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Abstract

Multiple System Atrophy (MSA) is a severe neurodegenerative disease clinically characterized by parkinsonism,
cerebellar ataxia, dysautonomia and other motor and non-motor symptoms.
Although several efforts have been dedicated to understanding the causative mechanisms of the disease, MSA
pathogenesis remains widely unknown.
The aim of the present review is to describe the state of the art about MSA pathogenesis, with a particular focus on
alpha-synuclein accumulation and mitochondrial dysfunction, and to highlight future possible perspectives in this field.
In particular, this review describes the most widely investigated hypotheses explaining alpha-synuclein accumulation in
oligodendrocytes, including SNCA expression, neuron-oligodendrocyte protein transfer, impaired protein degradation
and alpha-synuclein spread mechanisms.
Afterwards, several recent achievements in MSA research involving mitochondrial biology are described, including the
role of COQ2 mutations, Coenzyme Q10 reduction, respiratory chain dysfunction and altered mitochondrial mass.
Some hints are provided about alternative pathogenic mechanisms, including inflammation and impaired autophagy.
Finally, all these findings are discussed from a comprehensive point of view, putative explanations are provided and
new research perspectives are suggested.
Overall, the present review provides a comprehensive and up-to-date overview of the mechanisms underlying MSA
pathogenesis.
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Introduction
Multiple System Atrophy (MSA) is a progressive and severe
neurodegenerative disorder which is clinically characterized
by variable degrees of parkinsonism, cerebellar ataxia and
dysautonomia. Additional motor and non-motor symptoms
can be detected as well. Two clinical subtypes, MSA-P and
MSA-C, can be distinguished on the basis of the predomin-
ant symptomatology, parkinsonian or cerebellar, respect-
ively. [27, 58, 121].
Estimated incidence is 0.6–0.7 per 100,000 person-years

and a geographical pattern can be observed in the world-
wide distribution of the two subtypes. MSA-P is the most

common subtype in Western countries, while a predomin-
ance of MSA-C cases is observed in Japan [32, 55, 128].
Onset is usually in the sixth decade of life and progno-

sis is poor with a mean survival of 6–10 years from the
disease onset [27].
Although several pharmacological compounds have

been tested and various pre-clinical and clinical thera-
peutic trials are ongoing, an effective cure is not avail-
able yet [123].
Neuropathologically, MSA is characterized by puta-

minal, pontine and cerebellar atrophy [41]. The com-
plexity of the neuropathological pattern correlates with
the spectrum of the clinical phenotypes. Although sev-
eral overlaps can be observed between MSA-P and
MSA-C, each subtype is characterized by specific neuro-
pathological features. MSA-P is denoted by severe stria-
tonigral degeneration. The dorsolateral caudal putamen
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and the caudate nucleus are severely affected, with a se-
lective involvement of GABAergic medium spiny neu-
rons [97]. Substantia nigra dopaminergic neurons are
also remarkably involved in the degenerative process
and a trans-synaptic degeneration of striatonigral fibers
has been proposed. Globus pallidus and subthalamic nu-
cleus are also implicated [41]. Although signs of striatoni-
gral degeneration can also be observed in MSA-C, this
subtype is more severely characterized by the involvement
of cerebellar vermis and hemispheres, dentate nucleus, in-
ferior olive nuclei, pontine basis and cerebellopontine fi-
bers [41]. Both MSA-P and MSA-C are characterized by
the involvement of other regions of the nervous system,
including intermediolateral column of the spinal cord,
dorsal nucleus of vagus and Onuf ’s nucleus [129]. Motor
and supplementary motor cortices are also implicated
[119].
Glial cytoplasmic inclusions (GCIs), intracellular pro-

tein aggregates mainly composed of α-synuclein (α-syn)
and located in oligodendrocytes, are the most important
microscopic hallmark of the disease [41, 43, 84, 85].
However, α-syn aggregates can also be detected in neu-
rons, both in cytoplasm (neuronal cytoplasmic inclu-
sions, NCIs) and in nuclei (neuronal nuclear inclusions)
[121]. Neuronal loss, axonal degeneration, microglial ac-
tivation and astrogliosis are other prominent micro-
scopic features of the disease [41].
The relationship between the peculiar oligodendroglial

