intact region 
� \ D . Following [42], we use the following distance:

From an algorithmic point of view, solving the model 
involves two steps: the first consists in computing 
(approximately) the NN patch for each point in D, so as 
to provide a complete representation of the shift map φ . 
This can be computationally expensive for large images. 
In order to solve this efficiently, a PatchMatch [37] strat-
egy can be applied. Afterwards a proper image recon-
struction step is performed, where for every point in D 
the actual corresponding patch is computed. We refer the 
reader to [42] for full algorithmic details.

A crucial ingredient for a good performance of the 
exemplar-based inpainting algorithm [30, 36] is its ini-
tialisation. In particular, once the inpainting domain is 
known, a pre-processing step where a local inpainting 
model, such as the TV inpainting model (5) with (6), can 
be run to provide a rough, but reliable initialisation of the 
algorithm.4

We report the results of the combined procedure in 
Fig. 4 and the overall work-flow of the algorithm in the 
diagram in Fig. 5.

Model parameters
For the segmentation of the training region D1 within 
the inpainting domain D we use the activecontour 
MATLAB function by which the Chan-Vese algorithm 
can be called. For this we fixed the maximum number of 
iterations to maxiter= 1000 and use the default value 
as a tolerance on the relative error between iterates as 
a stopping criterion. We use the default values for the 
parameters µ and ν in (2). The subsequent clustering 
phase was performed by means of the standard MATLAB 
kmeans function after specifying a total of K = 35 labels 
to assign. The use of such a large value for K turned out 
to be crucial for an accurate discrimination. The auto-
matic choice of the value of K for this type of applications 
is a matter of future research. The clustering was itera-
tively repeated 5 times to improve accuracy. Once the 
detection of the inpainting domain is completed, in order 
to provide a good initialisation to the exemplar-based 
model we use the TV inpainting model (4) with (6) with 
the value � = 1000 and a maximum number of iterations 
equal to maxiter2= 1000 with a stopping criterion on 
the relative error between iterates depending on a default 

(8)d2
(

Px,Px+φ(x)

)

=
∑

y∈Nx

(

u(y)− u(y+ φ(x))
)2
.

tolerance. Finally, we followed [42] for the implementa-
tion of the exemplar-based inpainting model: for this we 
specified 12 propagation of iterations and tested different 
sizes for the patches. In order to avoid memory shortage, 
we restricted ourselves to patches of size 5× 5 , 7× 7 and 
9× 9.

The numerical tests were performed on a standard 
MacBook Pro (Retina, 13-inch, Early 2015), 2.9 GHz Intel 
Core i5, 8 GB 1867 MHz DDR3 using MATLAB 2016b.

Discussion and outlook
We proposed in this section a combined algorithm to 
retrieve image contents from two images of illuminated 
manuscripts shown in Fig.  1 where very large regions 
have been damaged. At first, our algorithm computes an 
accurate segmentation of the inpainting domain which 
is performed by means of a semi-supervised method 
exploiting distinctive features in the image. Then, taking 
the segmentation result as an input, the procedure is fol-
lowed by an exemplar-based inpainting strategy (upon 
suitable initialisation) by which the damaged regions are 
filled.

The results reported in Figs. 4 and 6 confirm the effec-
tiveness of the combined method proposed. In particu-
lar, when looking at the difference between standard local 
(TV) image inpainting methods and the exemplar-based 
one we immediately appreciate the higher reconstruction 
quality in the damaged regions, especially in terms of tex-
ture information. The method has been validated on sev-
eral image details extracted from the entire images, and 
has been shown effective also for very large image por-
tions with highly damaged regions.

In term of computational times, the segmentations 
in Fig.  3 are obtained in approximatively 15 min. The 
inpainting results in Fig.  4 are obtained in about 3 min 
for patches of size 5× 5 and about 7 min for patches 
of size 7× 7 . Overall the whole task of segmenting and 
inpainting the occluded regions takes approximatively 20 
min per image of size 690× 690 . However, these results 
highly depend on the size of the image, the size of the 
inpainting domain and the size of the patches chosen.

