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CSF H3F3A K27M circulating tumor DNA
copy number quantifies tumor growth and
in vitro treatment response
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Diffuse intrinsic pontine glioma (DIPG) is a lethal child-
hood brain cancer and patients face a grim prognosis
with few treatment options [7]. Targeted therapies based
on actionable genetic mutations may offer DIPG patients
novel treatment regimens [9, 10]. Although whole ex-
ome sequencing (WES) of tumor tissue can fully
characterize the somatic mutational profile, it requires a
surgical procedure and is relatively costly and time con-
suming. Consequently, less invasive and more rapid
diagnostic tests are needed to detect actionable brain
cancer mutations.
Brain tumors and metastases to the brain shed circu-

lating tumor DNA (ctDNA) into the cerebrospinal fluid
(CSF), which can be leveraged for the detection of
tumor-associated genetic mutations from minimally in-
vasive lumbar punctures [16]. Droplet digital PCR
(ddPCR) is an ultrasensitive PCR method that can detect
low copy numbers of DNA, including ctDNA, in CSF
[13]. It has proven adept for the detection of ctDNA
mutations in CSF from patients with primary brain tu-
mors [3, 5, 14] and central nervous system (CNS) metas-
tases from other cancers [3, 8, 12, 14, 15, 17].
The majority of DIPGs possess a recurrent, potentially

actionable mutation to histone 3 (either H3F3A or
HIST1H3B) at lysine position 27 (K27M). H3K27M de-
tection in CSF by a combination of nested PCR and
Sanger sequencing in DIPG patients [6] as well as by
ddPCR in older diffuse midline glioma patients has been
reported [11]. Thus far, there have been no extensive
studies using ddPCR to quantify ctDNA in the CSF of

younger pediatric DIPG patients. Additionally, there are
significant gaps in our knowledge, including whether
ctDNA abundance depends on location of sample collec-
tion and whether ctDNA can quantify tumor growth
and treatment response. To help answer these questions,
we developed a novel ddPCR assay for the H3F3A K27M
mutation and applied it to four pediatric patients with
H3F3A K27M-mutant DIPG and non-brainstem GBM,
including multi-focal sampling of one patient. Addition-
ally, we generated an in vitro co-culture model of DIPG
cells and astrocytes (NHA), evaluating their release of
DNA into cell culture media as a means to simulate
ctDNA release into the CSF.
We employed ddPCR because it is a rapid, simple, and

ultra-sensitive method of DNA detection capable of accur-
ate quantification down to very low copy number [13].
We designed PCR probes specific to wild-type (WT)
H3F3A and mutant K27M sequences (Additional file 1:
supporting information, SI), which were validated for low
copy detection and linearity by serial dilution of synthetic
K27M mutant sequence oligonucleotide (Additional file 2:
Figure S1), as well as in control CSF (no CNS tumor) with
and without synthetic K27M oligonucleotide (Additional
file 2: Figure S2). This fully validated ddPCR method was
then used on experimental samples (Fig. 1a). In a prospective
cohort of patients who were enrolled in the IRB-approved
University of Michigan Brain Tumor CSF Registry, CSF
ddPCR results were compared to contrast-enhancing and
total tumor cross-sectional area on MRI.
We found that ddPCR was able to detect the K27M mu-

tation in patient CSF and that the closest relationship
emerged between mutant K27M copies per ng of total
DNA (hereafter K27M copies) and contrast-enhancing
cross-sectional tumor area on MRI (Fig. 1a). We then
used ddPCR for multi-focal sampling of an eight-year-old
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patient with DIPG at autopsy (UMPED18) and observed
that K27M copies varied throughout the tumor (Fig. 1b).
The number of K27M copies was two-fold higher in CSF
from the lateral ventricle as compared to CSF from a
lumbar puncture, in accordance with prior studies
that have suggested that ctDNA release into the CSF
may be reliant upon the location of the tumor adja-
cent to a CSF reservoir [16]. If this finding is con-
firmed in future cases with multi-focal sampling,
lumbar samples may have reduced sensitivity for CSF
ctDNA compared to ventricular samples.
To better understand changes in K27M copy number

in response to both growth and treatment of DIPG cells,
we created an experimental in vitro model of biolumin-
escent human DIPG007 cells co-cultured with NHAs

(Fig. 1c). We found that DIPG007 cells released more
ctDNA into culture media in proportion to their prolif-
eration (Fig. 1d), even when the media was changed fre-
quently to approximate the constant production and
resorption of CSF. This suggests that, at least in part,
ctDNA correlates with tumor cell proliferation. However,
irradiation with 8 Gy resulted in a dramatic increase in
mutant ctDNA approximately 72–120 h post radiother-
apy (Fig. 1e) before tapering off. The results suggest
ddPCR may be a viable method for monitoring response
to therapy with an early release of ctDNA indicative of
an effective treatment.
The dawn of precision medicine, and its potential

benefit to patients, has spurred research into faster, sim-
pler, and less invasive methods of detection of actionable
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Fig. 1 a CSF ddPCR results from experimental samples correlated with contrast-enhancing and total tumor cross-sectional area on MRI. b ddPCR
of multi-focal sampling shows K27M copy number varies between tumor (purple) and CSF (orange) regions c Co-culture scheme of
bioluminescent human DIPG007 cells with NHAs. d DIPG007 cells release ctDNA in proportion to their proliferation. e 8 Gy radiation results in an
increase in mutant ctDNA from DIPG007 cells
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tumor-associated mutations. Due to its great sensitivity
and low limit of detection, ddPCR has been used to de-
tect tumor mutations in CSF from a range of cancer pa-
tients [1–5, 8, 12, 14, 15, 17]. However, there has been
little elaboration within the literature on whether tumor
size may be related to the amount of ctDNA detected by
ddPCR or its suitability to track response to treatment.
Our pilot study suggests that H3F3A K27M copies in

the CSF of children with DIPG and high-grade glioma
have a linear relationship with contrast-enhancing
cross-sectional tumor area and confirms the importance
of proximity of a sample to the tumor. The former ob-
servation was further supported by in vitro experiments
showing that tumor cell proliferation results in increased
ctDNA and that H3F3A K27M copies can be used to fol-
low treatment response due to temporarily enhanced
ctDNA release shortly after effective therapies. Our
study lays the ground work for the inclusion of CSF ana-
lysis with surveillance MRIs in the treatment of this pa-
tient population.

Additional files

Additional file 1: Supplemental Information. Detailed methods and
H3F3A K27M assay design. (DOCX 28 kb)

Additional file 2: Figure S1. Serial dilution of K27M mutant
oligonucleotide in constant background of wild-type DNA demonstrates
consistent detection down to at least 2% VAF under typical experimental
conditions, with the possibility of detection at even lower VAF under ideal
conditions. One such dilution series is shown above, with (a) showing
number of droplets positive for mutant or wild-type H3F3A sequence and
(b) showing the corresponding VAF values. Figure S2. Plot of droplets
(blue – positive mutant H3F3A K27M, green – positive wildtype H3F3A, grey
– negative droplets) from ddPCR performed on (a) non-tumor human CSF
spiked with synthetic K27M mutant sequence oligonucleotide and (b)
non-tumor human CSF alone. (DOCX 268 kb)
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