
Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10
www.jserd.com/content/2/1/10
CASE STUDY Open Access
From project-oriented to service-oriented software
development: an industrial experience guided by
a service reference model
Marcos Kalinowski1*, Stefan Biffl2, Rodrigo Oliveira Spínola3 and Sheila Reinehr4
* Correspondence:
kalinowski@ice.ufjf.br
1Federal University of Juiz de Fora,
Rua José Kelmer s/n, Juiz de Fora
36.036-330, Brazil
Full list of author information is
available at the end of the article
©
A
m

Abstract

Introduction: In organizations with software systems in production, new and often
unexpected requirements for development come up due to strategic, tactical, and
operational customer needs. In this context, it is a strategic advantage for software
suppliers to be able to provide software services that meet these demands faster
and with less overhead than negotiating traditional value-neutral project-oriented
software deliveries.

Case description: This article reports on the industrial experience of restructuring the
supplier-side software development process into a value-based service-oriented format,
guided by a service reference model. A service level agreement (SLA) was established
between supplier and customer reflecting the business needs and values. The report
describes the contractual aspects and internal managerial controls employed to facilitate
the compliance of the provided services with the SLA, including the integrated use of a
managerial spreadsheet, an issue-tracking system, and a Kanban chart.

Discussion and evaluation: The feasibility and results of restructuring software
development into a service-oriented format are evaluated. Major results were that
only moderate effort was required, around one person month, due to the support
of the service reference model and a sufficient level of previously installed capabilities,
and that the goals regarding improved quality, productivity, and customer satisfaction
were successfully achieved. Additionally we discuss stakeholder needs, the support
from the service reference model, the lessons learned, and the success factors for
such restructuring.

Conclusions: Restructuring software development in the format of continuous service
delivery, guided by a service reference model, is feasible and for suitable contexts can
provide significant benefits concerning quality, productivity, and customer satisfaction.

Keywords: Service reference model; Software development as a service; Software
process; Software project management; Software quality
Background
In dynamic organizational environments with software systems in production, it is not

always possible to forecast and formalize in a contract the requirements for develop-

ment that will arise over time (Barney et al. 2008). Collecting upcoming requirements

in formal projects can incur significant overhead and delay to evolving the software

that supports mission-critical business processes and analyses.
2014 Kalinowski et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly credited.

mailto:kalinowski@ice.ufjf.br
http://creativecommons.org/licenses/by/2.0

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 2 of 21
www.jserd.com/content/2/1/10
Therefore, it is common for customer organizations to seek for Information Technol-

ogy (IT) suppliers who can provide services to efficiently and quickly handle demands

according to their business needs, respecting the varying volumes and priority of these

demands (Khan et al. 2011). However, from the point of view of the supplier, restruc-

turing the software development process to meet such customer expectations is not

always an easy task, in particular, if it is not clear whether the supplier software

organization process is sufficiently mature to drive towards a service delivery format

(Lehman and Sharma 2011).

Treating a customer demand for software development as a request for an IT service is a

promising way for addressing the customer value expectations, in line with the definition

of services by ISO/IEC (2011), which defines a service as a “means of delivering value to

customers by facilitating outcomes customers want to achieve”. In practical terms this

means migrating software development from a traditional project management format

(PMI 2013) to a continuous service delivery management format (TSO 2011).

IT service management can be defined along the lines of the ITIL (Information

Technology Infrastructure Library), a model conceived by the British government

with a view to provide a consensus on the best IT service management practices, as “a

set of specialized organizational capabilities for providing value to customers in the form

of services” (TSO 2011).

In the context of providing IT services, it is important to make an effort to establish

efficient service management processes (TSO 2011), preferably based on a reference

model that supports the best practices for improving service processes and, conse-

quently, increasing productivity and effectiveness of the services provided.

One of the programs available to meet this type of need is the Brazilian nationwide

MPS.BR program (Santos et al. 2012). In Brazil about 73% of the software industry is con-

stituted of small and medium-sized enterprises (SMEs) (MCTI 2013). Therefore, an effort

was made to developed national reference models for software development and IT service

delivery, which are compliant to well-established international standards and reference

models, in order to provide their suppliers, including SMEs, with more fine-grained steps

to define and achieve an appropriate level of software process maturity. Software regulators

in other countries with a high share of SME software suppliers can benefit from the lessons

learned in Brazil to better support their small-scale software suppliers.

Thus, the main MPS.BR objective is to develop and disseminate reference models

that meet the requirements of the Brazilian software and IT services industries, allow-

ing software suppliers, including SMEs, to deliver to customers according to inter-

nationally recognized quality standards (Santos et al. 2012). The MPS.BR family of

reference models currently consists of the MPS-SW for Software (SOFTEX 2012a) and

the MPS-SV for IT Services (SOFTEX 2012b). The MPS-SV reference model is a prom-

ising basis for establishing service management processes. Another similar and compat-

ible alternative (SOFTEX 2012b) would be following the guidelines of the international

CMMI-SVC (CMMI for Services) reference model (SEI 2010).