pathology and the neurodegenerative process has been
widely investigated. The finding of a positive correlation be-
tween neuronal loss and GCI density suggests a possible as-
sociation [39, 41, 82]. However, some exceptions, including
the finding of a severe neuronal loss in the substantia nigra
which is not accompanied by a proportionally high GCI
burden, still raises some concerns [41, 82].
Although the cause of MSA is still obscure, a relevant

effort has been dedicated to understanding the patho-
genic mechanisms [44]. This review focuses on α-syn ac-
cumulation, which is by far the most widely investigated
mechanism, and mitochondrial dysfunction, whose ana-
lysis has provided relevant advances in recent years.
However, other putative mechanisms, including inflam-
mation [114, 115, 126], autophagic impairment [75, 76,
103, 117], proteasomal dysfunction [16, 112] and iron
metabolism dysregulation [49] are also discussed.

Alpha-synuclein
Most of the studies assessing the pathogenesis of MSA
have focused on the mechanisms underlying α-syn intra-
cellular accumulation. Alpha-syn, which plays a crucial
role also in Parkinson’s disease (PD) and dementia with
Lewy bodies (DLB) [108, 109], is a key protein in MSA
neuropathology. The finding of α-syn accumulation not
only in neurons, but also in oligodendrocytes, is an

important feature of this disease. Furthermore, GCIs,
whose presence is required for a diagnosis of “definite
MSA” [33], are the main pathological hallmark.
Alpha-syn is a 14 KDa protein, composed of 140

amino acids, which is physiologically expressed in the
human brain. Its physiological conformation is not com-
pletely clear, being still a matter of debate whether its
native conformation is a folded tetramer of 58–60 KDa
or an unfolded/disordered monomer which assumes an
extended conformation in native gels [7, 28, 61, 127].
The precise function of α-syn is still obscure, although sev-
eral studies have pointed out a putative role in regulating
synaptic vesicles and neurotransmitter release [10]. Further-
more, more complex forms of the protein, in particular olig-
omers and fibrils [61], and post-translational modifications
(e.g. phosphorylation, nitration and ubiquitination) [6, 80]
have been associated with synucleinopathies.
As opposed to neurons, healthy mature oligodendro-

cytes have not been described to express α-syn [107] and
the presence of α-syn in oligodendrocyte precursors is
still debated because some laboratories have detected a
basal level of α-syn expression in non-primate mammals
and humans, while others have not [1, 22, 71, 93].
Therefore, the finding of α-syn aggregates in oligo-
dendroglia is even more remarkable.
Several hypotheses have been proposed to explain the

aberrant localization of α-syn in MSA.

α-Syn overexpression
The first hypothesis is that a reactivation of α-syn gene
(SNCA) transcription occurs in the disease (Fig. 1a). The
rationale of this conjecture is that an increased tran-
scription would be followed by increased translation and
increased protein amount. The putative role of excessive
gene expression leading to protein intracellular accumu-
lation is supported by the description of GCIs in oligo-
dendrocytes of brains of PD patients carrying SNCA
gene triplication [36]. However, in these specific cases, a
protein transfer from over-producing neurons is a possible
hypothesis. All the studies assessing SNCA expression in
brains of MSA patients have not found significant differ-
ences between MSA and controls [45, 81] or have even
detected a downregulation in patients [60]. However, these
studies have been performed on RNA extracted from
brain samples containing both neurons and glia. Only few
studies have investigated the selective expression of SNCA
in oligodendrocytes of patients and healthy subjects, with
conflicting results. In-situ-hybridization analyses on aut-
opsy brain samples [72] have detected a negligible level of
SNCA mRNA in oligodendrocytes of both patients and
controls, thus excluding the possibility that increased
SNCA transcription may be implicated as cause of the dis-
ease. However, two more recent studies [3, 22], based on
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oligodendrocyte isolation and qPCR analysis, have de-
scribed a basal gene expression level also in oligodendro-
cytes, with a trend of increase in MSA patients.
The hypothesis of an aberrant SNCA expression in

