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Abstract

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability
and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile
inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment
can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne
muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor
resulted in a significant attenuation of muscle and non-muscle symptoms in DMD™® mouse model. As P2RX7 is an
attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require
lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast,
Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an
established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7
functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of
disease in DMD™® mice attenuated the phenotype without any detectable side effects. Recovery was evident in
the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and
IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of
treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental
effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these
results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease.
This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-
muscle abnormalities.
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Introduction

Duchenne muscular dystrophy (DMD) is the most com-
mon inherited muscle disorder with X-linked inheritance.
Affected boys suffer from a progressive muscle degener-
ation and weakness, which lead to loss of ambulation in
early teens. Skeletal deformities, respiratory insufficiency
and cardiomyopathy developing in the second decade of
life are typical for this debilitating and still lethal disease.
The pleiotropic effects of the mutant gene also include
non-muscle symptoms: cognitive impairment and struc-
turally weakened bones [3, 55]. DMD is caused by muta-
tions in the DMD gene encoding a range of dystrophin
proteins. The muscle isoform is a 427 kDa protein with
a role in anchoring the dystrophin-associated protein com-
plex (DAPC) in the muscle sarcolemma. Lack of dystrophin
is attributed to plasma membrane destabilization, cell
signaling impairment and myofibre necrosis, accompanied
by chronic sterile inflammation, and finally leading to irre-
versible replacement of muscle with fibrotic and adipose tis-
sues [52]. Most recent studies indicated that expression of
specific dystrophin isoforms is also important for the
proper functioning of myogenic cells [19, 72] and dystro-
phinopathy is also responsible for the cognitive impairment
and bone weakness [3, 41, 55, 59].

Importantly, numerous studies demonstrated that
chronic muscle inflammation plays a crucial role in
DMD pathogenesis. Specifically, in the mdx mouse
model of DMD, treatments inducing depletion of CD4,
CD8, neutrophils or macrophages or of anti-cytokine
therapies significantly improved the dystrophic phenotype
[13, 20, 28, 45, 60]. The mechanism underlying the sterile
inflammation in dystrophic muscle is not completely
understood but damage-associated molecular patterns
(DAMPs) released from damaged myofibres seem to be
the key factor. ATP released into the extracellular space
(eATP) is one of the most important DAMPs acting as
a “danger signal” triggering inflammation via activation of
the P2RX7 purinoceptors. This “danger receptor” belongs
to a family of ATP-gated ion channels. However, unlike
other P2RXs, it requires millimolar concentrations of
eATP for full activation [30]. Such high eATP levels are
only encountered in pathologies. P2RX7 triggers complex
downstream signaling producing increased IL-1b levels
and the NLRP3 inflaimmasome activation. Interestingly,
P2RX7 expression and activation in inflammatory cells
has been well documented [48] but recent studies also
showed a significant up-regulation of this purinoceptor in
muscle cells from the mouse model of DMD [8, 54, 73].
When exposed to eATP, dystrophic DMD™* myoblasts
respond with increased cytosolic Ca®* influx and IL-1b
release, suggesting that skeletal muscle cells can actively
participate in the inflammatory process through purinergic
signaling [54]. Moreover, high eATP acting on P2RX7 acti-
vates both abnormal Ca** influx and large pore opening
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triggering a unique mechanism of autophagic cell death
[75] and increased MMP-2 activation [74]. Treatment with
apyrase, an ATP degrading enzyme, reduced intracellular
Ca%" levels in mdx fibers [2] and P2RX7 antagonists
reduced the cell death and MMP-2 activity [74, 75],
thus confirming that P2RX7 contributes to the deregulated
homeostasis in dystrophic muscles.

Therefore, activation of P2RX7 pathways in DMD results
in direct muscle cell damage and death as well as an
enhanced inflammatory response worsening the muscle
pathology in a mechanism akin to the involvement of
P2RX7 in other inflammatory diseases [14, 17].

We have previously demonstrated the therapeutic
impact of both genetic ablation and pharmacological
blockade of P2RX7 in mdx mice in vivo. This included
significant improvements in muscle morphology and
strength but also a significant reduction of the inflam-
matory phenotype [24, 58] as well as amelioration of
non-muscle symptoms [41, 58]. This wide range of im-
provements reflects the involvement of P2RX7 in mul-
tiple disease mechanisms. Therefore, P2RX7 blockade
emerges as an attractive target for translational ap-
proaches. Numerous P2RX7 antagonists have been de-
veloped [9, 27, 37, 63] and some of these e.g. AZD9056
and CE-224,535, have been used in clinical trials in in-
flammatory diseases [21, 34, 62]. However, none of these
compounds have been approved as medicines and none
tested in children.

Importantly, Fowler et al, [22] demonstrated that
the Nucleoside Reverse Transcriptase Inhibitor (NRTI)
class of compounds, commonly used as anti-HIV
drugs, can act as P2RX7 antagonists [22, 40]. These
drugs, with established safety records, could be re-
purposed for the treatment of this lethal disease. How-
ever, the mode of action of NRTI at the receptor and
their efficacy in the specific pathology such as DMD
were unknown.

Here we used a molecular modelling approach to
establish whether NRTTs act as classical P2RX7 antagonists.
Furthermore, we tested Zidovudnine (Azidothymidine,
AZT), one of the mainstay NRTI therapeutics in HIV
prevention and treatment, for its anti-P2RX7 properties
in dystrophic muscle cells in vitro and for its efficacy in
alleviating the pathology in the mouse model of DMD
in vivo. It is the consensus opinion of experts that the
mdx mouse is currently the most appropriate pre-clinical
model to test treatment efficacy for DMD (http://www.
treat-nmd.eu/research/preclinical/dmd-sops/). We estab-
lished that even a short-term treatment with AZT sig-
nificantly reduced muscle inflammation and improved
the dystrophic phenotype. Consequently, AZT, which has
established pharmacological profile also in the pediatric
population, is an ideal candidate for rapid re-purposing as
a DMD therapeutic.


http://www.treat-nmd.eu/research/preclinical/dmd-sops
http://www.treat-nmd.eu/research/preclinical/dmd-sops
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Materials and methods