Future work could address the use of different features 
for the segmentation of the inpainting domain with simi-
lar methodologies, such as for instance texture features 
[43]. Furthermore, at an inpainting level, we observe that 
the reconstruction of fine details in very large damaged 
regions (such as the strings of the harp in Fig. 6) is very 
challenging due to the lack of correspondence with simi-
lar training patches in the undamaged region. For solving 
this problem a combination of exemplar-based and local 
structure-preserving inpainting models could be used.

4  The code is freely available at Image Processing On-Line (IPOL) Journal: 
https​://doi.org/10.5201/ipol.2012.g-tvi

https://doi.org/10.5201/ipol.2012.g-tvi
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Looking through the layers via osmosis filtering
In the previous section the image content in the dam-
aged areas of the illuminations is completely lost and it 
was estimated only from the information available in the 

rest of the picture. This, however, is not the only kind of 
degradation encountered in the process of restoration of 
illuminated manuscripts. In some cases parts of an illu-
mination are painted over. In this section we discuss as 

a b c
Fig. 4  Inpainting of damaged areas in Fig. 2. Once the inpainting domain is detected, the TV inpainting model (5, 6) is used to provide a good 
initialisation for the exemplar-based model (7). The final result shows the desired transfer of both geometric and texture information in the 
damaged areas. Patch size: 5× 5 (upper row), 7× 7 (bottom row)

Fig. 5  Workflow of the combined algorithm for inpainting. The diagram describes the different steps of the combined algorithm for inpainting 
domain detection followed by the restoration of the damaged areas via mathematical inpainting. Boxes requiring user inputs are coloured orange, 
whereas the ones where automatic steps are performed are coloured blue. The final objective is coloured green.
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such an example the illuminations from the primer of 
Claude de France which illustrate the story of Adam and 
Eve in the garden of Eden. The two figures were originally 
depicted naked, as described in the book of Genesis but 
a later owner wanted them clothed with additional veils, 
leaves or beast skin added in the illumination, cf. Fig. 7. 
The use of infrared imaging as shown for instance in 
Fig. 8 allows to look through these added layers, unveiling 
hidden structural information underneath the painted 
layer. All the input colour images and their reflectogram 
are freely available on the Fitzwilliam museum website5 
along with some more information about the manuscript, 
in particular the pigments used.

In this section we aim to fuse the details appearing in 
the near infrared reflectogram (IR) with the colours of 
the visible colour image, in particular the skin tones, to 
create a digital version of the illuminations as they could 
have looked before overpainting. Since we only have 
access to one near infrared reflectogram and we cannot 
chose the wavelength and have no information on the 
pigments used, we find ourselves in one of the following 
three situations: (i) the added cloth is transparent in the 
IR; (ii) the added cloth appears in the IR but without tex-
ture; (iii) the added cloth and its texture appear in the IR. 
The fact that the original pigments can also be IR trans-
parent poses an additional challenge. For these different 
situations we use different methods all based on the use 
of the linear image osmosis model studied by Weickert 
et al. in [31].

In the following we first present the original parabolic 
linear osmosis equation studied in [31] and our slightly 
modified local elliptic formulation of osmosis [44]. Then 
we recall some of its common applications in image 
processing and finally apply our methods to digitally 

unveiling Adam and Eve in Claude De France’s Primer in 
each of the different situations (i)–(iii) described above 
(cf. “IR transparent original pigments”, “Over-paint with 
IR transparent texture” and “Non IR transparent over-
paint texture: adding an inpainting step” sections).

The Osmosis model
The osmosis model has been introduced in [31] as a 
non-symmetric generalization of diffusion filters and as 
a new tool for image processing problems such as seam-
less cloning and shadow removal. The original parabolic 
equation for this model is

Here u is the solution we are looking for and d is a given 
vector field defined on the image domain � with values in 
R
2 that we call the drift-field. Typically d encodes infor-

mation from the gradient of the desired solution u, thus it 
serves as a guide to the diffusion process. For a given pos-
itive image I, when d = dI := ∇I/I , it turns out that I is 
a trivial steady state (i.e. a solution for ut = 0 ) of Eq. (9). 
Under this choice, the vector field dI is called the canoni-
cal drift-field of I. Note that such drift-field is invariant to 
multiplicative changes of I.