MSA oligodendroglia is intriguing, but the conflicting
available data do not allow one to draw definite conclu-
sions about this issue. So far, most of the studies do not
support a direct involvement of α-syn gene expression in
MSA pathogenesis and the studies suggesting this hy-
pothesis do not provide significant results. However, it
must be acknowledged that the isolation of oligodendro-
cytes from patients’ brains is technically difficult and
that the lack of statistical significance may be due to the
limited number of subjects used in these studies. There-
fore, although SNCA overexpression is unlikely to be the
sole mechanism leading to the disease onset, it will be
crucial to repeat these experiments in wider cohorts of
patients and controls, both in brain-isolated and
iPSC-derived oligodendrocytes. It will also be important
to investigate the role of pre- and post-transcriptional
SNCA regulatory mechanisms, including CpG island
methylation [46, 70], transcription factors [18, 20, 100],
lncRNAs [74] and miRNAs [24, 47].
It is interesting to observe that transgenic mice overex-

pressing human α-syn under the control of promoters of

genes specifically expressed in oligodendrocytes (MBP,
PLP and CNP) [48, 105, 134], which have represented the
gold standard of MSA models for many years, are based
on this putative mechanism.

α-syn uptake from oligodendrocytes
A second hypothesis about the mechanisms leading to
α-syn accumulation in MSA suggests that the protein is
not produced directly in oligodendroglia, but that it is
taken-up from neurons or from the extracellular envir-
onment (Fig. 1b). Various studies have demonstrated the
ability of neurons to uptake α-syn both in vitro and in
vivo [37, 65] and a possible transfer of α-syn from
neuron-to-neuron has been demonstrated as well [21].
However, the prominent oligodendroglial pathology in
MSA has prompted various laboratories to investigate
the possible transfer of α-syn from neurons to oligo-
dendroglia. Oligodendroglial cell lines have shown the
ability to uptake α-syn monomers [54, 56] and increased
levels of oligodendroglial α-syn have been observed in a
double transgenic mouse overexpressing α-syn under
MBP and PDGF promoters, when compared to the
MBP-mouse model [95]. An extensive study has investi-
gated the uptake of various forms of α-syn from oligo-
dendroglia in vitro and in vivo [92]. Oligodendrocytes

Fig. 1 Alpha-synuclein in the pathogenesis of MSA. a Putative mechanisms leading to α-syn intracellular accumulation, including SNCA CpG islands
hypomethylation, transcription factors, lncRNAs, miRNAs, impaired lysosomal and proteasomal machineries. b Neuron-oligodendrocyte interaction
mechanisms potentially involved in α-syn accumulation: oligodendroglial α-syn uptake from surrounding neurons and extracellular environment through
endocytosis and passive transmembrane diffusion. Met =methyl group; TF = transcription factor; miRNAs =microRNAs; lncRNAs = long-non-coding RNAs
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are able to internalize α-syn monomers, oligomers and,
although to a lesser extent, fibrils. The same species of
α-syn can also be internalized in vivo, after injection into
the mouse cortex. Moreover, grafted oligodendrocytes
can uptake α-syn from host rat neurons overexpressing
human α-syn.
All these data are strongly suggestive for a role of the oligo-

dendroglial α-syn uptake mechanism in the pathogenesis of
MSA. The precise mechanism by which this happens has
not been elucidated yet. However, several studies have inves-
tigated putative mechanisms leading to α-syn internalization
into neurons, including passive diffusion across cell mem-
brane [2, 62] and endocytosis [37, 62]. This latter mechanism
also seems to be implicated in oligodendroglial-mediated up-
take, since dynamin inhibition (both genetic and pharmaco-
logical) leads to reduced oligodendroglial α-syn uptake and
dynamin overexpression enhances α-syn uptake in these cells
[54, 92]. A clathrin-dependent internalization mechanism
has been suggested as well [56].

Other α-syn-related hypotheses
A new field of investigation derives from the recent de-
scription of a prion-like spreading pathology of α-syn in
MSA [51]. The theme of a prion-like α-syn propagation
has been widely studied in PD [17]. However, evidence
obtained from using brain homogenates/precipitates
from MSA patients to inject specific transgenic mice, or
in particular cellular assays, has suggested that a unique
strain of α-syn prions, different from those observed in
PD, may be the causative mechanism of MSA [88, 131–
133]. The fact that the in vivo phenotype has been ob-
served only from inoculating MSA samples into Tg
M83+/− mice, but not into wildtype mice [88], demands
further investigation to better elucidate the issue.
Recent studies have pointed out the role of specific