Molecular modelling

Molecular docking of the NRTIs: AZT, 2-Me-AZT [44],
d4T and me-d4T in the P2RX7 receptor was performed
using the Molecular Operating Environment (MOE) pro-
gram [42]. The crystal structure for the giant panda P2RX7
with the ligand A804598 bound (5U1V) was downloaded
from the Protein Database [5]. Human and mouse P2RX7
peptide sequences from UniProt were aligned with the
Giant panda (Additional file 1: Figure S1) to establish
the sequence homology of the critically important regions.
The Protonate3D tool was used to add hydrogen atoms to
the protein and partial charges were calculated for the
protein atoms. Ligand binding sites were generated using
the MOE Alpha Site Finder tool, which generates
hydrophobic and hydrophilic a-spheres that are clus-
tered together to represent regions of empty space in
the protein. Ligand molecules were constructed using
the builder tool, partial charges were calculated and the
ligand molecule was energy minimized using the MMFF94x
(Merck Molecular Forcefield 94x) prior to commencing a
docking run. The Docking module was used to dock the
ligand into appropriate ligand binding sites using ‘Triangle
Matcher’ placement methodology and 300 placement poses.
The lowest energy 100 unique receptor-ligand complexes
were identified and scored according to the London dG
scoring function. They were then submitted to a final force-
field minimization step retaining 100 unique ligand receptor
complexes. The docking score, S, was calculated using the
Generalised Born Solvation model (GB/VI). This interaction
is the non-bonded interaction energy (van der Waals,
Coulomb and GB implicit solvent interaction energies)
between the receptor and the ligand. The self-energies
of both the receptor and the ligand are excluded. Energy
minimization was carried out using the conjugate gradient
method with a cutoff distance of 6 A and a convergence
criterion of 0.04 kJ/mol. The atoms of the receptor were
held fixed during the calculations.

Animals

All animal experiments were performed in accordance
with the Principles of Laboratory Animal Care (NIH
publication No. 86-23, revised 1985) and approvals of
the Institutional Ethical Review Board and the Home
Office UK (70/7479). Our experimental designs exploit
the ARRIVE guidelines [58] and the TREAT-NMD
guidelines designed to standardize experimental protocols
used as efficacy readouts to allow comparisons of parallel
efforts. Starting at 4 weeks of age, mdx male mice
(unbiased by gender) were treated by i.p. injection twice
a day either for 2 or 4 weeks with 50 mg/kg body
weight of AZT (Zidovudine; Z1900000) or for 2 weeks
with 25 mg/kg body weight of 2-Me-AZT. Dosage was
based on previous studies [12, 22, 40]. Age-matched
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control mice received the same volume of phosphate
buffered saline (pH 7.4, filter-sterilized, Sigma Aldrich).

Following the treatment, mice were killed by carbon
dioxide inhalation; serum, tibialis anterior (TA), gastro-
cnemii (GC), and heart muscles were collected for further
evaluations. Investigators were blinded to the sample
group allocation, where possible.

Cell culture

Dystrophic mdx myoblasts [75] were cultured as primary
cells in KnockOut DMEM (Invitrogen) supplemented with
10% "/, KSR (Knockout Serum Replacement, Invitrogen),
5% Y/, DHS (Donor Horse Serum, Sera Labs) and
2 mM L-glutamine.

The P2RX7 large pore assay

For dye uptake assays, cells cultured under conditions
described above were washed and incubated in the large
pore buffer (145 mM NaCl, 5 mM KCl, 1 mM MgCl,
and 10 mM Na-HEPES, pH 7.4) containing 5 uM EtBr.
Following addition of agonists with or without AZT or
me-AZT, EtBr uptake was analyzed under LSM510
confocal microscope (Zeiss) with heated stage at 37 °C
and a dipping objective, or using a POLARstar Optima
plate reader (BMG Labtech). Each experiment was repeated
at least 3 times.

Intracellular Ca2+ measurements

Myoblasts were cultured on glass coverslips in a 6-well
plate (500,000 cells/well) for 48 h under conditions
described above. Cells (70-80% confluent) were loaded
with Fura-2 AM (Molecular Probes, Oregon) in culture
medium for 15 min at 37 °C in a 95% O,, 5% CO, atmos-
phere. After 2 brief washes in the assay buffer (130 mM
NaCl, 5 mM KCl, 2 mM CaCl,, 1 mM MgCl,, 0.5 mM
Na,HPO,4, 1 mM pyruvate, 5 mM D-glucose, and 25 mM
HEPES; pH 7.4), the coverslips were mounted in a cuvette
and maintained in the assay buffer at room temperature
in an RF5301PC spectrofluorimeter (Shimadzu). Fluores-
cence was recorded at 510 nm with excitation at 340/
380 nm. At the end of each experiment the Fura 2 fluores-
cence was calibrated by addition of 13 pM ionomycin
to determine maximal fluorescence ratio followed by
addition of EGTA to complete removal of Ca®".
Cytosolic Ca?* concentration [Ca**]c was calculated
according to Grynkiewicz et al. [26]. The cells were
treated with: 300 uM BzATP; 20 pM AZT and 20 pM
me-AZT (applied 30 and 10 min prior to the addition
of BzATD, respectively). Each experiment was repeated
at least 4 times for AZT and 3 times for me-AZT.

Serum CK level measurement
The blood samples were collected, allowed to coagulate
and centrifuged for 10 min at 2500 g. Immediately after
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centrifugation, the serum was isolated and stored at -20 °C.
The creatine kinase (CK) levels were analyzed using the
Creatine Kinase Activity Assay Kit (Mak116-1kt,
Sigma-Aldrich), according to manufacturer’s instructions.

Treadmill test

A five lane treadmill (Panlab/Harvard Apparatus) equipped
with a darkened far-end area to encourage running, was
used. AZT- and PBS-treated mdx mice were challenged on
the treadmill twice (at the end of the second and the fourth
week of treatment) for 30 min according to the protocol
described by Radley-Crabb [51]. Briefly, groups of 4 mice
were settled for 2 min on the treadmill with a stationary
belt, then acclimatized for 2 min at a speed of 4 m/min,
warmed up for 8 min at 8 m/min and finally exercised for
30 min at 12 m/min. The number of stops during the last
30 min and the total period spent running for each animal
were measured.

Forelimb grip strength test

AZT- and PBS-treated mdx mice were also compared in
the forelimb grip strength test (Force Gauce FG-5000A,
Lutron Electronic) at the end of the second and the
fourth week of treatment according to the SOP (ID)
DMD_M.2.2.001. Briefly, each trial consisted of five
repetitions with at least 1 min elapsing between each of
the five determinations per animal; the grip strength
value for each mouse was recorded as the average of the
three best efforts and was then divided by the mouse body
weight.