Equation (9) is typically solved on the whole image 
domain under appropriate homogeneous Neumann 
boundary conditions. When applied to Cultural Herit-
age imaging this model has been successfully rendered 
computationally efficient by means of standard dimen-
sional splitting techniques and applied, for instance, 
to Thermal-Quasi Reflectography (TQR) imaging and 
other similar applications in [45, 46].

In the following, we look directly for the steady state 
of the previous equation, i.e. the elliptic equation,

(9)ut = �u− div(du).

(10)�u = div(du)

a b c
Fig. 6  Inpainting of large image region with large damaged areas. Inpainting results of the combined model for a large detail ( 1572× 1681 pixels) 
with large damaged areas. Patch size: 9× 9.

5  http://www.fitzm​useum​.cam.ac.uk/illum​inate​d/manus​cript​/disco​ver.

http://www.fitzmuseum.cam.ac.uk/illuminated/manuscript/discover
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and solve it on a small sub-domain D of the input image 
domain � with mixed boundary conditions as in [44]. 
Restricting ourselves to a small domain has two main 
advantages: first, most of the image is supposed to be 
left untouched; secondly, the computational cost is much 
smaller. Moreover, having mixed boundary conditions 
allows for more flexibility in adapting (10) to the prob-
lem at hand. In particular, Dirichlet boundary conditions 
enforce the colour values on ∂D and a smooth transition 
of colour values across ∂D , which is appropriate if the 
image does not feature discontinuities (i.e. image edges) 
at the boundary of D. Neumann boundary conditions, on 
the other hand, prevent any diffusion across the bound-
ary, ensuring clear colour discontinuities which is useful 
when the border of the mask is along an edge between 
two different colours appearing the same in the IR.

Common applications of the model
The osmosis equation has been proposed for several 
tasks [31], the most common being shadow removal and 
seamless cloning as an alternative to Poisson editing [47]. 
All these tasks share the idea of manipulating the canoni-
cal drift-field dI of one or more input images.

Shadow removal
The problem of shadow removal involves only one image 
and it is, as its name suggests, a process that takes as 
input an image with constant shadowed areas and gives 
as a result a shadow-free result. A constant shadow can 

be thought of as a multiplicative change in the domain 
of the shadowed region of the image. Since the canonical 
drift vector field is invariant to multiplicative change, the 
presence of the shadow is only encoded in the drift-field 
on the edge of the shadow. In an ideal case with a sharp 
shadow boundary, setting the drift field to zero there cre-
ates pure diffusion and results in a perfectly shadowless 
image [31].

Seamless cloning
Seamless cloning involves two input images that we will 
call the background image g and the foreground image 
f. This problem can be described as an improved copy-
paste process where some information of f is copied in 
a sub-domain D of g. That is, one directly replaces in D 
the colour information of g by the colour information of 
f. This leads to a rough result where the boundaries of the 
pasted region are quite noticeable. Seamless cloning con-
sists in doing this copy-paste process in such a way that 
the boundaries of the pasted region are no longer notice-
able and the transition from f to g is smooth and natural. 
To this end we create a drift-field d from the canonical 
drift-fields dg and df  associated to f and g, respectively, so 
that:

d(x) :=







df (x) if x ∈ D,
dg (x) if x ∈ � \ (D ∪�b),
df (x)+dg (x)

2 if x ∈ �b,

Fig. 7  Illuminated manuscripts. Two illuminated pages from a manuscript touched up to cover Adam and Eve’s nudity, see “Looking through the 
layers via osmosis filtering” section for more details
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where �b denotes the transition boundary. Once we 
have this composite drift-field, we can solve the osmo-
sis equation on the whole image domain with Neumann 
boundary conditions [31] or, alternatively, only on the 
sub-domain D with Dirichlet boundary conditions [44]. 
On the one hand solving the equation on the whole 
image leads to the whole image being modified. On the 
other hand solving the equation only on D leaves the 
background image g untouched outside of D.