α-syn strains in the pathogenesis of synucleinopathies.
For example, it has been shown that α-syn oligomers,
ribbons and fibrils exert different effects when injected
into rat brains [86]. A recent extensive study [87] has in-
vestigated the different conformations and effects of
α-syn derived from Lewy bodies (LB-α-syn) or from
GCIs (GCI-α-syn), thus providing new hints to under-
stand the specific molecular mechanisms underlying
MSA. The authors show that GCI-α-syn and LB-α-syn
are characterized by different conformations, as demon-
strated by higher resistance of GCI-α-syn to proteinase
K digestion and by the different banding patterns ob-
tained after trypsin or thermolysin treatment. Moreover,
GCI-α-syn has been shown to be far more potent than
LB-α-syn in seeding α-syn aggregation in oligodendro-
cytes and in inducing neuronal α-syn pathology. Finally,
on the basis of various experiments, the authors propose
that different cellular subtypes specifically influence the
properties of α-syn and that the cellular milieu of

oligodendrocytes induces the formation of a particularly
aggressive α-syn strain which is different from that ob-
tained when α-syn is incubated in neurons or in neur-
onal lysates.
Impaired protein degradation may also be involved in

α-syn accumulation, as suggested by the description of a
possible role of autophagic and proteasomal dysfunction in
the disease [16, 75, 76, 103, 112, 117] (Fig. 1a). Furthermore,
it has been observed that treating primary rat oligodendro-
cyte precursor cells with exogenous α-syn-preformed-fibrils
increases endogenous α-syn levels through autophagic im-
pairment [50].
It has also been proposed that the accumulation of

α-syn may be triggered by specific oligodendroglial pro-
teins, and particular attention has been devoted to p25α/
TPPP. Co-expressing α-syn and TPPP in rat oligoden-
drocytes enhances α-syn aggregation [38]. Furthermore,
the relocation of TPPP from myelin sheath to oligoden-
drocyte’s soma is an early pathological event during the
progression of the disease [41].
To sum up, several hypotheses have been proposed

to explain the possible origin of aberrant α-syn in
MSA, but a definite answer has not been provided
yet. At the current time, it cannot be excluded that
various mechanisms combine to produce the same
final effect.
Another important issue related to α-syn is the putative

detrimental effect exerted on the cells in which it accumu-
lates. In this regard, both extrinsic and intrinsic apoptotic
pathways may be involved. In particular, the co-expression
of α-syn and TPPP in oligodendroglia has been shown to
induce the stimulation of Fas receptor and the activation
of Caspase 8 [57]. On the other hand, the involvement of
the intrinsic apoptotic pathway is suggested by the finding
of the mitochondrial pro-apoptotic protein Omi/HtrA2 in
GCIs, NCIs and dystrophic neurites [53].
Although the relationship between oligodendroglia and

neurons is still a matter of debate and although it has not
been elucidated yet whether MSA is a primarily neuronal,
oligodendroglial or neuronal-oligodendroglial disease, it is
intriguing to hypothesize that α-syn-mediated oligodendro-
glial pathology at least contributes to neuronal damage, as
further supported by the positive correlation between neur-
onal loss and GCIs density [39, 41, 82]. In this regard, oligo-
dendrocytes play an essential role not only in the formation
of the myelin sheath, but also in providing trophic support
to neurons. In particular, neuronal survival and axonal
length are supported by factors released by oligodendroglial
precursors and mature oligodendrocytes. Studies investigat-
ing this pathway in MSA have shown that glial cell
line-derived neurotrophic factor (GDNF) is reduced in the
MBP-h-αsyn-transgenic mice and that the neuropatho-
logical and behavioral deficits of these mice are improved
by the intracerebroventricular infusion of GDNF [122, 130].
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The lack of oligodendroglia-derived neurotrophic fac-
tors is not the only mechanism proposed to cause
cell-death in the disease [83]. Microglial activation, clas-
sically found in MSA brains [41] and probably influ-
enced by α-syn accumulation [11, 116], has been
detected also in MSA mouse models. Its association with
cell death is supported by the finding of a correlation be-
tween microglial activation and dopaminergic neuronal
loss, prevented by minocycline-mediated microglial sup-
pression [115]. The finding of an association between
microglial activation and the expression of inducible
nitric-oxide-synthase (iNOS) [115], whose contribution
to neurodegeneration has already been described [30], is
also notable.