Histochemical analysis

Sections (10 um) from frozen tibialis anterior and heart
muscles isolated from 8 weeks old AZT- and PBS-treated
mdx mice were cut on a cryostat. Sections were obtained
from the middle third of the muscle, collected on poly-L-
lysine (0.5 mg/ml) — coated glass slides and subsequently
stained with H&E and/or acid phosphatase (AP). AP
staining was used to quantify the inflammatory infiltrate
areas, exploiting the properties of AP-rich inflammatory
cells producing an azo dye when coupled with a naphthol-
based buffer. For AP staining frozen muscle sections were
kept at ambient temperature for 30'. Afterwards sections
were incubated for 1 h at 37 °C with the incubating
solution made as follow: substrate solution (naphtol
AS-B1 phosphate 0.02 M in dimethylformamide), buffer
solution (veronal acetate 0.15 M), sodium nitrite 4%
(w/v) and pararosaniline solution (pararosaniline 0.12 M
in 2 N HCI). Sections were then dehydrated in ascending
alcohols (50%, 70%, 80%, 95% X2, 100% X2), cleared with
xylene and mounted with Permount [4]. The AP-positive
(red signal) areas were captured using an automated
method through the Ariol system (Leica Biosystem) for

Page 4 of 17

an unbiased analysis and expressed as % of the total
cross-sectional area.

Immunofluorescence

10 um thick cryosections were fixed in a 4% "/,
paraformaldehyde solution in TBST for 15 min at 4 °C.
The primary antibody incubation in TBST containing
10% "/, serum was applied overnight at 4 °C and secondary
antibody incubation in TBST and 2% “/, serum containing
Hoechst fluorescent nuclear counterstain was applied
for 1 h at room temperature. Sections were mounted
using Fluor Preserve Reagent (Merk Millipore) mounting
medium.

The following antibodies were used: CD68—
MCA1957GA rat monoclonal (AbD Serotec), dilution
1:500; collagen type-IV—AB769 goat polyclonal (Che-
micon), dilution 1:500; Dystrophin- mouse monoclonal
(D8043 SIGMA Sigma Aldrich), dilution 1:500; Ly6G—
14-593 rat monoclonal (eBioscience), dilution 1:250;
P2RX4 rabbit polyclonal (Alomone), dilution 1:500. Im-
ages were captured using a confocal microscope (LSM
710, Zeiss); the whole cross-section area from TA or GC
was captured by non-overlapping 10x magnification
images.

Muscle fiber size and central nucleation were visualized
by collagen type-IV and Hoechst immunofluorescence
staining. Individual microscope fields-of-view were mon-
taged using Image] to present whole cross-sections
through the muscle. Image analysis was performed on
these composite images using Fiji, Image], open-source
software (NIH, US). A macro developed as described [58]
was used to measure morphometric variables including
the minimum Feret diameter, the total fiber number and
the centrally nucleated fiber number per analyzed area.

For P2RX4, CD68 and Ly6G detection, the whole TA
section was scanned with the confocal microscope at
10x magnification and quantification of immunofluorescent
signals was performed with a semi-automated (unbiased)
method using a thresholding macro in ImageJ and divided
by the number of fields thus obtaining a number expressed
in arbitrary units (AU), which indicates the mean fluores-
cence signal per unit area. The same method was applied to
quantify IgG permeability into muscle fibers. Dystrophin
staining to identify the revertant fibers was performed in
TA muscle sections. Hoechst nuclear counterstain was used
to help visualizing the total number of myofibers present in
each section. Revertant fibers were manually enumerated
and reported as percentage of total myofibers.

Western blotting

Total proteins from frozen TA muscles were extracted
by crushing samples with a mortar and pestle under
liquid nitrogen and further homogenization in the extrac-
tion buffer: 100 mg of muscle powder were homogenized
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in 500 pl of complete lysis M reagent (Sigma-Aldrich)
enriched with protease inhibitor cocktail 1X and phos-
phatase inhibitor cocktail 2X (all Roche). All samples
were centrifuged at 800 g for 3 min at 4 °C, and protein
concentrations were determined using a Bicinchoninic
Acid Kit (Sigma-Aldrich). 50 ug of protein was mixed
at 1:1 ¥/, ratio with Laemmli buffer 2X with 5% "/, B-
mercaptoethanol, heated for 5 min at 95 °C and chilled
on ice. Proteins were then resolved on 6%-12% "/,
SDS-polyacrylamide gels and transferred onto Hybond
PVDF membranes (Amersham). Membranes were
blocked in 5% “/, non-fat milk powder in 1x TBST
with 0.01% "/, Tween 20 (Sigma-Aldrich) for 1 h, then
probed overnight at 4 °C with primary antibody diluted
in the same blocking buffer, and finally incubated with
the appropriate horseradish-peroxidase-conjugated
secondary antibody (Sigma-Aldrich) for 1 h at room
temperature. Specific protein bands were visualized
using Laminata Western HRP Substre (Millipore) and
images were obtained using a ChemiDoc MP system
(BioRad). All densitometric analyses of protein bands
were made using exposure times within the linear range
and the integrated density measurement function of the
imaging software. The CD11b antibody, clone M1/70
rabbit (Abcam) was used at a 1:1000 dilution and GAPDH
(Santa Cruz) goat polyclonal antibody was used at 1:500
and served as the protein-loading control.

RT-qPCR

Total RNA was extracted from muscles using RNeasy
Mini Kit (Qiagen) according to the manufacturer’s
protocol. Total RNA, containing miRNA was also ex-
tracted from sera of AZT- and PBS-treated mdx mice
after 2 weeks of treatment according to the manufac-
turer’s protocol for the miRNeasy Serum/Plasma kit
(Qiagen). Quality and quantity was assessed using a
NanoDrop spectrophotometer.

1 pg of RNA was reverse transcribed using a Super-
ScriptTM VILO cDNA Synthesis Kit (Invitrogen). For
the RT-qPCR amplification, 25 ng and 12.5 ng of cDNA
(respectively for the target genes and for GAPDH control)
were used in 20 pl reaction volume prepared with TagMan
Universal Master MIX II (Applied Biosystem) or SYBR
Green PrecisionPLUS qPCR MasterMix (Primer Design).
Each sample was run in duplicate using a ViiA7 Real Time
PCR Detection System (Applied Biosystems, USA).
The expression of target genes relative to GAPDH was
determined by using the 2CT method [57] The primers
used were as follows:

Tagman probe NCBI accession numbers: CD68: NM_
001291058.1, CD163: NM_001170395.1, P2X4: NM_
011026, CD4: NM_013488.2, CD8a: NM_001081110.2,
Foxp3: NM_001199347.1, LY6G: NM_023463.3, TNF-a:
NM_001278601.1, IL6: NM_031168.1, IL 10: NM_
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010548.2, IL-12a: NM_001159424.1, COX2: NC_005089.1,
Bmp7: NM_007557.3, Mir206: NR_029593.1, Mfn2: NM_
001285921.1, GAPDH: NM_008084-2.

SybrGreen primer sequences:

TGEFb: Fwd 5-CTCCACCTGCAAGACCAT-3’; Rev
5-CTTAGTTTGGACAGGATCTGG-3

IL33: Fwd TCCTTGCTTGGCAGTATCCA, Rev
TGCTCAATGTGTCAACAGACG

iNOS: Fwd CAGTTCCGAGCGTCAAAGACCTGC-3",
Rev CAGCCCAACAATACAATACAAGATG.