Applications to illuminated manuscripts
In an ideal case, the added pigments do not appear on the 
IR while the colours to be restored are perfectly encoded 
in the IR. In this case the problem is reduced to a sim-
ple seamless cloning application with Dirichlet boundary 
conditions. The drift-field of the colour image is replaced 
by the one from the infrared image on the sub-domain 
to be restored. However, unfortunately, such an ideal case 
is uncommon. For the illuminations of the primer, we 

encounter rather different scenarios. For instance, when 
the added cloth is IR transparent or has no texture in 
the IR, the osmosis equation is enough to get a satisfy-
ing result. When the texture of the added cloth appears 
in the IR, the osmosis equation is no longer enough and 
we have to add an inpainting step to our method. We 
describe this in a greater detail in the following.

IR transparent original pigments
In Fig. 8, the IR along with a careful examination of the 
colour image reveals the existence of an original fig leaf 
under the added leaves of the over-paint. Here the over-
paint is IR transparent so it should be a simple seamless 
cloning problem with the colour image being the back-
ground and the infrared being the foreground image. Yet, 
the colour distinction between the original fig leaves and 
the skin of Adam and Eve is hard in the IR. If we sim-
ply follow the seamless cloning method, we get back not 
only the skin colour but also the fig leaves colour from 

Fig. 8  The over-paint is IR transparent (“IR transparent original pigments” section). We perform seamless cloning on the subdmain marked in gray 
on the mask. Bottom left: result without Neumann boundary conditions, the green from the fig leaf is diffused across the edges. Bottom right: 
cleaner result using Neumann boundary conditions. The Neumann boundary conditions (b.c.) are marked by red lines on the mask



Page 12 of 21Calatroni et al. Herit Sci  (2018) 6:56 

the small parts left untouched in the colour image. How-
ever because they appear the same in the IR, some diffu-
sion occurs across the edges between the skin and the fig 
leaves. To prevent this, we enforce Neumann boundary 
conditions along these edges to prevent any such diffu-
sion. The results with and without the use of Neumann 
boundary conditions (represented as red lines in the 
mask) are presented in Fig. 8.

Over‑paint with IR transparent texture
In Fig. 9, the added cloth on Adam is not IR transpar-
ent but it has little texture discernible on the IR and the 
original drawings appear clearly by transparency under 
it. This looks like a shadow in the IR as well as in the 
solution obtained with the method of the previous “IR 
transparent original pigments” section. Thus we mix 
seamless cloning with mixed boundary conditions and 
the shadow removal method. We replace the canoni-
cal drift-field of the colour image by the one of the IR 
in the region of interest. Then we put the drift-field to 
zero on the edge of the over-paint appearing in the IR. 
This method is illustrated in Fig.  9. The white lines of 
the mask are the areas where the drift-field is put to 
zero. In this figure we observe some transparent texture 
from the over-paint (over Adam’s hip and at the bottom 
of Eve’s veil). As expected, this texture appears in the 
final result.

Non IR transparent over‑paint texture: adding an inpainting 
step
In the case of Fig.  10, the IR adds some useful infor-
mation to the colour image, as shown by the result 
obtained using the method from the previous “Over-
paint with IR transparent texture” section but a large 
amount of the added skirt texture, visible in the IR, is 
also present. To get rid of this unwanted texture, we 
put the drift field to zeros on the area correspond-
ing to Adam’s skin and manually segment the lines we 
want to keep. Note that this leads to a complete loss of 
texture in this region. To have a more natural looking 
result, we want to have some texture for the skin. While 
we can’t recover the original texture with our inputs, 
the untouched part of the illumination gives us some 
example of texture for Adam’s skin. This information is 
enough to use the exemplar-based inpainting algorithm 
described in “Exemplar-based inpainting” section, 
using as initialisation our result with missing texture. 
The final result on Adam’s skin has probably not much 
in common with the original painting but it appears 
natural enough, so it can help to get a better idea of the 
illumination in its original state.