While the MPS-SW has been established in 2003 and has been widely adopted in

Brazil, with 548 official assessments (over 70% of them in SMEs) published by April

2014 (SOFTEX 2014), the MPS-SV model is still very recent and saw its first evaluation

published in September 2012. The MPS-SW has already helped on the adoption of

good software engineering practices in the Brazilian industry (Kalinowski et al. 2010).

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 3 of 21
www.jserd.com/content/2/1/10
There is also objective evidence of positive impacts on the performance of the software

suppliers that adopted this model (Kalinowski et al. 2008a) (Travassos and Kalinowski

2013), which could be transferred to other countries with a similar software develop-

ment structure. The MPS-SV model has a broader application scope than the MPS-SW

model, since MPS-SV can be applied to support the structuring and improvement of IT

service processes in general. These services might include Help Desk and support ser-

vices (SOFTEX 2012b) or even software development services, as in the experience

reported in this paper.

The MPS-SV was developed in conformance to the international standards ISO/IEC

20000:2011 (ISO/IEC 2011), ISO/IEC 15504 (ISO/IEC 2004), being compatible with the

CMMI-SVC model (SEI 2010) (SOFTEX 2012b). Therefore, in the context of this paper

the MPS-SV can be seen as a representative for international standards. Similar to the

MPS-SW model, the MPS-SV is structured in seven maturity levels for assessment

(G to A, where A is the highest maturity level), while the CMMI-SVC reference models

is structured in four maturity levels (2 to 5, where 5 is the highest maturity level). The

compatibility between the MPS-SV and CMMI-SVC reference models is given by the

maturity level mapping shown in Table 1.

Software development as a service (SDaaS) started being discussed recently (Lehman

and Sharma 2011) and the thematic of applying service reference models to software de-

velopment has been informally presented at the SEPG North America 2011 (Penn 2011)

and SEPG North America 2013 (Penn 2013). However, to the best of our knowledge, there

are no published experience reports available on this topic. Therefore, the lack of pub-

lished work related to moving from a project-oriented to a service-oriented process, and

in particular based on a service reference model, leads to uncertainties concerning feasibil-

ity, effects, and success and risk factors (pitfalls). An initial effort to bridge this gap was

reported in (Kalinowski and Reinehr 2013), the paper we are herein extending. Given this

scenario, we investigate the following two research issues (RIs) to shed light on applying

service reference models to re-structure software development from a project-oriented to

a service-oriented management format from an industry perspective.

RI-1. Survey on perceived utility of structuring software development guided by service

reference models

Do software engineering consulting experts see significant utility in adopting service

delivery practices for software development? Would these experts consider using a ser-

vice reference model as a basis for adopting service delivery practices?
Table 1 MPS-SV and CMMI-SVC maturity level compatibility

MPS-SV maturity levels CMMI-SVC maturity levels

A – In Optimization 5 – In Optimization

B – Quantitatively Managed 4 – Quantitatively Managed

C – Defined 3 – Defined

D – Largely Defined

E – Partially Defined

F – Managed 2 – Managed

G – Partially Managed

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 4 of 21
www.jserd.com/content/2/1/10
To address this research issue, a survey was conducted in the MPS-SV context with

software engineering consultants (19 certified MPS-SW implementation consultants

from 11 different MPS.BR accredited implementation institutions), who work with soft-

ware development suppliers helping them to organize their production processes (Jordão

and Kalinowski 2013). The survey was structured following the Technology Acceptance

Model (TAM) (Davis 1989) to gather the perception on the utility, ease of adoption and

intention to adopt from the point of view of those consultants. In a systematic review con-

cerning the TAM, conducted by Turner et al. (2010), a correlation between the intention

to adopt, as stated in the studies that used the TAM, and actual adoption could be

identified, which reinforced the decision of following this model.

Results indicated that the MPS-SW software engineering consultants consider service

reference models useful and that they would consider adopting them for providing con-

tinuous delivery capabilities to their software industry customers. A summary of these

results, which reinforce the motivation for investigating the following research issue,

are compiled in the Discussion and Evaluation Section. Further details on the survey

planning, operation and limitations are published in a separate paper (Jordão and

Kalinowski 2013).

RI-2. Industry experience report on the feasibility and results on restructuring software

development guided by a service reference model

What are typical stakeholder needs that trigger software development restructuring?

Can a service reference model be helpful to meet restructuring needs in software devel-

opment? What effort is to be expected? What are the potential effects on quality and

productivity? What are the main lessons learned? What are the involved success and

risk factors?

To address this research issue a real experience of restructuring software develop-

ment guided by a service reference model was conducted, analyzed, and an initial report

(in Portuguese) was produced (Kalinowski and Reinehr 2013). Main reported results were:

(i) the MPS-SV model was found helpful to guide the restructuring; (ii) restructuring

required only modest effort; and (iii) significant benefits were perceived in terms of quality,

productivity, and customer satisfaction.