IL1b: Fwd TCTGATGGGCAACCACTTAC, Rev
GTTGACAGCTAGGTTCTGTTCT

Nlrp3: Fwd TGAATCGGAACAACCTGAC, Rev
CCACCAGCAAGAAGAAGC

NE-kb: Fwd ACACGAGGCTACAACTCTGC, Rev
GGTACCCCCAGAGACCTCAT

MtDNA copy number analysis

The qPCR (absolute quantification) was performed on
total DNA isolated from snap-frozen GC muscle isolated
from AZT- and PBS-treated mdx mice after 4 weeks of
treatment tissue and externally generated standards using
Sybr green (BioRad) and primers specific for mitochondrial
DNA (mtDNA): Fwd CAGTCTAATGCTTACTCAGC,
Rev GGGCAGTTACGATAACATTG and GAPDH: FwD
TCAAGCTCATTTCCTGGTATGAC, Rev CTTGCTCAG
TGTCCTTGCTG. As two copies of GAPDH are present
in every nucleus, GAPDH amplification data were di-
vided by 2 to calculate the number of nuclei present in
each sample. The number of mtDNA copies was then
calculated by dividing the mtDNA amplification data by
the number of nuclei [7, 49]. Measurements were made in
duplicate. The analysis was carried out on 4 mice per
experiment.

Statistical analysis
For statistical analysis of cell assays a one-way analysis
of variance (ANOVA) was performed with the post- hoc
Tukey’s test (Microcal Origin 7.0). Results are reported as
mean (+/-SD), where n refers to number of independent
samples or individuals. Mann Whitney test was used for
comparisons between the two data sets (PBS-mdx vs
AZT-mdx). Two way- ANOVA with Bonferroni multiple
comparisons were used to compare the PBS and AZT
treatment in 2 and 4 weeks. For RTqPCR data sstatistical
analysis was performed on the relative expression values
with the Mann Whitney test and represented as Log2 fold
change versus the mean PBS-mdx.

A p-value of <0.05 was considered statistically significant,
and the values are reported as follows in figures: *p < 0.05,
*p < 0.01, **p < 0.001.



Al-Khalidi et al. Acta Neuropathologica Communications (2018) 6:27

Results

It has not been known whether NRTIs bind directly to
P2RX7 and, if so, where or whether they have an indirect
effect. To gain insights into these questions, we have used
molecular modeling and the recently published mammalian
P2RX7 crystal structure [31] to identify putative binding
sites for AZT (Zidovudine), to the P2RX7 molecule. AZT is
one of the most widely used NRT1Is. Moreover, the mechan-
ism of action of NRTIs at the P2RX7 is independent from
the reverse transcriptase inhibition because their methyl
derivatives retain the P2RX7 antagonism but not the NRTI
activity [22]. Therefore, we used the same approach to
compare the most likely binding sites for 2-Me-AZT as
well as for d4T and its 5’-O-methyl-modified derivative
me-d4T.

Modelling of AZT and its derivatives on P2RX7
Human and mouse P2RX7 peptide sequences from
UniProt were aligned with the giant panda (Additional
file 1: Figure S1) and showed 77% and 81% of residues
to be entirely conserved between panda and mouse and
human, respectively. Moreover, the key residues involved
in binding specific P2RX7 antagonists (e.g. A804598) are
also conserved, demonstrating that the panda structure
represents the best current template for investigating the
potential mode of action of AZT both in the mouse model
and patients.

The AZT molecule was docked into all of the 29
unique docking sites identified by the Alpha Site
Finder Tool in MOE. The optimized binding energies
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for the AZT at all these sites are summarized in the
Additional file 2: Table S1. The lowest energy position
for AZT (-89.3 k] mol ') was found to be at the
allosteric binding site identified by Karasawa and
Kawate ([31]. This is the position that several
structurally distinct antagonists (A74003, A804598,
AZ10606120, GW791343 and JNJ47965567) were
found to occupy inside the P2X7 receptor (Fig. 1a). A
comparison between the predicted location for AZT
and the experimental location for A804598 is shown
in Fig. 1b. It is clear that the AZT molecule is
predicted to occupy the same region of space as
A804598 and it fills the available space inside the
allosteric binding site well (Fig. 1c).

The most favorable binding sites for both d4T and
me-d4T were also found to be at the same allosteric site.
Their optimized energies were — 74.7 and — 80.2 kJ mol™*
respectively, very similar to the value obtained for AZT.
The potentially enhanced binding affinity of the
methylated molecule to the P2RX7 is likely to be due
to enhanced van der Waals' interaction between the
ligand and the protein. The optimized locations of d4T,
me-d4T and AZT are shown in Fig. 1d.

Docking 2-Me-AZT inside the receptor also finds the
most favorable binding site to be at the allosteric one.
The optimized energy is — 87.4 k] mol™'. Although the
addition of the methyl group means that a hydrogen
bond interaction with the residue Ala91 is lost, this is
compensated by an increase in the van der Waals’
interaction, which results in a very similar binding

Dorsal / ;

fin

Fig.1 AZT binds to the same allosteric site as canonical P2RX7 antagonists. a Surface representation of trimeric P2X7, combining the Giant panda
[PDB:5U1V] shown in grey and two chicken monomers [PDB:5XW6] shown (for illustration only) in blue and green. The approximate location of
the allosteric site formed by a groove between two of the adjacent monomers is highlighted by the black box. b The optimized location of AZT
(orange) compared with the experimental location of A804598 (cyan). Both molecules occupy very similar regions of space. ¢ The optimized location of
the AZT molecule inside the allosteric pocket (light blue). d The optimized locations of AZT (orange), d4T (green) and d4T-me (white). e The optimized
locations of AZT (orange) and me-AZT (magenta). H-bond interactions are shown via a dotted line
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energy to the one obtained for AZT. The optimized
locations for these molecules are shown in Fig. le.