Preprocessing and parameters
As we just saw, such a complex restoration process 
necessitates significant user decisions. In fact the mask 
containing the sub-domain to be restored must be pro-
vided by the user as well as the edges along which Neu-
mann boundary conditions should be applied and the 
sub-domain edges where the drift-field should be put to 
zero.

For our experiments we used the discretisation pro-
posed in [31]. Then the linear system was solved using 
the MATLAB UMFPACK V5.4.0 LU solver. It took 
us at most 15 seconds to obtain the numerical solu-
tions of the osmosis equation, our input images being 
respectively 901× 1201 , 1001× 1201 and 952× 1248 
for Figs.  8, 9 and 10. For Fig.  10 we only show a crop 
of our result of size 359× 483 . For the inpainting step 
of Fig.  10, we used the implementation of the exem-
plar-based inpainting algorithm from [48]6 with the 
NL-medians method, 9× 9 patches, two scales and 4 
iterations.

The numerical tests were performed on a standard 
MacBook Pro (Retina, 13-inch, 2017), 3,5 GHz Intel Core 
i7, 16 GB 2133 MHz LPDDR3 using MATLAB 2017b.

Discussion and future work
We proposed in this section a method to digitally remove 
over-paint from an illumination using infrared informa-
tion. Although we do not claim that our result perfectly 
corresponds to the original state of the illumination, we 
believe that nonetheless it offers an idea of its original 
state. For our applications the results are mostly satisfy-
ing, especially when the added pigments do not appear 
on the IR or when the addition doesn’t have too much 
texture visible in the IR. As the process necessitates 
some important user decisions, it is preferable to have 
input from an expert. From the IR alone we can only 
make educated guesses. Only outside information from 
an expert allows us to know which pigments have been 
over-painted, from examination under a microscope for 
example. This method is fast enough to allow fine tuning 
by the user as depending on the result the mask can be 
repeatedly improved. The quality of the output is highly 
dependent on the infrared wavelength and the pigments 
used for both the original painting and the over-paint.

Future work should address these difficulties and 
test the method on a larger dataset. An easy improve-
ment would be to have an IR with the same resolution as 
the colour image to prevent the blur effect that we can 
observe. For the mask creation phase, a more automated 
segmentation detection could be inserted to have a first 
guess. In this work, we have only used the visible image 

6  The code is freely available at IPOL: https​://doi.org/10.5201/ipol.2015.136

https://doi.org/10.5201/ipol.2015.136
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and a single IR. Better results may be obtained by using 
several IR’s where the wavelengths are chosen depend-
ing on the pigments used. In such a situation, the expert 
would only have to specify for each area which IR should 
be used.

Creating a 3D virtual scene from illuminated 
manuscripts
In recent years, certain museums and companies have 
taken a step beyond using digital technology to restore 
historic artwork, and have instead created 3D or ani-
mated versions of historic artwork that can only be 
experienced digitally. For example, the British Muse-
um’s Hutong Gallery recently created a 3D version of 
the 1623 painting “Reading in the Autumn Mountains” 
(originally painted during the Ming dynasty by the art-
ist Xiang Shengmo). A video in which the viewer flies 
through the 3D painting can be found on their website 
[49]. Another example, which was shown at the Tai-
pei Flora Expo in 2010/2011, features a Song Dynasty 

painting that was converted into an animation [50, 51]. 
In this case, the animated painting was displayed on a 
specially designed screen, twenty feet wide and more 
than 360 feet long, mounted on the wall of the exhi-
bition center. Finally, the Shanghai based company 
Motion Magic has created 3D versions of the paintings 
of Vincent Van Gogh, which viewers can walk around 
inside after putting on virtual reality goggles [52, 53]. 
The result of these efforts is both a new kind of art and 
a new way of interacting with art. This trend is likely 
to get stronger as virtual reality becomes more main-
stream and the demand for VR content increases.