However, this initial report only provided an overview of the restructuring and brief

indications on effort and on the produced effects on quality and productivity. There-

fore, many questions raised in RI-2, to which answers would provide additional insights

into structuring software development as a service, remained unanswered. For instance,

stakeholder needs that typically trigger such restructuring and how the MPS-SV can

support meeting these needs were not described. Lessons learned were also not dis-

cussed in depth to allow further understanding the assumptions for such restructuring

and possible improvements. Finally, major success and risk factors were not identified.

This paper extends the initial report (Kalinowski and Reinehr 2013) by providing fur-

ther details on the context and on how managerial skills for handling service requests

were established aiming at complying to a Service Level Agreement (SLA) with the cus-

tomer to satisfy his business needs. Contractual aspects of the restructuring and internal

controls used to ensure compliance with the SLA, are described in details. Those internal

controls encompass the integrated use of managerial spreadsheets, issue-tracking systems

and Kanban charts (Anderson 2010) to monitor the demand prioritization.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 5 of 21
www.jserd.com/content/2/1/10
Moreover, further analyses of the experience allowed identifying the stakeholder

needs and how the MPS-SV supported meeting them. The discussion on lessons

learned was extended and success and risk factors were identified. We assume that

these additional details, analyses and extensions can provide further insights into the

feasibility of applying service reference models to software development, which are

relevant for SME software suppliers in Brazil and in comparable international contexts.

The remainder of this paper is organized as follows. Case description describes the

case: context of the experience, including the identification of the stakeholder needs,

and how the development process was re-structured. Discussion and evaluation pre-

sents the discussion and evaluation, including obtained results, lessons learned, success

and risk factors. Conclusions concludes and discusses issues for further research.

Case description
This section describes the experience related to investigating RI-2 by restructuring the

software development process guided by a service reference model. Therefore, the

context is described and further details on how the development was structured as a

service are provided.

Context and stakeholder needs

The experience described herein occurred in the context of the companies Kali

Software (KS), as the software supplier, and Tranship Transportes Marítimos (TTM), as

the customer.

The supplier, KS, can be characterized as a small-sized Brazilian software supplier

(20 employees – including the board of directors) that had worked on custom de-

velopment for almost a decade, providing services for national and international

customers in a range of business areas (e.g., naval industry, health insurances, and

financial). Despite of its small size the development followed distributed processes,

with the development team and their local management were located in the city of

Juiz de Fora (Brazil), and directors and requirement analysts located in the city of

Rio de Janeiro (Brazil). The previously adopted development process followed a

traditional interactive and incremental development life cycle, where increments

were included in plan-driven projects (Boehm and Turner 2003), with each project

negotiated as a separate development contract.

The customer, TTM, is a medium-sized Brazilian sea freight company (about

400 employees) that provides strategic services to the country. These services in-

clude coastal transport and naval support to oil rigs working at the pre-salt layer

of the continental shelf. TTM had several software suppliers and internal IT support.

The internal support was provided by an IT manager (responsible for supplier agree-

ment management and conducting acceptance tests) and an IT support analyst

(responsible for the installed server infrastructure and help desk support).

The software development partnership between the two companies was established

in February 2011. The main developed software in this context concerned an Enterprise

Resource Planning (ERP) system, involving several modules, such as administrative,

operations, allocation of ship crew members, finance, and human resources, which

were gradually put into production. In total, 87 use cases were implemented in an

overall effort of more than 4000 hours, resulting in a management system of around

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 6 of 21
www.jserd.com/content/2/1/10
83,000 lines of Java code and 167 data tables. At the time of the herein reported ex-

perience, 10 of KS employees (1 director, 1 project manager, 1 requirements analyst,

6 developers and 1 testing analyst) were involved – not all exclusively –with the

TTM ERP project.

With the modules entering production, the stakeholder’s needs started to change.

TTM’s directors (executive, operations, financial, and human resources), for instance,

began needing information and new functions very quickly according to their immedi-

ate strategic, tactical, and operational business goals. The contractual model for new

development requests was previously structured as separate projects (characterized ac-

cording to the definition of the PMI (2013) by having a manageable scope, a beginning

and an end), in which a new contract had to be negotiated in order to develop new

functions. This contractual approach was not adequate for the new scenario anymore.

The main problems of this value-neutral approach (Boehm 2006) were the effort of

negotiating new contracts and not considering added business value for prioritizing

individual demands. As a consequence, fast deployment of the most important new sys-

tem capabilities from a business point of view, was not achieved.

Table 2 shows an overview on the different stakeholder interests after the system en-

tered production. The interests mainly conflicted with the negotiation of demands to

be included in a value-neutral project context. This negotiation effort and not suffi-

ciently considering added business value of individual development requests hindered

delivering optimal business value to the customer.

Therefore, the directors of both companies met to define a new and more flexible

contractual model to satisfy the new stakeholder needs. They decided on a contractual

framework based on the provision of services, in which demands were treated as separ-

ate requests for services with different priorities and the billing would be linked to

compliance with a SLA (in traditional project-oriented development, contracts usually

include terms for incremental delivery and related penalties). By considering a SLA

based on the customer’s business needs, this contractual framework helps integrating

value considerations into software development, as suggested by the Value-Based

Software Engineering (VBSE) discipline (Biffl et al. 2006).

