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Abstract

neurons under the HD pathology.

microscopy

We previously reported transcriptional repression-induced atypical cell death of neuron (TRIAD), a new type of
necrosis that is mainly regulated by Hippo pathway signaling and distinct from necroptosis regulated by RIP1/3
pathway. Here, we examined the ultrastructural and biochemical features of neuronal cell death in the brains of
human HD patients in parallel with the similar analyses using mutant Htt-knock-in (Htt-KI) mice. LATST kinase, the
critical regulator and marker of TRIAD, is actually activated in cortical neurons of postmortem human HD and of
Htt-KI mouse brains, while apoptosis promoter kinase PIk1 was inactivated in human HD brains. Expression levels of
YAP/YAPdeltaC were decreased in cortical neurons of human HD brains. Ultra-structural analyses revealed extreme
enlargement of endoplasmic reticulum (ER), which characterizes TRIAD, in cortical neurons of human HD and those
of Htt-KI mice. These biochemical and morphological results support that TRIAD occurs in human and mouse
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Introduction

The nature of cell death in neurodegenerative diseases
remains obscure. A number of clinical trials against
neurodegenerative diseases using anti-apoptosis or
anti-necroptosis chemicals were so far unsuccessful.
The therapeutic effect of rapamycin on mouse model
of amyotrophic lateral sclerosis (ALS) is controversial
[16, 18]. Minomycin, which has anti-apoptosis and
anti-inflammatory effects and whose therapeutic effect
on ALS mouse model was reported [19], caused not-
able deterioration instead of amelioration in human
clinical trial of ALS patients [2]. Though necrosis,
apoptosis or autophagic cell death has been implicated
in neurodegeneration, actual phenotype of neuronal
death in vivo, actual molecular mechanisms to explain
the cell death in vivo, and relative contribution of
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different prototypes of cell death to neurodegeneration
in vivo are still largely unknown.

We proposed previously that the atypical necrosis
induced by transcriptional repression (TRIAD) defined
by extremely enlarged and unstable ER with intact
mitochondria and nuclei, could be a prototype of cell
death in the HD pathology [3]. The necrotic cell death
(or Type III cell death in the category by Schweichel
and Merker) [15] was induced by the RNA-polymerase
inhibitor, a-amanitin, and suppressed by new isoforms
of YAP [3, 8] that interacts with transcription factor
TEAD or p73 as a critical mediator of Hippo signaling
pathway.

The molecules involved in TRIAD were comprehen-
sively analyzed using Drosophila genetic screen, and
the identified genes were integrated to the network
executing TRIAD [9]. The analysis newly identified
that splicing disturbance caused by decreased expres-
sion of multiple hnRNPs additively enhanced TRIAD
[9]. Moreover, we revealed that mutant Htt-Exonl ex-
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pression at a physiological level induces TRIAD in primary
cortical neurons and that targeting of TEAD/YAP-
dependent TRIAD recovers HD mouse models [8].

In the previous works, we also revealed that two ki-
nases, LATS and Plkl, switch apoptosis and necrosis
(TEAD/YAP-dependent necrosis TRIAD) in neurons
through the balance of cytoplasmic and nuclear YAP
and the switch of transcription factors interacting with
YAP [8]. Activation of Plkl increases the ratio of apop-
tosis in relevance to necrosis, while activation of LATS
increases the ratio of necrosis but suppresses apoptosis
in neurons in which proliferative cell-specific Plkl is
usually inactive [8]. In this scheme, single activation of
LATS without Plk1l more strongly promotes necrotic cell
death TRIAD [8].

However, the questions remain on how activities of
these kinases are actually changed in vivo in human HD
and whether TRIAD-specific morphological changes
actually occur in vivo in human HD brains. Although
we previously reported aberrant expression of YAP-
deltaC in motor neurons of ALS model mice [12]
while we could not directly indicate the existence of
TRIAD by ultra-structural analysis of the cell death
or by new markers of TRIAD such as LATS1 and
Plk1 that had been reported later.