In this section, we demonstrate the potential of these 
approaches by converting an illumination from the 
manuscript Annunciation by Simon Bening, Fitzwilliam 
Museum, MS 294b, Flanders, Bruges, (1522-1523), as 
well as the painting The Scream by Edvard Munch into 
stereo 3D (see Figs. 13 and 14). We do so using a 3D con-
version pipeline originally developed for the conversion 
of Hollywood films. There, one is given the video shot 

Fig. 9  The texture of the over-paint is IR transparent (“Over-paint with IR transparent texture” section). Bottom left: we only applying the method 
of “IR transparent original pigments” section, the over-paint on Adam appears as some kind of shadow. Bottom right: after putting the drift-field to 
zero in the white areas of the mask, only some non IR transparent texture of the overpaint remains (on Adam’s hip and the part of Eve’s veil that 
covers the fence)
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from camera position p ∈ R
3 and orientation O ∈ SO(3) 

(corresponding to, for example, the left eye view), and the 
objective is to generate a plausible reconstruction of the 
video as it would appear from a perturbed position and 
orientation p+ δp ∈ R

3 , O + δO ∈ SO(3) (correspond-
ing to the view from the other eye). In some cases p and 
O, along with other relevant camera parameters such as 
field of view, may be given. In other cases, they must be 
estimated. In our case the process is the same, except that 
we have a manuscript (or painting) rather than a video. 
However, this introduces a subtle difference. In the case 
of converting a video shot with a real camera, although 
we might not know the associated camera parameters, 
we at least knew that they exist—but here, because the 
input is drawn by a human, existence is not given. In 
particular, depending on the artist, the drawing may or 
may not obey the laws of perspective. This is particularly 
noticeable in the case of The Scream—see Fig. 16.

Overview of a 3D conversion pipeline
Here we briefly go over the 3D conversion pipeline used 
in this paper. The steps of the pipeline are illustrated in 
Figs. 11 and 12. For more details, please see [33] or [28, 
Ch. 9.4].

1.	 Generate a rough but plausible 3D model of the 
scene, including a virtual camera with plausible 
parameters (parameters include position, orienta-
tion, field of view, possibly lens distortion, etc) placed 
within it. The 3D models do not have to be perfect, 
and are typically made a little larger than the objects 
they correspond to. This is because they will be 
“clipped” in step three. See Fig. 11a, where we show 
rough 3D models used for the Virgin Mary and Angel 
Gabriel.

2.	 Generate accurate masks for all objects in the scene. 
This is typically done by hand, but could also be done 
with the help of segmentation algorithms that are 

Fig. 10  The texture of the over-paint appears clearly on the IR (“Non IR transparent over-paint texture: adding an inpainting step” section). Bottom 
left: using the method of “Over-paint with IR transparent texture” section, the texture of Adam’s skirt still appears clearly. Bottom center: we manually 
draw the underlying sketch and enforce pure diffusion on Adam’s skin. It leads to a complete loss of texture. Bottom right: after the inpainting step, 
the result looks more natural
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then touched up. See Fig. 11b, where we show masks 
for the Virgin Mary and Angel Gabriel.

3.	 The camera is then transformed into a projector, 
which is used for two purposes. Firstly, the masks 
from the previous step are projected onto the rough 
3D geometry from step 1, and used—much like a 
cookie cutter—to “clip” the geometry, throwing away 
the portion that is unneeded. See Fig. 11c, where we 
illustrate this for the 3D models of Mary and Gabriel. 
Secondly, the original image is then used as texture 
by projecting it onto the clipped geometry, as in 
Fig. 11d.

4.	 One or more new virtual cameras are added to the 
scene. If the original camera is taken to be either the 
right or left eye, then one additional virtual camera 
corresponding to the other eye is needed. However, 
sometimes the original camera position is taken to 
be half way between the two eyes, so that two virtual 
cameras (corresponding to the left and right eyes) are 
needed. These camera(s) will be used to render the 
3D scene from one or more new viewpoints, in order 
to create a stereo pair.