AZT inhibits both the P2RX7 ion channel function and large
pore formation in mdx myoblasts

The modelling data clearly points to AZT and 2-Me-AZT
binding to the P2RX7 allosteric site. We tested whether
these drugs inhibit this receptor in dystrophic muscle
cells. P2RX7 functions as a Ca>* permeable ion channel
and, upon prolonged ATP stimulation, as a large pore. We
have previously shown that A74003 can inhibit both of
these functions in mdx cells [73, 75]. Pre-incubation of
dystrophic myoblasts with AZT at 1, 5, 10 and 20 pM
resulted in a concentration-dependent inhibition of the
large pore opening measured by the EtBr uptake (Fig. 2a).
While 1 pM AZT had no effect on channel or pore func-
tions the inhibitory effect appeared to reach saturation at
around 10-20 uM and, at these concentrations, AZT also
blocked the Ca®* influx (Fig. 2b). Furthermore, 20 puM
me-AZT had the same inhibitory effect on the Ca®* influx
as equimolar AZT. Importantly, the ~50% inhibition
evoked by AZT was comparable to the effects obtained
previously using other antagonists [75]. Additionally, cells
incubated with AZT or 2-Me-AZT were observed to
retain a greater degree of elongation and adherence
compared to cells exposed to the specific P2RX7 antagonist
(data not shown), indicating that these drugs are better
tolerated by muscle cells at inhibitory concentrations.
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EtBr uptake (% of Digitonin)
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T

Fig. 2 AZT inhibits P2RX7 large pore and channel functions in mdx
myoblasts a EtBr uptake (expressed as % permeabilization evoked by
50 pg/ml digitonin) following 30 min exposure to 1 mM BzATP
with and without the specified concentrations of AZT. Note the
concentration-dependent inhibition up to 20 uM of AZT. One-way
ANOVA, df =5,n=6, p=0008. b 1 mM BzATP-stimulated Ca®" influx
was inhibited in the presence of 20 UM AZT or me-AZT. One-way
ANOVA, df =3, n=4, p=0.001. Error bars show mean + SD, **p <0 .01
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AZT treatment reduces skeletal and heart muscle
inflammation in mdx mice in vivo

To mimic the clinically relevant situation, treatment and
analyses were performed at the age when mdx mice
show the typical muscle degeneration and regeneration
and the inflammatory cell infiltration pattern akin to
human pathology. The 4 week old mdx males were
injected i.p. with 50 mg/kg body weight AZT twice a day
for 2 or 4 weeks. The weight gain profiles of mice treated
with AZT showed no difference to the PBS-treated controls
(Additional file 3: Figure S2). Inflammatory muscle infiltrates
were evaluated in tibialis anterior (TA) muscles isolated
from mdx mice injected with AZT or PBS for 4 weeks.
H&E (Fig. 3a) and acid phosphatase (AP) staining (Fig. 3b)
showed that AZT treatment significantly decreased the
inflammatory infiltrations surrounding the necrotic muscle
fibers. The morphometric AP analysis (Fig. 3c) revealed
a statistically significant reduction in the AZT-treated
mice (% of the inflammatory area in PBS-mdx = 0.68%
vs. AZT-mdx = 0.35%; p =0.0121; % reduction = 48,1%).
Importantly, the reduction in inflammatory infiltrations
was already clearly noticeable following 2 weeks of
treatment. It involved significantly decreased levels of
mRNAs for several inflammatory markers in both TA and
GC muscles (TNFa: AZT-mdx vs PBS-mdx p =0.038;
IL12a: AZT-mdx vs PBS-mdx p = 0.017) (Additional file 4:
Figure S3D).

Transcript levels of genes encoding inflammatory cell
markers and associated with the innate and adaptive
immune responses were quantified by RT-qPCR. Among
the cell markers, the CD68 transcript (which predomi-
nates in macrophages) and the Ly6G neutrophil-
specific transcript levels were all significantly reduced
in the AZT-treated mdx mice (CD68;AZT-mdx vs PBS-
mdx p =0.026, LY6G;AZT-mdx vs PBS-mdx p =0.026)
(Fig. 4a). The ratio of pro-inflammatory to pro-
regenerative macrophages (M1/M2), defined by the
relative CD68 to CD163 expression was not altered sig-
nificantly (Fig. 4b).

Subsequent immunofluorescence analysis of these cell
markers in muscle sections both confirmed and extended
these findings. It revealed that already after 2 weeks of
AZT treatment the numbers of macrophages, identified by
P2RX4 staining, were significantly decreased (Additional
file 4: Figure S3 B and C) (PBS-mdx =465 AU, AZT-
mdx =249 AU; p=0.038; % reduction =46,32%). At
4 weeks the CD68+ cell numbers were also reduced
(PBS-mdx = 647,8 AU, AZT-mdx = 189,4 AU; p = 0.015;
% reduction = 70%, Fig. 4c).

The AZT-evoked reduction of neutrophils was also
confirmed in immunofluorescent analyses of the LY6G+
population in TA muscle samples collected following
4 weeks of treatment (PBS-mdx =699 AU, AZT-mdx =
156 AU; p=0.015 % reduction=77%, Fig. 4d).
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Fig. 3 AZT decreases inflammatory infiltrates in mdx muscle. Representative images of TA sections following 4 week treatment with PBS or AZT,
stained with H&E (a) and AP (b). AZT-mdx shows smaller inflammatory infiltrate areas than PBS-mdx. Scale bar =100 pm. The AP signal indicating
inflammatory cells (c), was quantified using the automated image analysis system (Ariol) with the AP positive area calculated as % of the total

cross-sectional area. Mann Whitney test, n=6, p=0.012. *p < 0.05
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Furthermore, levels of the CD11B leukocyte marker were
analyzed by immunoblot in GC muscles collected after
2 weeks of treatment. This analysis demonstrated a signifi-
cant, 58% reduction in CD11B protein levels in AZT-
treated animals (PBS-mdx = 1.075, AZT-mdx = 0.446; p = 0.
003; Fig. 4e).

Analysis of specific cytokine transcripts in muscles
(Fig. 5) revealed that TNFa levels were significantly
decreased in the AZT-treated mdx group, consistent
with the functional link between TNFa and P2RX7
(TNFa: AZT-mdx vs PBS-mdx p =0.002). Moreover,
a significant reduction of the Nlrp3 transcript levels
in AZT-mdx muscle confirmed the Fowler et al,
[22] data that AZT suppresses the Nlrp3 inflamma-
some by blocking P2RX7activity (Nlrp3: AZT-mdx vs

PBS-mdx p =0.03). The IL1b and IL6 expressions
did not differ between treated and control groups
(Fig. 5). However, expression levels of the inducible
forms of cyclooxygenase COX2 and the iNOS nitric
oxide synthase genes were found significantly de-
creased in the AZT-treated mdx samples, confirming
that the AZT treatment affects the inflammatory milieu of
mdx muscles (COX2: AZT-mdx vs PBS-mdx p =0.032;
iNOS: AZT-mdx vs PBS-mdx p =0.03). This was further
confirmed by the decreased expression of NF-kb in AZT-
treated muscles (NF-xb: AZT-mdx vs PBS-mdx p = 0.03).
This short AZT treatment did not alter the expression
levels of TGFb and BMP-7 transcripts used here as previ-
ously identified markers of the early fibrotic phenotype in
mdx muscles [58].
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Fig. 4 AZT modulates the immune responses in mdx mouse muscle. Relative expression levels of inflammatory marker RNAs in gastrocnemii following