Mitochondria
Mitochondria play an important role in several neurode-
generative diseases and, in particular, they have proven
to be crucial in the pathogenesis of PD [98]. A defective
activity of respiratory chain complex I has been detected
in substantia nigra and other tissues of patients affected
with PD and the administration of complex I inhibitors
(rotenone and MPTP) to animal models and humans
has been associated with striatonigral degeneration and
parkinsonian features [12, 99, 106]. The finding of in-
creased mtDNA deletions in patients’ brains [9] and the
causative role of mutations in mitochondria-related
genes (e.g. Parkin and PINK1) in early-onset PD, are

additional clues supporting the role of these organelles
in the disease.
Several groups have also investigated the role of mito-

chondria in MSA (Fig. 2).
Two studies aimed at assessing the activity level of re-

spiratory chain complexes in various tissues of MSA pa-
tients and controls have identified reduced complex I
activity in patients’ skeletal muscle, but not in substantia
nigra or platelets [15, 35]. Moreover, the amount of mito-
chondrial DNA rearrangements or deletions has not been
found to be increased in patients’ substantia nigra [34].
After the recent description [77] of mutations in

COQ2 gene, encoding one of the enzymes involved in
Coenzyme Q10 (CoQ10) biosynthesis, in familial and
sporadic cases of MSA, the theme of a mitochondrial
role in the pathogenesis of the disease has gained new
and wider interest. CoQ10, located in the inner mito-
chondrial membrane, transfers electrons from complexes
I and II to complex III, thus playing a crucial role in the
functioning of respiratory chain. CoQ10 biosynthesis is a
complex biological pathway involving many steps and
several enzymes are implicated. Recessive mutations in
the genes encoding some of these enzymes, including
COQ2, [89–91] are responsible for the onset of complex
syndromes, often denoted as “primary CoQ10 deficien-
cies”, which are usually characterized by a prominent
neurological dysfunction. After the description of a pos-
sible role of COQ2 mutations in MSA, several groups
have sequenced this gene in different patient cohorts.

Fig. 2 Mitochondria in the pathogenesis of MSA. Figure depicting how specific mitochondrial triggers, including Coenzyme Q10 deficiency and
respiratory chain defect, may affect the overall mitochondrial function, thus leading to bioenergetic defect and cellular suffering
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Conflicting results have emerged [63, 79, 96, 102, 104,
135], since some studies, mainly focused on Chinese and
Japanese populations, have confirmed the genetic finding
while others, mainly focused on Europeans and North
Americans, have not.
Since then, the role of CoQ10 in MSA has been fur-

ther investigated independently from COQ2 mutations,
whose causative effect remains controversial. The evalu-
ation of CoQ10 amount in autopsy brain samples has
pointed out a reduction in patients, selectively in the
cerebellum and not in other brain areas, including
frontal cortex [101], occipital cortex and striatum [5].
The assessment of the activity level of respiratory chain
complexes I + III and II + III in brain samples has not
provided significant results, whereas the amount of the
CoQ10 biosynthesis enzymes PDSS1 and COQ5 has
been found to be reduced in patients’ brains. A reduc-
tion of CoQ10 level has also been described in patients’
cerebrospinal fluid [19] and plasma/serum [52, 59, 73].
A recent study [75] has investigated several aspects of

mitochondrial biology in fibroblasts of MSA patients and
controls. An impaired activity of respiratory chain, in par-
ticular complex II, and a suboptimal mitophagic machin-
ery have been detected in MSA fibroblasts. The evaluation
of CoQ10 pathway has pointed out a reduced CoQ10
amount and an up-regulation of some CoQ10 biosynthesis
enzymes (namely COQ5 and COQ7) in patients. Further-
more, analyses on both fibroblasts and peripheral blood
cells have suggested an increased mitochondrial content
in the cerebellar subtype of the disease.
Mitochondrial functioning has also recently been in-

vestigated in dopaminergic neurons differentiated from
induced pluripotent stem cells (iPSCs) of 4 MSA pa-
tients (2 MSA-P and 2 MSA-C), 4 healthy controls and
the healthy monozygotic twin of one of the patients [76].
This study has shown a major involvement of mitochon-
dria in MSA, providing evidence for impaired activity of
the respiratory chain (in particular complexes II and II +
III), increased amount of respiratory chain complexes II
and III, increased mitochondrial mass and up-regulation
of CoQ10 biosynthesis, with increased amount of
PDSS1, PDSS2, COQ4 and ADCK3/COQ8A. This study
not only detected mitochondrial dysfunction in patient
neurons, but also neuronal damage and severe impair-
ment of the autophagic machinery.
Mitochondrial dysfunction has been assessed also in