In this study we employed these new tools and ad-
dressed whether TRIAD occurs in the brains of human
HD patients and mutant Htt-KI mice. The results obvi-
ously supported that TRIAD actually occurs in human
HD brains.

Materials and methods

HD model mice

Mutant Htt-KI mice are a generous gift from Prof. Marcy
MacDonald (Massachusetts General Hospital, Harvard
Medical School) [17] in which human mutant Htt carrying
111CAG repeats is integrated. Their original genetic back-
ground was 129SvEv/CD1 (mixed background by crossing
129SvEv male and CD1 female) [17]. However, their
genetic background had been changed to C57BL/6
when we received mutant Htt-KI mice. Furthermore,
we crossed the male mutant Htt-KI mice with female
C57BL/6 mice for more than 5 generations before this
study. Accordingly, C57BL/6 mice were used as nega-
tive controls in this study.

Human brains

We obtained informed consent and ethics committee
approval (Sagamihara National Hospital, NCNP and
TMDU) to examine autopsy specimens from three HD
patients and three control patients without neurological
disorders (lung cancer, leukemia, and cholangiocarci-
noma). The diagnosis of HD was confirmed by genetic
analysis of CAG repeat of Htt gene. Frontal cortex from
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five HD patients and two PSP patients were used for
ultra-structural analyses. Frontal and parietal cortex
tissues of three HD patients and five non-neurological
disease patients were used for immunohistochemistry.

Western blotting

Brain tissues were dissected from Htt-KI mice or litter-
mate control mice and washed three times with ice-cold
PBS and dissolved in lysis buffer containing 62.5 mM Tris—
HCI (pH 8.0), 2% (w/v) SDS, 2.5% (v/v) 2-mercaptoethanol
and 5% (v/v) glycerol. The protein concentration was quan-
tified using the BCA method (Micro BCA Protein Assay
Reagent Kit, Thermo Fisher Scientific, MA, USA). Primary
and secondary antibodies were diluted for immunoblotting
as follows: rabbit anti-LATS1 (1:2000, Cell Signaling Tech-
nology, MA, USA, #3477), rabbit anti-phospho-LATS1
(Ser909, 1:5000, Cell Signaling Technology, MA, USA,
#9157), mouse anti-PLK1 (1:2000, Invitrogen, MA, USA,
#37-7000), anti-phospho-PLK1 (Thr210, 1:30000, Abcam,
Cambridge, UK, #ab155095); HRP-conjugated anti-mouse
IgG (NA931VA) and anti-rabbit IgG (NA934VS) (both of
them, 1:3000, GE Healthcare, Buckinghamshire, UK). Anti-
bodies were diluted in Can Get Signal (TOYOBO, Osaka,
Japan). ECL prime (GE Healthcare, Buckinghamshire, UK)
was used to detect the bands using LAS4000 (GE Health-
care, Buckinghamshire, UK) [8].

Immunohistochemistry

Immunohistochemistry was performed as previously de-
scribed with minor modifications [8]. After deparaffiniza-
tion, rehydration, and antigen retrieval (microwaved in
10 mM citrate buffer, pH 6.0, at 100 °C, 5 min, three
times), the sections were incubated sequentially with 0.5%
TritonX-100 in PBS for 30 min at room temperature (RT)
to membrane permeation, with 10% FBS for 60 min at RT,
with primary antibodies: rabbit anti-phospho-LATS1
(Ser909, 1:100, Cell Signaling Technology, MA, USA,
#9157), rabbit anti-phospho-PLK1 (Thr210, 1:100, Abcam,
Cambridge, UK, #ab155095), mouse anti-MAP2 (1:200,
Santa Cruz, TX, USA, #sc-32791) and mouse anti-NeuN
(1:100, Abcam, Cambridge, UK, ab104224) one or two
overnight, and finally with secondary antibodies: Alexa
Flour 488-labeled anti-mouse IgG (1:1000, Invitrogen,
MA, USA) and Cy3-labeled anti-rabbit IgG (1:500,
Jackson ImmunoResearch, PA, USA) for 1 h at RT.
Images were acquired by confocal microscopy: Olympus
FV1200 (Olympus, Tokyo, Japan) and LSM710 (Carl
Zeiss, Oberkochen, Germany).