5.	 Because the new camera(s) will typically see bits of 
background previously hidden behind foreground 
objects in the original view, inpainting of occluded 
areas is required. This is typically done using a tool-
box of inpainting algorithms that are then touched 
up by hand. In our example, inpainting was done in 
Photoshop, using a combination of Content Aware 
fill and manual copy-pasting of patches by hand. See 
Fig. 12a, b, where we show the rendering of Annunci-
ation from a new view, including in (a) the areas orig-
inally occluded by Mary and Gabriel, and in (b) the 
result after inpainting these areas. In reality, as this 
scene contains many more 3D objects than just Mary 
and Gabriel, what is shown in 12a is just a sampling 
of the inpainting problems that need to be solved.

Steps one, two, and the first half of step three can be 
thought of as generating a depth map for the image. 
The rough geometry generated in step one provides the 
smooth component of the depth map, while the masks 
generated in step two define the depth discontinuities, 
which are imposed on the geometry by the “clipping” in 
step three. Because the human eye is most sensitive to 
depth discontinuities, these have to be very accurate, but 
the 3D models do not. For example, in the conversion 
of Fig. 13a, the virgin Mary is modelled using just a few 
simple geometric primitives including an ellipsoid for her 
body, a sphere for her head, a cylindrical halo and a cone 
for the bottom of her dress. This is illustrated in Fig. 11a, 
where the geometry of the Angel Gabriel (also consisting 
of simple geometric primitives) is also shown.

Results and future work
The results of our 3D conversion of Annunciation are 
presented in Fig. 13, where we show the original manu-
script (assumed to be the right eye view) side by side with 
the reconstructed left eye view. Similarly, Fig.  14 shows 
our results for the 3D conversion of The Scream. Please 
see the video files provided in Additional files 1 and 2 
atfor animated versions of our results. The conversion 
of Annunciation illustrates a limitation of the pipeline 
we have used: it does not handle partially transparent 
objects properly. In this case, bits of background in the 
original right eye view are visible through the halos of 
both the virgin Mary and the angel Gabriel. In particu-
lar, in the original right eye view, a bit of Mary’s bed is 
visible through her halo. When rendered from the new 
left eye vantage point, we should now be seeing the win-
dow through her halo, but instead we continue to see the 
bed. See Fig. 15 for a closeup of this defect. To overcome 
this, one could modify the pipeline in the “Overview of a 
3D conversion pipeline” section to first decompose semi-
transparent objects into two images (in this case, the pure 
halo and the background). This is something we would 
like to investigate in the future. 

The conversion of The Scream illustrates a nuance 
arising in the 3D conversion of paintings—namely that 
paintings may not obey the laws of perspective. In this 
case, due to the failure of perspective, it is not possible 
to extrapolate the railing of the bridge into the occluded 
area behind the screaming figure without introducing a 
bend or “kink”. This is illustrated in Fig.  16 where we 
also show the “kink” we had to introduce into the 3D 
model of the bridge in order to make 3D conversion of 
this painting possible.

Conclusion
An adequate mathematical analysis and processing of 
images arising in the arts and humanities needs to meet 
special requirements:

• • There is often particular domain expertise which 
any analysis should ideally make use of. For instance, 
when digitally restoring an image, the integration of 
related images such as paintings from the same art-
ist, could be taken into account. In what we have dis-
cussed this concept is used to the extent that a dic-
tionary of characteristic structures in the undamaged 
part of the illuminations was created and used to fill 
in the lost contents in the damaged regions, compare 
Figs. 4, 6. This could be driven much further, expand-
ing the dictionary by illuminations or details of illu-
minations from the same artist.
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• • The results achieved in Figs. 10, 9, 8 show a possible 
use-case for scientific imaging in art restoration or 
art interpretation. Indeed, we believe that the inte-
gration of different types of scientific imaging such as 
infrared imaging, are likely to give benefit to image 

analysis methods and so the latter should be able to 
capture those.