another iPSC-based study, investigating iPSC-derived
neurons of a patient with a heterozygous mutation in
COQ2 and the corresponding corrected isogenic line, a
patient with idiopathic MSA, and three healthy controls.
Reduced CoQ10 and vitamin E levels were detected in
the COQ2-mutated patient. Impaired mitochondrial
functioning (assessed by evaluating oxygen consumption
rate) was found in both patients. Increased oxidative

stress was only found in the COQ2-mutated subject, and
rescued in the isogenic control. Furthermore, the cells
from the patient with COQ2 mutation also displayed in-
creased apoptosis, partially rescued by CoQ10 supple-
mentation [78].
All these studies, observed from a comprehensive point

of view, point towards a crucial role of mitochondria in
the pathogenesis of MSA. It is still not clear whether mito-
chondrial defects represent the primary cause of the dis-
ease or a secondary effect. However, it is plausible to
hypothesize that, once mitochondrial impairment occurs,
this contributes to bioenergetics dysfunction, cellular
damage, and ultimately neurodegeneration.

Other mechanisms involved in MSA pathogenesis
Although the present review is specifically focused on
α-syn accumulation and mitochondrial dysfunction, it
must be acknowledged that other hypotheses have been
proposed to explain the pathogenesis of MSA.
As previously stated, the role of inflammation has been

extensively investigated in the disease and it is important
to highlight the most significant findings in this field.
Microglial activation is commonly detectable in patients’
brains [40, 41] and, although the underlying mechanism
is not completely clear, in vivo and in vitro analyses have
shown that α-syn may be involved in this process [11, 116].
However, oxidative stress is thought to play an important
role as well [114]. As already mentioned, the microglial acti-
vation which can be detected in MSA mouse models corre-
lates with neuronal loss in the substantia nigra and the
observed increased iNOS expression may contribute to this
effect [115]. Toll-like-receptor 4, also found to be
up-regulated in these mice [115], is proposed to play a pro-
tective role because its ablation in PLP-transgenic-mice
leads to clinical and neuropathological worsening and up-
regulation of various inflammatory mediators [110]. Further-
more, it has been shown that inhibiting myeloperoxidase, an
enzyme implicated in reactive oxygen species production, in
MSA mouse models leads to an improvement of clinical
and neuropathological features and reduces microglial acti-
vation [111]. Overall, several pieces of evidence are strongly
suggestive for an important role of inflammation in MSA.
Although the activation of the inflammatory cascade may be
secondary to other phenomena, including α-syn accumula-
tion and mitochondrial dysfunction, it likely contributes to
many of the detrimental processes which can be observed in
the disease.
The role of impaired protein degradation has to also

be considered when discussing the pathogenic mecha-
nisms of MSA. Neuropathological studies of MSA brains
suggest an involvement of autophagy in the disease, as
supported, for example, by the description of GCIs’ posi-
tive staining for LC3 [103, 117]. The finding of an
up-regulation of microRNA-101 in the striatum of MSA
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patients and the demonstration that overexpression of this
molecule in cell cultures is accompanied by autophagic im-
pairment and increased α-syn has led to the hypothesis that
microRNA-101 dysregulation may contribute to MSA patho-
genesis by altering the autophagic pathway [125]. A recent
iPSC-based study, already mentioned when discussing
mitochondrial dysfunction, has shown that MSA neurons
are characterized by a severe autophagic impairment, as
demonstrated by increased basal autophagy, reduced autoph-
agic flux and reduced activity of the lysosomal enzymes
α-Mannosidase and β-Mannosidase [76]. Finally, in addition
to the classical autophagy-mediated intracellular degradation
system, the proteasomal machinery may also be affected. Sys-
temic proteasome inhibition has been shown to worsen clin-
ical and neuropathological features in PLP-transgenic-mice,
but not in wild-type mice [112] and proteasomal structural
abnormalities have been observed in patients’ substantia
nigra [16].
It has also been proposed that alterations in lipid me-

tabolism and myelin formation may be involved in MSA
pathogenesis. This hypothesis is supported by the find-
ing of altered sphingomyelin, sulfatide and galactosylcer-
amide in affected white matter of MSA brains [23].
Myelin defects have been correlated with an altered ex-
pression of ATP-binding cassette transporter A8, which
may be involved in myelin formation and maintenance
[13, 14]. Furthermore, various studies have shown that
α-syn accumulation negatively affects the maturation of
oligodendrocyte precursor cells and the myelination
process [25, 26, 71].
The finding of an increased iron level in specific brain