Signal acquisition from immunohistochemistry

Immunohistochemistry images obtained by Olympus
FV1200 were next analyzed by Image-] (NIH, MD USA:
https://imagej.nih.gov/ij/). Signal intensities (AU/pixel)
of YAP, YAPdeltaC, phospho-LATS1 and phospho-
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PLK1 in each neuron (NeuN-positive or MAP2-positive ~ was used as the representative value for a patient or a
cell) were quantified by free-hand-surrounding the control, and statistical analysis was performed between
shape of neuron with Image-J. From human immuno- 3 patients and 3 controls.

histochemistry images 4 visual fields were randomly

selected, and 100 neurons in total were analyzed. Back-  Electron microscopy

ground signals were collected from 8 areas that did not  Electron microscopic observation was performed ba-
include cells, and the signal intensity of each neuron sically following the method described previously [8].
was subtracted with the mean value of the background  After deparaffinization and rehydration, tissues were
signals. The mean value of the signal intensities of 100  washed with PBS three time, fixed in 2.5% glutaralde-
neurons after subtraction of the background signals hyde/0.1 M phosphate buffer (PB) (pH7.4), and
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Fig. 1 LATS1 and PLK1 are activated in Htt-KI mice. a Chronological analyses of LATS1, PLK1 and their phosphorylated forms by western blot with
cerebral tissues including striatum from Htt-KI and their background mice (WT). The right graphs show the ratios of pLATS1/LATS1 and pPLK1/PLK1 in
western blot analyses that are corrected by the value of WT at 12 weeks. b Immunostaining of striatal tissues from mutant Htt-Kl (111Q) and their
background mice with anti-phospho-LATS1 and anti-phospho-PLK1 antibodies. The lower graphs show relative intensities of immunostains
in squared areas after subtraction with background stain signals. Mean value of signal intensity/area from twenty visual fields was used
for N=1. The bar graphs show mean+ SEM. * p <0.05 in Student’s t-test
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treated with 1% 0s0,/0.1 M PB for 2 h. Fixed tis-
sues were dehydrated through a graded ethanol series
and embedded in epoxyresin. Ultrathin sections were
stained with uranyl acetate and lead citrate. Data
acquisition was performed with a transmission elec-
tron microscope (H-9000, H7600 or H-7100, Hitachi,
Tokyo, Japan).
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Regarding human brain samples, frontal cortex were
fixed in 2.5% glutaraldehyde/0.1 M cacodylate buffer for
2 h and treated with 1% OsO,4/0.1 M cacodylate buffer
between 90 min and 2 h, within 5 h after death.

Statistical analysis
Statistical analyses were performed with Student’s ¢-test.
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Fig. 2 LATS1 and PIk1 are activated in striatal neurons of Htt-KI mice. a Double staining of LATST and MAP2 revealed LATS1 activation in neurons
of mutant Htt-KI mice. LATS is expressed mainly in the nuclei rather than the cytoplasm of neurons. b Double staining of PLK1 and NeuN revealed
transient actication in neurons of mutant Htt-KI mice. PIk1 is expressed in neurons
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Results

Activation of LATS1 and Plk1 in Htt-KI mice

We tested whether LATS1 and PIk1 are activated in vivo
during the aging of mutant Htt-knock-in (KI) mice.
Western blots revealed that activated forms of LATS1
(phospho-LATS1) was increased in comparison to total
LATSI1 from 6 months during the progression of path-
ology in the striatum of mutant Htt-KI mice in vivo
(Fig. 1a). Phospho-Plkl was also increased but only at
48 weeks of age (Fig. 1a). The increase of phospho-Plkl
was transient and it was decreased at later time
points (Fig. la). Consistently, immunohistochemistry
revealed that signal intensities of phospho-LATS1 and
phospho-Plkl in the striatum of mutant Htt-KI mice
were increased during the progression of pathology
from 12 to 48 weeks of age (Fig. 1b). The signal in-
tensities of phospho-LATS1 stayed at high levels
while the signals of phospho-Plkl became weaker at
later stages (Fig. 1b).