4 week AZT treatment (a). The data are expressed as Log2 fold change versus the mean PBS-mdx. Mann Whitney test, n = 5-6. CD68;AZT-mdx vs PBS-mdx
p=0026, LY6GAZT-mdx vs PBS-mdx p = 0.03. b Comparison of M1 to M2 macrophages calculated as the ratio between CD68 and CD163 expression.
Error bars show mean + SD. Mann Whitney test, n = 4-6. Immunofluorescent analysis of inflammatory cell subpopulations in TA sections following 4 week
AZT treatment. Representative images of CD68 (c) and LY6G staining (d) are shown while scatter plots demonstrate individual values of
immunofluorescent signal levels in respective AZT treated and control muscles expressed in arbitrary units: pixel intensity/total area. Error bars
show mean + SD, Mann Whitney test, n =6. CD68; PBS-mdx vs AZT-mdx p = 0.015, LY6G; PBS-mdx vs AZT-mdx p=0.015. e Western blot of
CD11b in TA muscles following 2-week treatment with GAPDH used as the protein loading control. The graph shows the individual values of
the CD11b protein normalized to GAPDH, error bars show mean = SD. Mann Whitney test, n=4, p =0.003. *p < 0.05, **p < 0.01

Concerning the adaptive immune response markers
following this short-term treatment with AZT in the
mdx mice the reduction of the CD8 and CD4 T-cell
transcripts did not reach statistical significance (Fig. 4a).
While ablation of P2RX7 gene and broad purinergic
inhibition with ox-ATP has previously been shown to
increase the level of T regulatory (T,.g) cells [24, 58],
the AZT treatment applied here did not significantly

increase the IL 12 but reduced the Foxp3 expression levels
(Foxp3: AZT-mdx vs PBS-mdx p =0.002). Expression of
IL10 and IL 33 transcripts, the latter found important for
muscle repair [36], was also unaltered (Fig. 5).

DMD patients who survive to their third decade present
with cardiomyopathy and heart failure [11, 38]. Therefore,
hearts were studied to investigate the impact of AZT
treatment at an early stage of disease. H&E (Fig. 6a) and
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Fig. 5 AZT treatment impacts on cytokine and inflammasome pathway gene expressions. Results of gPCR expression analyses of indicated markers in
GC muscles. The data are shown as Log? fold change versus the PBS-mdx and statistical analysis was performed on the relative expression values with
the Mann Whitney test, n =6, TNFa;,AZT-mdx vs PBS-mdx p = 0.002, Foxp3;AZT-mdx vs PBS-mdx p = 0.002, INOS;AZT-mdx vs PBS-mdx p = 0.03,
COX2,AZT-mdx vs PBS-mdx p = 0.032, NIrp3;AZT-mdx vs PBS-mdx p = 0.016, NFkb;AZT-mdx vs PBS-mdx p=0.03.. n=6; *p < 0.05 **p < 0.01
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Fig. 6 AZT treatment reduces inflammatory infiltrates and expression of inflalmmatory markers in mdx hearts. Representative images of heart muscle sections
following 4-week treatment with AZT or PBS stained with H&E (a) and AP (b). ¢ The AP signal indicating inflammatory cell infiltration was quantified using
the Ariol image analysis system with the AP positive area calculated as % of the total cross-sectional area. Error bars show mean + SD, Mann Whitney test,
n=4.d gPCR analysis of specified transcript expressions in heart muscles in response to AZT treatment. Scale bar =100 um. Mann Whitney test, n =6, CD68:
AZT-mdx vs PBS-mdx p = 0.029; TNFa: AZT-mdx vs PBS-mdx p = 0008; INOS: AZT-mdx vs PBS-mdx p = 0.009. *p < 0.05; **p < 001
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Fig. 7 AZT treatment increases sarcolemma stability in mdx muscle. a Representative images of IgG penetration into damaged TA muscle fibers
from mdx mice treated for 2 weeks with AZT or PBS and the graph below shows enumeration of IgG penetration represented as pixel intensity/total
unit of area. Error bars show mean + SD, Mann Whitney test, n=3, p <0.05 b Serum CK levels in AZT-treated mice (4-week treatment) compared to
controls. Error bars show mean + SD, Mann Whitney test, n = 5-6, p = 0.004. ¢ gPCR analysis of Mir206 in serum samples from PBS or AZT treated mice
following 2-week treatment. Error bars show mean + SD. Mann Whitney test, n =3, p = 0.029. *p < 0.05, **p < 0.01
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AP (Fig. 6b) staining showed the presence of reactive
inflammatory infiltrates in heart muscles of 8 week old
mdx mice. The inflammation area was reduced by the
AZT treatment, albeit the values did not reach significance
probably due to the high variability in the controls and the
small sample size (% inflammatory area PBS-mdx = 0,19%,
AZT-mdx = 0,08%; % reduction = 57%, Fig. 6¢). Neverthe-
less, RTq-PCR analysis demonstrated a highly statistically
significant decrease of CD68 macrophage marker as well
as TNFa and iNOS transcript levels in hearts of AZT-
treated mdx mice (Fig. 6d), which was consistent with the
findings in skeletal muscles (CD68: AZT-mdx vs PBS-mdx
p =0.029; TNFa: AZT-mdx vs PBS-mdx p = 0.008; iNOS:
AZT-mdx vs PBS-mdx p = 0.009).

The AZT treatment increases sarcolemma stability and
impacts muscle strength in vivo

AZT treatment resulted in significantly improved sarco-
lemma integrity: An analysis of membrane permeability
using IgG influx into TA muscle revealed a significant
reduction in IgG-positive fibers already after 2 weeks of
treatment (IgG pixel intensity PBS-mdx =14.7 AU,
AZT-mdx =5.14 AU) (Fig. 7a). After 4 weeks of AZT
treatment there was a significant, 60% reduction in
serum CK level (Fig. 7b), indicative of less sarcolemma
damage and therefore less leakage of this intracellular
muscle enzyme (serum CK levels: PBS-mdx = 864.37
Ul/l, AZT-mdx =351.72 Ul/l; p=0.004). The serum
levels of miR-206, dystroMir, in mdx mice have been
found to be less affected by movement compared to CK

[39] and therefore this dystroMir has been proposed as
a stable molecular marker of muscle damage. Here, the
serum levels of Mir-206 were significantly decreased in
the AZT-treated mdx mice after 2 weeks of treatment
(Fig. 7¢).