The decision of establishing a provision-of-services contract meant that the supplier

had to adopt a strategy for delivering such services with internal controls to facilitate

the management of individual requests in order to comply with the SLA. The following

subsection describes this strategy.
Table 2 Stakeholder interests conflicting with the value-neutral project approach

Stakeholder Stakeholder interests

TTM - Directors, managers and operational level
employees of the different business areas.

Simple contract negotiation; fast definition and
deployment of system capability changes or
increments; delivery priority according to current
added business value.

TTM - IT Manager & IT support analyst Fast, predictable, and high quality deliveries.

KS – Directors and Project Manager Simple contract negotiation; steady inflow of system
capability changes or increments; translate technical
productivity into higher net gains; visibility of team
productivity.

KS – Developer& Quality Assurance Quick customer feedback.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 7 of 21
www.jserd.com/content/2/1/10
Restructuring software development as a service

Although an official assessment was not in the plans of the supplier, it was decided that

the structuring of software development as a service should follow the guidelines of the

reference model MPS-SV maturity level G (SOFTEX 2012b). This decision was taken

to ensure that service delivery best practices would be incorporated into the new devel-

opment process. The MPS-SW has contributed to the adoption of good practices by

the Brazilian software industry (Kalinowski et al. 2010), and the national experts expect

that the MPS-SV can do the same for the IT services sector.

Level G of the MPS-SV reference model (SOFTEX 2012b) contemplates five

processes: Work Management, Requirements Management, Service Delivery, Service

Level Management, and Incident Management. During the experience described in this

paper, the practices of Work Management and Requirements Management, already in

place at KS in the software development context, were complemented with practices of

the remaining three processes directly related to service management. A brief descrip-

tion of these three processes (Service Delivery, Service Level Management, and Incident

Management) follows.

The Service Delivery process aims to use a strategy for service delivery in line

with the established service agreements. Service Level Management process aims to

ensure that the customer’s SLAs are fulfilled. Finally, the purpose of the Incident

Management process involves capabilities for managing incidents and service requests

(SOFTEX 2012b).

MPS-SV’s Service Delivery precepts are handled in Contractual aspects Section, in

which the contractual aspects that made the service delivery strategy possible and the

SLA established in order to meet the customer’s needs are described. Service Level

Management and Incident Management are addressed in Supplier-side managerial

controls Section, in which the internal managerial controls employed for monitor-

ing the SLA and how to operate service requests are detailed.

Contractual aspects

The contractual model had to undergo changes to enable the new service delivery strategy.

In this new model, demands for development came to be treated as service requests. Previ-

ously, demands had been grouped into increments handled as development projects, billed

accordingly as the projects progressed (20% at the outset, 30% after functional specification,

and 50% following final delivery).

With the new desired dynamics, requests would no longer be grouped into develop-

ment projects, but rather handled as work associated with isolated services that should

comply with a SLA. The CMMI-SVC reference model (SEI 2010) defines work as “a

managed set of people and other resources that delivers one or more products or

services to a customer or end user”. Thus, in the case of this experience, switching

from project management to work management would result in a finer granularity of

items to manage.

The strategy that was defined to enable service delivery involved dividing the billing

of the contract into two parts, one fixed and one variable. The former included the pay-

ment of a full-time requirements analyst in charge of receiving requests from users and

specifying them as service requests. In addition to the analyst, the fixed part also in-

cluded a fee for corrective maintenance services (development effort related to fixing

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 8 of 21
www.jserd.com/content/2/1/10
system failures). The variable monthly part, on the other hand, was calculated on a

fixed day of the month, based on the implemented requests, according to the SLA.

Therefore, higher productivity would directly and intuitively result in a higher monthly

net gain for the software supplier.

The strategy for satisfying customer requests is outlined in Figure 1. As shown in this

figure, the requirements analyst receives business requests from the system’s users. These

requests get prioritized according to their added business value and written in the form of

requirements to be implemented, in order to become service requests. The priorities are

defined together with TTM’s IT Manager and other appropriate stakeholders.

The treatment of the service requests was managed to ensure that each request was

attended complying with the established SLA. As soon as the developer concludes the

technical solution of a request, before it is considered ready for validation, the solution

is sent to a test by an independent team. Finally, the delivered requests get validated

with the system’s users.

The ‘Service Level Agreement and Penalties’ subsection shows the SLA part of the

contract. In this SLA, requests have different deadlines, defined as numbers of days,

according to their priority. The priority should reflect the added business value, so that

higher added business value has to be treated faster. The following prioritization

criteria was adopted:

� Critical Requests: these impede the use of the system for the business activities of some

sectors or relate to new functionalities that can significantly improve business results.