Immunohistochemistry with neuronal markers, MAP2
and NeuN confirmed that the cells with activated LATS1
or PIkl were actually striatal neurons of mutant Htt-KI
mice (Fig. 2a, b). These results support that the bio-
chemical condition where TRIAD can execute [8], i.e.
the condition where single activation of LATS or
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dual activation of two kinase, exists in striatal and
cortical neurons at the late stage of mutant Htt-KI
mice.

Activation of LATS1 in human HD brains

The immunohistochemistry was performed similarly
with human HD brains to examine LATS1 and Plk1 ac-
tivation (Fig. 3a, b). HD patients were diagnosed clinic-
ally and genetically with CAG repeat expansion. We
found phospho-LATS1 in cortical neurons was increased
in HD than control (Fig. 3a, upper panels, lower panels,
lower graph). The pattern of phosphorylated LATS1
stains in neurons was homologous to that in mutant
Htt-KI mice (Fig. 2a).

On the other hand, activation of Plkl, which induces
apoptosis rather than TRIAD [8], was not obvious. At
low magnification, the basal level of phosphorylated Plk1
was already high in the control, and it was almost simi-
lar or slight lower in HD (Fig. 3b, upper panel). At high
magnification, phospho-Plkl stains were found in the
nucleus of a part of neurons (Fig. 3b, lower panel), while
the intensity in the cytoplasm and the number of stain
positive neurons were decreased (Fig. 3b, lower graph).
The decrease of phospho-Plkl in human cortical neu-
rons might be consistent with the late-stage reduction of
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Fig. 3 LATST is activated in cortical neurons of postmortem human HD patients. a Co-staining of phosphorylated LATS1 and MAP2 with cerebral
cortex (frontal cortex) of HD patients (grade IV) and non-neurological disease control. At low magnification, signal intensities were high in HD but
low in the control (upper panel, lower graph). High magnification revealed that the signals were localized to MAP2-positive neurons (lower panels).
The lower graph shows mean + SEM of the pLATS1 signal intensity per neuron of three patients or three controls (for N =1, mean value of signal
intensities of 100 neurons from 4 visual fields were used). Non-neurological disease patients were used as control. **: p <0.01 in Student’s t-test. b
Co-staining of phosphorylated PLKT and NeuN with cerebral cortex (frontal cortex) of HD patients (grade IV) and non-neurological disease control.
At low magnification, signal intensities were high both in HD and control (upper panel, lower graph). High magnification revealed that the signals
were localized to NeuN-positive neurons (lower panels). The lower graph shows mean + SEM of the PLK1 signal intensity per neuron of three pa-
tients or three controls (for N =1, mean value of signal intensities of 100 neurons from 4 visual fields were used). Non-neurological disease pa-
tients were used as control. **: p <0.01 in Student’s t-test
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phospho-PIk1 in striatal neurons of mutant Htt-KI mice.
The morphology of Plkl-positive neurons in the control
brains was normal at least at the level of fluorescent
microscopy.

Decrease of YAP/YAPdeltaC in human HD brains

Our previous analysis revealed decreased YAP/YAPdel-
taC protein expression in the nucleus of Htt-KI [8]. Con-
sistently, YAP and YAPdeltaC were decreased in the
nuclei of neurons in the cerebral cortex of human HD
patients (Fig. 4a, b). The results further supported that
necessary conditions for TRIAD exist in human cortical
neurons under the HD pathology. As mentioned, striatal
neurons were hardly detected in human HD brains, thus
cortical neurons in frontal and parietal cortex were ex-
amined for the analysis of YAP and YAPdeltaC.