Muscle morphological parameters such as the Minimum
Feret’s diameter and the number of fibers with central
nucleation were evaluated in TA muscle sections from
AZT- and PBS-treated mdx after both 2 and 4 weeks of
treatment, but no statistically significant differences
between the groups were observed (Additional file 5:
Figure S4). Revertant fibers found in dystrophic muscle
arise due to spontaneous exon skipping events, taking
place in proliferating myogenic cells activated by muscle
degeneration/regeneration cycles. Fewer revertant fibers
have been used as an indicator that a muscle underwent
fewer such cycles [47, 56]. The revertant fiber reduction
was not statistically significant but no increase indicated
that AZT treatment is not accelerating muscle damage
(Additional file 5: Figure S4).

In order to establish if AZT would affect the muscle
function in mdx mice, muscle strength and resistance
were evaluated at 2 and 4 weeks of treatment using the
forelimb grip strength and 30 min treadmill run tests.
The single 30 min treadmill exercise session has previously
been shown suitable for proof-of concept studies in adult
mdx mice [51]. The 4 week AZT treatment improved grip
strength compared to the 2 week one while no improve-
ment with age was observed in the PBS-treated mice
(Fig. 8a). Moreover, 50 and 75% of AZT-mdx mice in
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Fig. 8 AZT improves muscle strength in mdx mice. a Forelimb grip strength measurements in control and AZT-treated mdx mice at the end of
the second and the fourth week of treatment showed a significant improvement in the AZT group (Error bars show mean + SD, two way-ANOVA,
df =7, n=8, Bonferroni's test, AZT:2wks vs AZT:4wks, p =0.0089). b The number of stops per treadmill session in the analyses performed at the
end of the second and fourth week of treatment. Error bars show mean + SD, two way-ANOVA, df =7, n=28), c Time (in minutes) spent by
individual mouse on the treadmill (Error bars show mean + SD, two way-ANOVA, df =7, n=8) and d Number of PBS- or AZT-treated animals,
which completed or not the 30 min treadmill session at the end of the second and fourth week of treatment (Pearson Chi-Square test, df =2,
n=28). *p <001

the 2 and 4-week treatment groups, respectively completed
the 30 min treadmill run compared to only 25 and 62% of
PBS-treated mdx mice, even though the result did not

1500~ reach the statistical significance (Fig. 8b-d). The differences
in the number of stops and the total time on the treadmill
§ o did not reach statistical significance following this short
E 1000+ —_— treatment regimen.
§ _::_ % AZT had no acute detrimental effect on mitochondria and
< —_— T 2-Me-AZT retains anti-P2RX7 activity
g 500+ It is known that NRTIs, including AZT, can affect
s mtDNA -specific polymerase (polymerase-gamma) activity,
which can lead to deficiencies in mtDNA maintenance
0 T T and transcription, and consequently mitochondrial abnor-
St oF malities, especially in tissues requiring high energy, such
09‘6\ é’ s as muscles. Notably, 100 mg/kg/day ip. used here is
R somewhat higher than the equivalent human i.v. therapeutic
Fig. 9 AZT treatment did not induce mitochondrial toxicity in max dose (e.g. 8.1 vs. 6 mg/kg). Therefore, we analyzed the
mice. MtDNA copy number per cell determined using gPCR number of mtDNA copies in TA muscles from animals
(absolute quantification method) in PBS- and AZT—treated mouse that received AZT treatment for 4 weeks. No differences
muscle. Error bars show mean + SD, Mann Whitney test, n=4

in the amount of mtDNA copies were observed (Fig. 9),
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indicating that this AZT treatment had no immediate
detrimental effect on the mitochondrial replication.

Nevertheless, appreciating the possibility of side effects
caused by a chronic AZT treatment, we performed a
preliminary study with 2-Me-AZT, a compound shown
not to affect DNA polymerases [22, 44] but to retain its
anti-P2RX7 activity (Fig. 2b). Following a 4-week treatment,
RT-qPCR analysis of key inflammatory cell markers (CD68,
PRX4, LY6G, Foxp3, TNFa) showed that this compound
triggers a significant reduction of these inflammatory
parameters in the treated mdx muscle (CD68: AZT-mdx vs
PBS-mdx p = 0.03; LY6G: AZT-mdx vs PBS-mdx p = 0.026;
TNFa: AZT-mdx vs PBS-mdx p =0.002) (Additional file 6:
Figure S5). This result confirms the observations of Fowler
et al, [22] and indicates that this drug and/or derivatives
of other NRTIs could be developed as safer alternatives
for treatment of DMD and other diseases involving
over-activation of P2RX7.

Discussion

Loss of dystrophin disrupts various downstream processes.
Recent studies demonstrated that such abnormalities can
be good targets for therapeutic interventions [24, 25, 35, 46,
58, 67, 68, 70, 72]. Unlike exon skipping or Ataluren, aimed
at restoration of dystrophin, these treatments are not
constrained by the causative DMD mutation. Therefore, all
DMD patients rather than just a small subpopulation might
benefit from these therapies. Moreover, these treatments
may be effective in alleviating multiple abnormalities:
muscle cell damage, inflammation, cognitive impairment
and bone defects, which all make a substantial contribution
to the clinical picture of DMD.

We demonstrated here that P2RX7 inhibition using a
short treatment with AZT at the peak of disease severity
in mdx mice attenuated the phenotype without any
detectable side effects. The recovery was evident in key
pathological parameters in treated leg and heart muscles
such as reduced serum CK levels, decreased inflammatory
markers and increased muscle strength in vivo.

The interest in P2RX7 as a therapeutic target in DMD
results from the recent discovery that dystrophinopathy
causes functional alterations of this purinoceptor and that
the genetic ablation and pharmacological inhibition of
P2RX7 in mdx mice produced significant improvements
in key functional and molecular disease parameters
[24, 58, 74]. In addition to the alleviation of muscle disease
and decreased inflammation, reduced non-muscle symp-
toms (CNS and bones) were also evident [41, 58].

The wide therapeutic impact of P2RX7 inhibition reflects
convergence of P2RX7 on multiple pathological mecha-
nisms of DMD: P2RX?7 inhibition reduces dystrophic muscle
cell death directly [54, 73, 75], prevents the MMP-evoked
damage [74] and also inhibits chronic inflammation [17, 24].
The association of P2RX7 with inflammation and immunity
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is long established. P2RX7 is involved in a range of
responses including cytokine release, lymphocyte prolifer-
ation, intracellular pathogen killing, stimulation of gut
mucosal immunity and even pain perception [15, 17, 43].
Not surprisingly, P2RX7 activation has been linked with a
number of human diseases with an inflammatory compo-
nent [22, 64, 66, 69, 71]. However, there is increasing
evidence that P2RX7 also plays a pivotal role in central
nervous system pathologies and in psychiatric disorders,
where the link with inflammation is not always clear [61].
Indeed, the P2RX7 expression can be modulated in
non-immune cells and it changes in disease states. For
example, in addition to the aforementioned increased
P2RX7 expression and function in dystrophic muscle
[73-75], over-expression of this purinoceptor is evident
in various human cancer cells [1, 16, 18].