� High Priority Requests: these do not impede the use of the system for the business

activities of entire sectors, but hinder the conclusion of some specific business

operations;

� Medium Priority Requests: these relate to new functionalities that can allow the

speedier execution of some business operations;

� Low Priority Requests: these relate to new functionalities that enable features of the

system to be improved.
Figure 1 Strategy for Meeting Customer’s Demands.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 9 of 21
www.jserd.com/content/2/1/10
According to this SLA, if a critical request of a new functionality with estimated ef-

fort of 40 hours is fully answered on the tenth working day after the request and with a

total effort of 80 hours, then only 42 of the 80 worked hours would be billable. This

amount corresponds to the maximum billable amount of 60 hours with a penalty of

30%, since it should have been answered at the eights workday and was only answered

in the tenth workday. In cases the supplier did not agree with classifying a new func-

tionality as critical, the customer had to explain how the new functionality would im-

prove business results (e.g., avoiding losses or enabling higher gains).

On the other hand, if a critical correction with estimated effort of 40 hours is fully

answered on the tenth working day after the request and with a total effort of 80 hours,

then 18 billable hours would be deduced from the total monthly billable hours. In

this case, corresponding to a 30% penalty for the delay over the 60 maximum billable

hours.

Given this scenario, in which delays have direct financial impact, monitoring the

request against the SLA becomes of critical importance. Therefore, to monitor compliance

with the SLA, requests were recorded on a spreadsheet, one of the internal managerial

controls used to facilitate management of services. More information concerning man-

agerial controls is provided in subsection Supplier-side managerial controls.

Service level agreement and penalties

This service level agreement is valid for corrections, as well as for changes and new

developments, requested from the entry date of this agreement.

Agreement

The requests will have the following deadlines to be fully met (with no defects)

� Critical Requests
Deadline in hours = (1.5 x estimated effort) Hours.

Deadline in days = (Deadline in hours/8) Working Days.

� High Priority Requests

Deadline in hours = (1.5 x estimated effort) Hours.

Deadline in days = (Deadline in hours/8) + 1 Working Days.

� Medium Priority Requests

Deadline in hours = (1.5 x estimated effort) Hours.

Deadline in days = (Deadline in hours/8) + 2 Working Days.

� Low Priority Requests

Deadline in hours = (1.5 x estimated effort) Hours.

Deadline in days = (Deadline in hours/8) + 4 Working Days.

The deadline in hours will be used as a limit on the number of billable hours. The dead-

line in days will be used for penalties related to the deadline. Whenever this number is odd

it should be rounded up, i.e., a period of 8.32 days should be met within the ninth day.

Penalties

Change requests or new developments that are not answered within the service level

agreement will automatically be penalized by 30%.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 10 of 21
www.jserd.com/content/2/1/10
Correction requests, included in the monthly amount, that are not answered within

the service level agreement, will be automatically converted into a penalty of 30% of

the deadline in hours, taking into account the hourly cost established in this agreement.

This amount will be deduced from the variable cost to be billed monthly.

Supplier-side managerial controls

The following three internal managerial controls were used for supporting service man-

agement at the software supplier:

� a request-tracking spreadsheet for monitoring the requests and their conformance

to the SLA;

� an issue-tracking system (integrated with the version control), in which a ticket is

registered for each service request; and

� a Kanban chart to show the service status at any time to the whole team involved

in providing the overall continuous development service.

Kanban charts have been used in agile development approaches such as Lean and

SCRUM, for more information on the use of Kanban charts in the technology business

refer to (Anderson 2010). Figure 2 shows the sequence in which these controls are

applied for handling service requests according to the precepts of the MPS-SV Service

Level Management and Incident Management processes. This figure also highlights the

purpose and facilities offered by each of these controls.

Initially, a new service request is recorded in the request-tracking spreadsheet. The

spreadsheet containing the requests made between 01/16/2013 and 01/31/2013 is

shown in Figure 3. The columns for the developer and the cost have been deliberately

modified to avoid revealing individual performance and cost information. The cost is

represented by the number of billable hours rather than the expected cash value of the

services. This spreadsheet allows incident management and monitoring the conformance

of the provided services to the SLA, as required for compliance with the MPS-SV Incident

Management and Service Level Management processes. This enables services delivery ac-

cording to their business value and priority. It is important to state that this spreadsheet

was also shared with the customer for billing purposes, thus communicating the status to
Figure 2 Internal controls for Service Management.

Figure 3 Spreadsheet for controlling SLA.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 11 of 21
www.jserd.com/content/2/1/10
the interested stakeholders, as also required by the MPS-SV Service Level Management

process, is also achieved. Figures 4 and 5 present a zoomed view of the parts containing

data related to registering and processing the new service request.

Figure 4 shows the data registered for each request: (i) the date of the request, (ii) the

request type (“correction” or “change” – in this case “change” also includes new devel-

opment requests), (iii) the opening date of the ticket, (iv) the ticket number (to enable

monitoring in the issue-tracking system), (v) the system module (e.g., administrative,

financial), (vi) the related use case, and (vii) the estimated effort. Using this information,

the deadline in work hours is calculated and the intended delivery date is set in accordance

with the SLA. The first column highlights the overall managerial status, showing whether

each request has been delivered, cancelled or how many days are left before delivery ought

to be accomplished.