TRIAD occurs in mouse HD model brains

Ultra-structural analyses of cortical neurons in Htt-KI
mice at 68 weeks by electron microscopy revealed that
a number of neurons possessed large cytoplasmic vacu-
oles, while their nuclei seemed largely normal (Fig. 5a).
The ratio of electron-dense hetrochromatin was in-
creased slightly but the feature was obviously different
from chromatin condensation (Fig. 5a). Apoptotic body
was not detected (Fig. 5a). Larger magnification
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revealed detachment of ribosomes from ER and their
clustering in the cytoplasm (Fig. 5b, c). ER lumen was
enlarged and the enlargement seemed to be developed
to cytoplasmic vacuoles in some cases (Fig. 5b, c).
Inner and outer nuclear membranes were separated at
some portions of the nucleus (Fig. 5b). Golgi apparatus
was also expanded (Fig. 5b, c). Such intracellular vacu-
oles did not contain organelle, and definite autophago-
some or autolysosome was not detected (Fig. 5d).
Apoptotic changes were also not observed. These fea-
tures were largely consistent with our previous obser-
vation of primary neurons under TRIAD induced by
alpha-amanitin [3].

Such morphological changes were not dominant in
ultra-structural analyses of cortical neurons in Htt-KI
mice at 39 weeks before the onset (the onset is around
50 weeks) (Fig. 5e). However, we found that some neu-
rons showed mild dilatation of ER, loss of our nuclear
membrane connected to ER and/or nuclear membrane
invagination (Fig. 5f-h), which might suggest initiation
of morphological change of TRIAD. No definite nuclear
chromatin condensation or fragmentation was observed.
In addition, we found that a few neurons possessed
intranuclear fibrils that might correspond to intranuclear
Htt inclusion bodies (Fig. 5i). In the background mice
(C57BL/6) at 68 weeks, we found no such TRIAD-
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Fig. 4 YAP/YAPdeltaC are decreased in cortical neurons of postmortem human HD patients. a YAP (upper panels) and YAPdeltaC (lower panels)
staining in NeuN-positive neurons in the cerebral cortex of HD and non-neurological disease control patients. Both of the YAP and YAPdeltaC
signals were decreased in HD than control. The right graphs show mean + SEM of YAP/YAPdeltaC signal in a neuron (mean intensity/pixel).
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mutant Ht-KI mice (68 Weeks) I

Fig. 5 TRIAD-specific changes in cortical neurons of Htt-KI mice. a Electron microscopy revealed numerous cytoplasmic vacuoles (asterisk) despite
of normal nucleus (nuc). b Golgi apparatus was also enlarged, while mitochondria (mi) did not expand and the mitochondrial network structure
remained. ¢ A larger magnification of mitochondria and Golgi apparatus. d No subcellular organ was involved in the vacuole (asterisk) while
ribosome was not confirmed throughout the cell. No autophagic vacuoles were observed at a high magnification. The image was identical to
the change of TRIAD in primary cortical neurons, in which vacuoles turned out to be ER [3]. e A large part of neurons at 39 weeks seemed
normal, while the space between inner and outer nuclear membranes were slightly dilated. f In 20-30% of neurons, invagination of nuclear
membrane was observed (arrow). g-1 In such abnormal cells, loss of our nuclear membrane (arrowhead) and cytoplasmic vacuoles (squared
area) were frequently observed. g-2 Larger magnification of the squared area is shown. h Mild ER dilatation was also observed in other cells
without nuclear invagination. i A few neurons possessed intranuclear fibrils corresponding to nuclear inclusion body. j In the background mice
(C57BL/6) at 68 weeks, neurons show no TRIAD-related morphological changes

mutant Htt-KI mice (39 Weeks) i

related morphological changes in the cortex and the stri-
atum (Fig. 5j).

TRIAD occurs in human HD brains

We further performed ultra-structural analysis to human
HD patient brains (Fig. 6, Additional file 1: Figure S1).
Four HD patients that had been diagnosed by autosomal
dominant familial history, clinical manifestation such as
chorea and dementia, and CAG repeat expansion more
than 40 were used for the analysis. One of them was at
grade III and three of them were at grade IV. Electron
microscopy revealed enlarged ER in cortical neurons
(Fig. 6a, er). The nucleus was almost normal and did not
show chromatin condensation (Fig. 6a, nuc). Mito-
chondria were also expanded (Fig. 6a, mi), suggesting
the late stage of TRIAD. Mitochondria and ER were
discriminated easily by size and shape of the content
granules, by ribosomes attached to ER membrane,
and by the remaining cristae of mitochondria (Fig. 6b,
er and mi). Golgi apparatus was sometimes expanded
(Fig. 6¢c, gol). In a cell surrounded by neurites (dendrites
or axons) (Fig. 6d, nrt), a number of enlarged ER was
found (Fig. 6d, white arrow) while autophagosome was