regions of MSA patients has led to the hypothesis that
iron metabolism dysregulation may play a role in the
pathogenesis of the disease. Although the issue remains
very unclear, iron metabolism dysregulation, inflamma-
tion and α-syn accumulation may be closely related. Iron
is thought to induce oxidative stress and to activate
microglia, thus fostering the inflammatory process.
These phenomena have been proposed to influence
α-syn-related pathology by inducing α-syn aggregation,
post-translational modifications and conformational
changes [49].

Conclusions
Although several efforts have been dedicated to unravel-
ling the causes of MSA, the precise pathogenic mecha-
nisms underlying this disorder still have to be elucidated.
The peculiar neuropathological pattern of the disease,

characterized by α-syn accumulation in oligodendro-
cytes, has led many investigators to focus on this par-
ticular aspect and to hypothesize that MSA primarily
represents an oligodendrogliopathy, with a secondary
neuronal involvement. However, several hints, mainly
emerged from recent iPSC-based studies, have shown

that a pathological phenotype can be observed also in
neurons, independently from oligodendrocytes. In this
perspective, although the findings are still preliminary, it
is reasonable to hypothesize that both neurons and oligo-
dendrocytes may be primarily affected and that the dam-
age of one cell type contributes to the degeneration of the
other, and viceversa. Therefore, the expression “oligoden-
droglioneural synucleinopathy”, recently proposed to de-
scribe MSA [42], may properly suit the disease.
The temporal sequence of pathogenic events is still

obscure and it is not clear which of the proposed causa-
tive mechanisms (e.g. protein accumulation, mitochon-
drial dysfunction, inflammation) represents the primary
episode which triggers the whole pathogenic cascade.
The peculiar oligodendroglial pathological presenta-

tion of MSA has induced many investigators to
hypothesize that the primitive cause of the disease has
to be related to α-syn accumulation in this cellular sub-
type and this is also the rationale underlying MSA trans-
genic mouse models. These mice, which overexpress
human α-syn in oligodendrocytes, are the main support-
ing evidence for the “α-syn-primary-hit” hypothesis of
MSA pathogenesis. Indeed, they are characterized by
several clinical and neuropathological features, including
secondary neurodegeneration.
On the other hand, recent studies are supportive for a

causative role of mitochondria in the pathogenesis of
MSA. The finding of putatively causative mutations in
COQ2 gene in familial and sporadic cases of MSA, al-
though still controversial, would represent, if definitely
confirmed, the most direct evidence. The finding of
mitochondrial dysfunction in patients’ fibroblasts and
iPSC-derived neurons independently from α-syn accu-
mulation is a further piece of evidence supporting this
hypothesis [75, 76]. It is also interesting to highlight that
one of the first in vivo models of the disease (not used
anymore) has been obtained by administering the suc-
cinate dehydrogenase (respiratory chain complex II) in-
hibitor 3-nitroproprionic acid (3-NP acid) to animals
(Fig. 3a) [29, 113, 120] for its ability to cause a striatal le-
sion. It is noteworthy that complex II deficiency has
been recently observed in MSA cellular models [75, 76]
and the relationship between complex II defect and stri-
atal involvement is worth of further investigation. Finally,
at least one of the alternative proposed pathogenic mecha-
nisms, inflammation, may be easily related to mitochon-
drial dysfunction, which notoriously leads to increased
oxidative stress and, subsequently, inflammation [64].
Another possibility is that both α-syn accumulation and

mitochondrial dysfunction are necessary for the onset of
the disease, thus playing a synergic effect. This hypothesis
is supported by studies performed on transgenic mice
overexpressing α-syn in oligodendrocytes and treated with
the mitochondrial toxin 3-NP acid [114, 120], which are
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characterized by worsening of both clinical and neuro-
pathological outcomes compared to untreated animals.
Furthermore, a possible relationship between α-syn accu-
mulation and mitochondrial dysfunction has already been
described [94].
Therefore, it is intriguing to hypothesize that MSA

represents a multifactorial disease caused by the com-
bined effect of multiple hits. It is also possible that gen-
etic, epigenetic and environmental risk factors play a
synergic role, eventually leading to the disease onset.
However, although this hypothesis is suggestive and
would partially explain the difficulty in finding a uni-
vocal mechanism, further investigation is needed.
In the perspective of intensifying the efforts devoted at

understanding these mechanisms, two main issues
should be addressed.