Figure 5 shows the data registered in the spreadsheet for the service being processed

for each request, including the chosen developer, real development effort (obtained

from the issue-tracking system), actual delivery date and customer approval (validation).

With this information, the spreadsheet calculates the extent of compliance of the work per-

formance with the SLA and the amount to be billed for the service, taking into account

contractual SLA penalties for late delivery, when applicable. In the fifteen day period shown

in Figure 3, for instance, besides the fixed cost (regarding the internalized requirements

analyst and the corrections), there are 162.2 billable hours concerning the provided services

of implementing changes and eventual penalties.

The issue-tracking system used was Assembla (Assembla 2013), a cloud-based service

system, already including the integration of tickets (requests) with version control. The

integration with version control provides traceability on how the tickets were handled.
Figure 4 Part of the spreadsheet used for registering new requests.

Figure 5 Part of the spreadsheet used for registering the treatment of the requests.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 12 of 21
www.jserd.com/content/2/1/10
For each ticket all the files added or changed for providing the technical solution can

be explicitly identified, as well as the modifications done in each file. Therefore, if

a change request on a given ticket is received, the files to be modified can be traced,

supporting the involved impact analysis and effort estimation.

This system was also used for allocating the developers and registering the real effort.

As soon as a developer concludes the technical solution of a request, he registers the

effort and passes corresponding ticket to be tested by an independent team. If the ticket

passes testing then its status is changed and it is considered ready to be deployed for

customer validation, with the support from the internalized requirements analyst at the

customer side.

Finally, monitoring the service status for each request was facilitated by the Kanban

chart, which was physically displayed in the room where the development team was

located. Figures 6 and 7 show a real example of a request in Assembla and a Kanban

chart with the progress status of service requests, respectively. In this Kanban chart the

status of each ticket can be easily identified. Each ticket becomes a separate post-it,

using different colors reflecting the SLA priorities. To illustrate the use of the Kanban

chart, Figure 7 highlights the status of ticket #560, shown in Figure 6, as being in the

queue for supplier side testing.

The importance of tests in this context is obvious, since a service request is only

accepted for billing if it does not show any failures during validation. Moreover, if an
Figure 6 Real request in the Assembla issue-tracking system.

Figure 7 Kanban chart showing the status of requests.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 13 of 21
www.jserd.com/content/2/1/10
acceptance test fails, the delivery data remains unchanged and the SLA will probably

not be met, resulting in penalties. Considering this critical quality issue, requirements

inspections (Kalinowski et al. 2007) and code peer reviews (Kemerer and Paulk 2009)

were also adopted.

Having presented the contractual aspects and the internal managerial controls

defined in this industrial experience, based on the guidelines of the MPS-SV service

reference model, to allow switching from a project-oriented to a service-oriented soft-

ware development approach, the next section presents the discussion and evaluation of

the overall experience.

Discussion and evaluation
Aiming at understanding the feasibility and effects of restructuring software develop-

ment from a project-oriented to a service-oriented approach guided by a service refer-

ence model, two research issues were identified in the Background Section. RI-1,

related to the perceived utility, was investigated through a survey reported in detail in

(Jordão and Kalinowski 2013).

Results indicated that the MPS-SW software engineering consultants consider service

reference models, such as the MPS-SV, useful for providing continuous delivery

capabilities to their software industry customers (93% totally or partially agreed).

The consultants also indicated an expected ease of use (76% totally or partially agreed)

and intention to adopt (63% totally or partially agreed). The survey’s overall confidence

level was of 78.5%.

These survey results can be seen as an additional motivation for investigating

the second identified research issue, RI-2, which is the main contribution of this

article and concerns the feasibility and results or restructuring software develop-

ment guided by a service reference model. The discussion and evaluation of ques-

tions that provide further insights into RI-2, based on the reported experience,

follows.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 14 of 21
www.jserd.com/content/2/1/10
What are typical stakeholder needs that trigger the restructuring from a project-oriented

approach to a service-oriented approach?

Table 2 provides an overview on the main stakeholders and their interests. From the

customer’s point of view, the main interests on software development were facilitating

contract negotiations and integrating value considerations into the development

process. Therefore, allowing faster deployment of new system capabilities prioritized

according to the added business value. From the supplier’s point of view, on the other

hand, the main interests were related to simple contract negotiation, a steady (or growing)

inflow of development requests, and translating productivity directly into higher monthly

net gains. It is noteworthy that there were no specific expectations regarding changes in

the cost of developing individual functionalities. Actually, given the need to comply with

the SLA (and potential penalties) the customer and supplier agreed to increase the hourly

cost rate.

We assume that the restructuring allowed properly addressing the stakeholder’s main

interests, by (i) providing a contractual framework that avoids excessive negotiation

effort for new development requests, and (ii) allowing the new service requests to be

directly addressed according to the added business value, as defined in the SLA. From

the supplier’s point of view, the variable monthly net gain also accounted for the direct

return of investment of efforts to improve productivity.