Given the range of diseases involving this receptor,
P2RX7 has attracted a lot of attention as a therapeutic
target and specific antagonists have been developed.
However, none of these are currently available as a drug.
Moreover, each would need to undergo a lengthy and
expensive evaluation process prior to use in a pediatric
population such as for DMD.

Therefore, we studied AZT’s potential to ameliorate
DMD symptoms by blocking the P2RX7-evoked effects.
We established, through molecular modelling, that both
AZT and its methylated derivative could potentially bind
with high affinity to the same allosteric site found to be
occupied by the canonical antagonists. This site is distinct
from the ATP-binding pocket and can accommodate
structurally-similar but diverse molecules, mostly through
hydrophobic interactions. Allosteric binding of these
compounds prevents narrowing of the drug-binding
pocket, a process crucial for opening the P2RX7 channel.
Interestingly, the equivalent pocket in other P2X receptors
is too narrow to accommodate the P2RX7 antagonist and
therefore the size difference confers binding specificity of
P2RX?7 inhibitors [31]. In vitro assays confirmed that AZT
could prevent the channel and the large pore opening in
dystrophic myoblasts.

Using the most widely exploited animal model of
DMD, we provided evidence that even a short (2 weeks)
treatment with AZT causes P2RX7 inhibition in vivo.
This was evidenced by the decreased TNFa levels, the
production of which is P2RX7-dependent [10]. Given
that pharmacological interference with TNFa has been
shown to reduce DMD pathology [25], reduction of this
inflammatory mediator is also clinically important. In-
deed, AZT therapy improved muscle functions and
sarcolemma stability measured by reduced CK and
MiR206 serum levels and inhibited influx of IgG into
muscle fibers. The most evident beneficial effect of AZT
was a significant dampening of inflammation. AZT de-
creased the inflammatory milieu of dystrophic muscles
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chiefly by influencing the innate response. The inflam-
matory cell repertoire analysis in treated mdx skeletal
and cardiac muscles showed that the treatment led to a
reduction of markers for neutrophil and macrophage
populations, which was noticeable just after 2 weeks of
treatment and enhanced at 4 weeks.

Significantly reduced neutrophil marker Ly6G levels
were found in AZT-treated samples, which corre-
sponded with our previous findings in mdx/P2RX7
double mutant mice [58]. Hodgetts et al. [29] showed
neutrophil depletion to be very effective in reducing
myofibers necrosis in young mdx mice. Neutrophil-
mediated skeletal muscle injury seems dependent on the
free radical production and is tightly associated with the
cytokines profile [29, 53]. Interestingly, in AZT-treated
mdx we found remarkably reduced transcript levels of
TNFa and of the inducible forms of COX and NOS
(COX2 and iNOS). AZT may trigger neutrophil down-
regulation and thus reduce inflammation by directly
inhibiting P2RX7 in these cells: A recent study showed
that both human and murine neutrophils express
functional P2RX7, activation of which leads to NLRP3
inflammasome activation and IL-1b secretion [32]. More-
over, P2RX7 ablation has a widespread impact on the
inflammatory cell migration, including neutrophils [33]
and this might also explain the reduced neutrophil load in
dystrophic muscles.

AZT treatment did not significantly reduce the levels of
CD4+ or CD8+ T-cells and this short term treatment did
not unequivocally affect expression levels of Foxp3 and
IL12a, markers of the T, cells. Given that our previous
studies demonstrating this enhancement of muscle T,
involved the genetic ablation of P2RX7 or global puriner-
gic inhibition [24, 58], further experiments are needed to
establish whether sustained AZT treatment or different
dosing regimen would result in a shift in T-cell responses.

The reduction of inflammatory cell infiltrations and in-
flammatory markers expression in cardiac muscles follow-
ing AZT treatment was also in agreement with our
previous data in mice with blocked P2RX7 receptors [24,
58]. This finding is of clinical importance because heart fail-
ure becomes the most common cause of death in DMD pa-
tients surviving longer due to advances in general care [11].

Taken together, these results demonstrate that AZT,
targeting P2RX7 functions in both muscle and inflamma-
tory cells, reduces the production of pro-inflammatory me-
diators thus leading to reduced inflammation with fewer
lymphocytes, neutrophils and macrophages within mdx
muscles. There is also reduced muscle membrane damage
and slightly improved muscle strength in AZT-treated dys-
trophic mice. In experimental paradigms not inducing dys-
trophin exon skipping, such as one described here, fewer
revertant fibers have been used as an indicator that a
muscle underwent fewer degeneration/regeneration cycles
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[47, 56]. Not unexpectedly, given the short treatment
period, no significant reduction in the revertant fiber count
was found. However, this result indicated that AZT has no
negative effect as any disease acceleration should be quickly
reflected in muscles’ degeneration/regeneration history.

AZT is a mainstay in the prevention of mother-to-child
HIV transmission. A recent extensive survey on the safety
of AZT in the pediatric population in the EU and Thailand
has shown AZT to be a well-tolerated drug with few side
effects [65], thus confirming earlier findings in the
pediatric population [50] High NRTI dosage can interfere
with the eukaryotic mtDNA -specific polymerase. However,
these side-effects occur in long term treatment regimens
and are reversible: Elimination half-life following i.v.
administration is ~ 1.1 h [6, 23]. Notably, 100 mg/kg/day i.p.
used here is higher than the equivalent human iv. dose (8.1
vs. 6 mg/day). While this treatment had no detrimental
effect on mitochondria, which are typically the most
sensitive organelles in NRTIs therapy, a longer-term
and different dosing regimen would help correlating
the therapeutic impact and potential side-effects of
AZT fully. Appreciating the possibility of side effects of a
chronic AZT treatment, we also tested its methyl derivative
(2-Me-AZT) not affecting DNA polymerases [22, 44]
but found by us to bind the same allosteric site and to
retain anti-P2RX7 activity. Following a 4-week treatment,
we demonstrated that 2-Me-AZT caused a significant
reduction of inflammatory parameters akin to the effects
of AZT.

Conclusions

In conclusion, AZT emerges as a P2RX7 inhibitor effective
in reducing harmful inflammation and potential to improve
muscle function in dystrophic mdx mice. Given extensive
safety and pharmacokinetic data available following decades
of AZT use in humans, also in children and neonates, this
drug should be considered for trials in DMD. Unlike other
experimental drugs, it could be used from the very early
stage of this debilitating and ultimately lethal disease, where
any treatment is likely to be most effective.
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Additional file 4: Figure S3. Impact of the 2-week AZT treatment on
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