hardly detected. No definite features of apoptosis
were observed in neurons of HD patients. Neurons in
the striatum were extremely few or none in the aut-
opsy HD brains (grade III and IV) and their morpho-
logical analysis was impossible.

We also analyzed two cases of progressive supra-
nuclear palsy (PSP) as disease controls. The fixation of
brain tissues for ultrastructural analysis was completed
within 5 h after death of the HD and PSP patients. On
the other hand we could not find brain samples of
non-neurological disease patients in bio-resource of
our hospitals or in the other brain banks in Japan that
could be used as control. Unexpectedly, the expansion
of ER was also detected in PSP although the extent of
ER expansion was less prominent than in HD patients
(Additional file 1: Figure S1, Additional file 2: Figure S2
and Additional file 4: Table S1). Lipofuscin granules were
frequently observed in neurons of HD and PSP patients.

Discussion

In our previous studies, we proposed TRIAD as an atyp-
ical cell death that can be categorized to Type 3 necrotic
cell death and might be relevant to the cell death in
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\ human HD p_atients» _ \

Fig. 6 TRIAD-specific changes in cortical neurons of human HD patients.
a ERs (er) were extremely enlarged in cortical neurons of a HD patient
(grade Ill). Mitochondria were also enlarged (mi). b Ribosomes still attach
to the outer surface of enlarged ER (er), and could be discriminated from
mitochondria (mi). ¢ Golgi apparatus (gol) was also enlarged. d At
a lower magnification, a number of ER was enlarged while the nucleus
was almost normal. Autophagosomes were not detected in the cell.
Neurite is indicated as nrt. EM images of other three patients (grade 4)
are shown in Additional file 1: Figure S1
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neurodegenerative diseases [3]. Simultaneously, we
identified YAP isoforms (full-length YAP2 and YAP-
deltaC) as molecules regulating TRIAD [3]. We next
analyzed the feature of cell death in the cell model of
HD, and found that overexpression of Htt-Exonl in-
duced Type 3 necrotic cell death that is morphologic-
ally and biochemically identical to TRIAD [8].
Moreover, we revealed that ER instability was en-
hanced in living neurons of two HD model mice (mu-
tant Htt-Exonl-transgenic R6/2 mice [7] and mutant
Htt-knock-in mice [17]) and showed that targeting the
TEAD/YAP-mediated transcription or the Hippo path-
way ameliorated the cell death and symptoms of HD
model mice [8].

However, the evidences were insufficient to prove that
the new type of necrosis actually occurs in human HD
pathology. To address the question, we directly investi-
gated cerebral neurons in human HD. Consequently we
confirmed activation of the TRIAD-linked kinase
LATS1 [8], inactivation of apoptosis promoting kinase
Plkl [8], and ultra-structural changes of ER actually
in human HD brains that was morphologically identi-
cal to TRIAD.

In more details, we found the transient activation and
the later suppression of Plkl in neurons of mutant Htt-
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partner transcription factor of YAP/YAPdeltaC from TEAD to p73, thereby shifting the signal from survival to apoptosis [8]. The loss of YAP/
YAPdeltaC-TEAD survival signal leads to TRIAD type of necrosis [8]. Asterisk indicates the condition confirmed in human HD neurons by this study )
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KI mice (Fig. 1). PIk1 was suppressed in human post-
mortem HD brains (Fig. 3b). Plkl strongly enhances
apoptosis by increasing YAP-p73 interaction [8]. In
addition, Plkl weakly promotes TRIAD necrosis by par-
tially suppressing YAP-TEAD interaction [8]. Therefore,
Plk1 inhibitor ameliorates TRIAD although weakly [9].
Intriguingly, the contribution of LATS1 to TRIAD is lar-
ger than that of PIk1 [8]. Biochemical and morphological
changes are highly consistent in mouse and human HD
brains assuming that the end-point pathology in human
postmortem brains reflects the late stages of mouse HD
model (Additional file 3: Figure S3). Considering with
the previously identified signaling and conditions neces-
sary and sufficient for TRIAD [8], these results indicated
that TRIAD occurs in neurons under the human HD
pathology (Fig. 7).