The general perception from the customer and the supplier was that a more flexible

model had been adopted to meet the customer’s business needs and to live up to his

expectations in terms of supply, as expressed in the SLA. In fact, the contract model

considers the business priority of individual requests and does not have to be reconsid-

ered due to a variation in the volume of requests, for instance.

Can a service reference model be helpful to meet those needs?

In this experience, the Brazilian MPS-SV service reference model, which is representative

for similar international standards, directly supported the restructuring to the service-

oriented approach. The resulting process implementation followed the guidelines of

MPS-SV maturity level G (SOFTEX 2012b). The Service Delivery, Service Level

Management, and Incident Management reference processes, directly related to provid-

ing services, were considered helpful to structure basic service delivery capabilities in

order to meet the identified stakeholder needs and to increase the confidence in

the provided solutions. The main purpose of each of those processes, their ex-

pected results according to the MPS-SV reference model, and how they were imple-

mented during this experience are shown in Table 3. This implementation does also meet

(SOFTEX 2012b) the specific goals of the CMMI-SVC (SEI 2010) Service Delivery process

area (maturity level 2), and of the related ISO/IEC 20000 processes (ISO/IEC 2011).

What is the effort to be expected?

The restructuring took 160 person hours and happened within the timeframe of one

month. As the restructuring included aspects of all processes at Level G of the MPS-SV

model, we assert that implementing this model for software development requires only

moderate effort, when compared for instance to the average duration of over 12 month

for implementing MPS-SW maturity levels (Travassos and Kalinowski 2013). Especially if

work management and requirements management capabilities, including requirements

Table 3 MPS-SV level G processes and how they were implemented

MPS-SV process purpose and expected results How the expected results were implemented

Service Delivery (SD)

Purpose:

The purpose of this process is defining the strategy
and establishing the service system to deliver services
in conformance with the service agreements.

Required Results:

SD 1. A service delivery and operation strategy is
established and maintained;

SD 1. The defined service delivery and operation strategy
is shown in Figure 1.

SD 2. The availability of the needed elements for
providing the service is confirmed;

SD 2. The availability of needed elements was assured
by the contractual framework, which included an
internalized requirements analyst at the customer side.

SD 3. The service system is put into operation to
deliver the agreed services;

SD 3. The service system was put into operation.

SD 4. The service system is maintained to assure
continuous service delivery.

SD 4. The service system was maintained operating.

Service Level Management (SLM)

Purpose:

The purpose of this process is to assure that the
SLA goals for each customer are met.

Required Results:

SLM 1. Services and their dependencies are identified; SLM 1. The identified service was software development,
including corrective and evolutionary (new functionalities)
maintenance.

SLM 2. Service level goals are defined in an SLA; SLM 2. The defined SLA is shown in subsection ‘Service
Level Agreement and Penalties’.

SLM 3. Services are monitored against the SLA; SLM 3. Monitoring was achieved by defining the service
management controls depicted in Figure 2.

SLM 4. Service level performance is communicated
to relevant stakeholders;

SLM 4. The request-tracking spreadsheet (Figure 3) was
shared with the customer and sent monthly for billing
purposes. It provides an overview of the service
performance against the SLA.

SLM 5. Changes in service requirements reflect in
the SLA.

SLM 5. Those changes did not happen in the context
of this experience, but would imply in changing the
SLA appendix of the contractual framework and both
sides, supplier and customer) were open to discuss
such changes.

Incident Management (IM)

Purpose:

The purpose of this process is to handle individual
incidents and service requests within a SLA.

Required Results:

IM 1. A strategy for incident and service request
management is established and maintained;

IM 1. The defined strategy involved fine-grained request
monitoring by using the internal managerial controls
shown in Figure 2.

IM 2. An incident and service request management
system is established and maintained;

IM 2. The internal managerial controls were established
and maintained.

IM 3. Incidents and service requests are registered
and classified;

IM 3. Each request was registered into the request-
tracking spreadsheet (Figure 3) and classified as an
incident (correction) or a new service request (change
or new functionality).

IM 4. Incidents and service requests are prioritized
and analyzed;

IM 4. Each request had its priority defined and impact
analysis performed, using the traceability provided by
the issue-tracking system, to estimate the required effort.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 15 of 21
www.jserd.com/content/2/1/10

Table 3 MPS-SV level G processes and how they were implemented (Continued)

IM 5. Incidents and service requests are resolved
and concluded;

IM 5. The request-tracking spreadsheet shows the
managerial status of each request, allowing managing
them until conclusion.

IM 6. Incidents and service requests that did not
progress according the SLA are communicated to
higher level management;

IM 6. The request-tracking spreadsheet was shared and
monthly sent to directors of both companies. It explicitly
identifies the request that did not meet the SLA.

IM 7. Status information on incidents or service
requests is communicated to relevant stakeholders.

IM 7. Status communication to higher management
and customer stakeholders was achieved through
the spreadsheet. Communication to the internal
development team by using the Kanban chart.