First, wide studies aimed at identifying new genetic
hallmarks of the disease, both inherited in classical men-
delian fashion or just playing the role of risk factors,
should be encouraged. Epigenetic factors may also play a
role and specific studies should address this specific
topic. In this perspective, the availability of couples of
monozygotic twins discordant for the disease, already
described in previous studies [76], may be useful.
Second, the generation of new models will be crucial.

Transgenic mice have represented the gold standard of
MSA models for many years and have allowed to dissect
several important aspects of the disease. However, their
main limit is that α-syn is artificially overexpressed in
oligodendrocytes, without explaining the mechanism
which leads to the accumulation itself and underestimat-
ing the role of other cells, including neurons. (Fig. 3b)

Fig. 3 Available models of MSA. a Toxin-induced models of MSA. The first models of MSA have been produced by injecting specific toxins (e.g.
6-hydroxydopamine, 3-nitropropionic acid, quinolinic acid and MPTP) into animals, thus inducing neurodegeneration of specific brain areas. These
models are no longer considered as relevant disease models and have been substantially abandoned. b Animal models of MSA, obtained
overexpressing human α-syn specifically in oligodendrocytes. The upper part of the panel shows transgenic mice which overexpress h-SNCA
under the control of promoters of genes expressed in oligodendrocytes, namely myelin basic protein (MBP), proteolipid protein (PLP) or 2′,3′-
cyclic nucleotide 3′-phosphodiesterase (CNP). The lower part of the panel shows a recently developed model obtained overexpressing human α-
syn in oligodendrocytes of rodents and primates through viral vectors. c iPSC-based models of MSA. The expression of specific factors (Oct4, Sox2,
Klf4 and c-Myc) allows to reprogram adult somatic cells, including fibroblasts and leukocytes, to induced pluripotent stem cells, which can then
be differentiated toward all the different cellular subtypes of the organism, including neurons and glia
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Although these mice are still necessary for several reasons,
including the necessity to test novel therapeutic com-
pounds in vivo, there is an increasing need of novelties in
this field. The viral vector-mediated overexpression of
alpha-synuclein in oligodendrocytes of rats and non-human
primates, described in two recent papers [8, 66], is based
on the same rationale of transgenic mice, but the different
methodological and technical approach may provide inter-
esting and unexpected outcomes. (Fig. 3b) Another cutting-
edge technology which has recently been used to model
MSA is represented by iPSC-derived neurons and glia. This
technique, based on a completely different approach, allows
to obtain a human patient-specific model of the disease.
(Fig. 3c) Although the description of familial MSA
cases is very rare and although iPSC-based technology
is optimal for diseases with a defined genetic cause,
recent studies have shown that this technique may be
useful to model idiopathic cases of this supposedly
sporadic disorder [22, 76, 78].
The importance of understanding the molecular

mechanisms of the disease has not only purely specula-
tive purposes, but also finds practical applications in
identifying new biomarkers and therapeutic approaches.
The lack of effective therapies for MSA further urges
basic and translational research in this field. Although
most of the proposed pathogenic mechanisms do not
find a clinical application yet, some pre-clinical and clin-
ical trials are ongoing. The field which has raised more
interest so far is represented by pharmacological com-
pounds which target α-syn: in this perspective, it has
been proposed to act at different levels, including α-syn
expression, α-syn aggregation, α-syn degradation and
clearance and α-syn cell-to-cell propagation [123]. A
notable example is represented by α-syn immunotherapy
(both passive and active immunization), which has shown
promising results in preclinical models of synucleinopathies
[4, 31, 67–69, 118] and is now under investigation in clinical
trials. However, other pharmacological compounds which
are not directly related to α-syn, but to independent patho-
genic mechanisms, including inflammation [111, 124] and
mitochondrial dysfunction [59], are under investigation.
To conclude, a remarkable amount of work has already

been done to unravel the pathogenesis of MSA and several
dysfunctional pathways have been detected. However, the
lack of a definite mechanism demands further and more
intense efforts. The identification of new therapeutic tar-
gets for this still incurable disease will largely depend on
the identification of its molecular causes.
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