• • Explainability of results is crucial. There is clearly 
a balancing act to be made between hand-crafted 
analysis that captures expert knowledge and a black-

a b

c d

Fig. 11  3D conversion Pipeline. Here we illustrate steps one to three of the 3D conversion pipeline presented in the “Overview of a 3D conversion 
pipeline” section. First, in a, rough 3D geometry is generated for all objects in the scene (here, only the Virgin Mary and Angel Gabriel are shown). 
Next, in b, accurate masks are generated for all objects (again, only Mary and Gabriel are shown). In c, the camera is turned into a projector and 
the masks from b onto the rough 3D geometry from a. This projection is then used to “clip” the 3D models by throwing away the portion of the 
geometry not falling within the projection. Finally, in d, the clipped geometry is “painted” by projecting the original image onto it
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a b

Fig. 12  3D conversion Pipeline continued. Here we illustrate steps four and five of the 3D conversion pipeline presented in "Overview of a 3D 
conversion pipeline". In a, we have rendered the 3D scene from a new vantage point. This will be the left eye view of a stereo pair in which the right 
eye view is the original manuscript. Areas in red are occluded by Mary and Gabriel in the original manuscript and must be inpainted. In b, we see 
the result of inpainting, which in this case is done using a combination of Content-Aware Fill and manual copy pasting of image patches.

a b
Fig. 13  3D conversion of an illuminated manuscript. The illuminated manuscript considered here is Annunciation by Simon Bening, Fitzwilliam 
Museum, MS 294b, Flanders, Bruges, (1522–1523). The restored manuscript (a) is converted into a stereo 3D pair. To view the resulting stereo 
3D image without glasses, first cross your eyes so that each image splits in two. Make the middle two images overlap, and then bring the 
superimposed image into focus (try varying your distance from the computer screen)
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box, data-driven image analysis approach. In par-
ticular, the latter should ideally have an interpretable 
mathematical representation that gives rise to new 
conclusions. In this paper we have solely considered 
model-based and hence explainable solutions to art 
restoration and interpretation problems. The grow-
ing emergence of deep learning solutions to various 
image analysis tasks provides an alternative approach 
to these problems, at the moment however without a 
proper explanation.

• • Relevant characteristics are often hidden in very fine 
details of the artwork, like a brushstroke in a paint-
ing. Capturing these fine details in a digital format 

results in high-resolution images that an image anal-
ysis method should be capable of processing. This 
means there is a demand for computationally-effi-
cient image analysis methods.

• • Digital processing and manipulation of artwork 
opens up a myriad of possibilities of analysing and 
processing, but also of experiencing, understanding 
and reinterpreting artwork. As an example we have 
shown 3D conversion and its possible use-cases in 
the presentation of art, cf. Fig. 13 for instance.

With the above in mind, we have discussed a selected 
subset of mathematical approaches and their possible 

a b
Fig. 14  3D conversion of  The Scream. The original painting (a) is converted into a stereo 3D pair. To view the resulting stereo 3D image without 
glasses, first cross your eyes so that each image splits in two. Make the middle two images overlap, and then bring the superimposed image into 
focus (try varying your distance from the computer screen)

a b
Fig. 15  3D conversion pipeline failure when applied to semi-transparent surfaces. Closeup of the halo of the virgin Mary in the original right eye 
view (a) and the reconstructed left eye view (b). In a, we are able to see part of the background—in this case Mary’s bed—through her halo. In b, 
the same chunk of background is incorrectly carried over to the new location, obscuring the actual background
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use-cases in the restoration and interpretation of illu-
minated manuscripts. These approaches are not perfect 
yet by all means and there is plenty of room for improve-
ment, compare our discussion in “Discussion and out-
look”, “Discussion and future work” and “Results and 
future work” sections.

Additional file

Additional file 1. 3D Conversion of Simon Benning, Annunciation: Here we 
visualize a 3D version of Simon Benning,Annunciation with an animation 
that loops between the left and right eye viewpoints.

Additional file 2. 3D Conversion of Edvard Munch’s The Scream: Here we 
visualize a 3D version of Edvard Munch’s TheScream with an animation 
that loops between the left and right eye viewpoints.
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Fig. 16  Perspective failure in The Scream. In the process of coverting The Scream into 3D we discovered, as in a, that the railing of the bridge in the 
painting does not obey the laws of perspective. To get around this issue, we had to introduce a “kink” into our 3D model of the bridge, as in b 
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