In EM analysis of human HD brains, we found mito-
chondrial enlargement (Additional file 4: Table S1) that
had been unusual at the early stage of TRIAD in pri-
mary neurons [3]. This finding might suggest the possi-
bility that TRIAD partially shares apoptotic signaling
in vivo. Our previous screening by fly model that re-
vealed partial share of signaling molecules in TRIAD
and apoptosis, might support this idea [9]. Given that
Plk1l was reported essential for recovering mitochon-
drial dysfunction [10], the decrease of Plkl at the late
stage of human and mouse HD pathologies might affect
mitochondrial integrity and induce morphological
changes of mitochondria in human postmortem HD
brains. However, detailed mechanisms underlying the
mitochondrial changes in TRIAD need further investi-
gation. Especially, it would be of significance to analyze
chronologically YAP phosphorylation at Thr77 and
Ser127 that shifts the balance between apoptosis and
TRIAD necrosis [8], in parallel with YAP phosphoryl-
ation at Tyr357 by c-Abl, a DNA damage signal medi-
ator, that switches on/off apoptosis [4]. These analyses
might elucidate factors that modify the TRIAD proto-
type in vivo and in human, and should be performed in
the future.

Interestingly, necrotic cell death such as “ballooned
neuron” or “neuronal achromasia” has been described in
tauopathy like corticobasal degeneration [1, 13], Pick’s
disease (a form of frontotemporal dementia) [5] and pro-
gressive supranuclear palsy (PSP) [11]. As achromasia is
based on ER staining, it is highly possible that these
forms of cell death are similar to TRIAD from the as-
pect of the extreme ER expansion. Moreover, achro-
masia is found in Alzheimer’s disease, motor neuron
disease and Creutzfeldt-Jacob disease [6, 14].

Assuming that this type of cell death in multiple neu-
rodegenerative diseases and TRIAD are identical, we
might be able to unite cell deaths in various neurodegen-
erative diseases to a single prototype, and the model
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might enable us to generally discuss cell death of neuro-
degenerative diseases. The hypothesis should be further
tested in the future in other neurodegenerative diseases
than ALS and HD that we have analyzed.

Finally, considering with such evidences of TRIAD in
HD (this study) and ALS [12], application of anti-Hippo
pathway drugs such as S1P agonists should be consid-
ered positively to clinical trials against these diseases.

Conclusions

In this study, we examined whether TRIAD, a new type
of necrosis dependent on YAP and Hippo pathway, oc-
curs in human HD brains. Our results showed activation
of LATSI1, suppression of Plkl, and decrease of YAP/
YAPdeltaC. EM analysis also revealed typical morpho-
logical features of TRIAD. These data collectively sup-
ported that TRIAD occurs in human HD brains in vivo.
In addition, biochemical and EM analyses revealed the
chronological shift from early-phase to late-phase
TRIAD changes, supporting the existence of TRIAD in
the HD pathology in vivo.

Additional files

Additional file 1: Figure S1. Ultrastructural analysis of additional human
HD patients. ER indicates extremely expanded ER that is very homologous
to the previously described ballooning of ER in TRIAD [8]. (TIFF 1777 kb)

Additional file 2: Figure S2. Ultrastructural analysis of human PSP
patients. ER indicates expanded ER. (TIFF 4677 kb)

Additional file 3: Figure S3. Chronological relationship of biochemical
and morphological changes in mouse HD model and human HD
brains. (TIFF 784 kb)

Additional file 4: Table S1. Summary of results from HD and PSP
patients. (TIFF 943 kb)
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