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 16 of 21
www.jserd.com/content/2/1/10
traceability, are previously installed, as in the experience here described. Besides the mod-

erate effort, interesting results were obtained, including increases in the productive cap-

acity, as pointed out in the answer to the next question.

What are the potential effects on quality and productivity?

Quantitative data concerning this question was obtained by comparing the deliveries in

the new service format to the most recent delivery in the previously established project

format. For this comparison, only new use case developments of comparable medium

complexity (according to the criteria for counting use case points: from 4 to 7 transac-

tions including alternative steps) were considered. Table 4 summarizes these quantita-

tive results.

Regarding quality, during customer acceptance tests of medium complexity cases, the

number of failures was notably lower, falling from 0.33 failures per use case to 0.18 fail-

ures per use case. Concerning productivity, the real development effort spent per use

case was also slightly lower, falling from 24 person hours per use case to 21 person

hours per use case. Note that these productivity improvements directly translate into

saved costs as the supplier pays for the overall development effort in person hours.

Of course, these differences are not statistically significant since only 23 medium

complex use cases served as the basis for the comparison (12 implemented in the pro-

ject format and 11 implemented in the IT service format). Moreover, there are several

factors that can influence these results (e.g., low precision in measuring use case com-

plexity, inherent variations of individual productivity, learning factor). However, feed-

back from the customer also allowed observing a perceived improvement in quality

(fewer problems during acceptance tests) and productivity, especially regarding the fact

that the new service-oriented value-based approach resulted in faster delivery of demands

of higher added business value.

An informal causal analysis session (Kalinowski et al. 2008b) (Kalinowski et al. 2012),

aiming at investigating the causes of these changes in quality and productivity, was con-

ducted with the suppliers development team and showed that the existence of the SLA

and closer management resulted in greater commitment on the part of the developers.
Table 4 Comparison of the project and IT service delivery approaches

Approach # of use cases # Failures (Acceptance) Effort (Person-hours)

Project 12 4 284

IT Service 11 2 232

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 17 of 21
www.jserd.com/content/2/1/10
Some developers mentioned that, knowing of the individual penalties that the company

would be liable to pay in each request, they saw that it was much more important to

meet deadlines than they did when the project format was in use, in which the tasks

were scheduled but the overall deadline was scoped to the entire project. Indeed, closer

management and finer granularity are suggestions included in Humphrey’s reflections

on efficient team management (Humphrey 2010).

What are the main lessons learned?

In the reported experience, applying practices of service management to software devel-

opment resulted in a flexible contractual framework, allowing addressing the cus-

tomer’s business needs according to their priorities without additional contract

negotiation delays. New requests could be directly Among the lessons learned, that

could be passed on to international SME companies that seek to supply development

as an IT service guided by a service reference model, the following stand out:

� Contractual framework. In this supply model, it is important to have some

headroom in the budget for the fixed monthly part of the contractual framework,

compensating for possible variations in the volume of delivered requests to be billed

in the variable part. Otherwise, financial constraints may lead to excessive pressure,

on management and development levels, at the supplier’s side. After all, the

development team has to be paid by the supplier anyway, although if the supplier

has different customers following similar contractual service frameworks he might

be able to allocate developers to his project portfolio according to the individual

project’s volume of received demands.

� Prioritization criteria. The priority criteria for customer requests should be very

clear, as it might be applied when it comes to avoiding undue financial penalties, as

specified in the SLA. After all, ambiguities involving financial aspects may lead to

potential relationship problems between the contractor and the supplier.

� SLA and team capacity. It is important to assess the SLA carefully, checking

whether the company has the installed productive capacity of actually satisfying the

requested service level. If not, this would result in deliveries not meeting the SLA

and the application of penalties with direct impact on the monthly net gain.

� Managerial controls. The managerial controls were fundamental to allow handling

the demands as separate service requests, by facilitate monitoring the compliance

with the SLA. Not having such controls established may imply in several request

passing the SLA’s deadline and, as a consequence, in penalties.

� Traceability. Traceability plays a key role when handling request as separate

services to be provided, by supporting effective impact analysis, effort estimation

and risk assessments for handling each new request.

� Build, Test and Deployment Automation. Aiming at continuous delivery,

efficient build, test and deployment automation is strongly desired (Humble and

Farley 2010). In the case of our experience the build and deployment were fully

automated. Test automation however could be improved to reduce regression

testing effort. So far, only superficial smoke tests had been recorded to allow

identifying major side effects of new handled request, by using the Selenium IDE

plugin (Selenium 2013).

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 18 of 21
www.jserd.com/content/2/1/10
� Team and individual benefits. Some employees felt pressured by the SLA and the

close and quantitative monitoring. Therefore, it might be interesting to establish a

complementary policy for awarding employees with bonuses for improved

productivity. Note that this is feasible, since an improvement in productivity also

implies in a higher monthly net gain.

� Overall restructuring effort and benefits. Around one person month effort was

required for the restructuring and benefits were perceived in terms of improved

quality, productivity, and customer satisfaction. We take it that the increased

customer satisfaction was mainly related to meeting their main interests by considering

the integration of added business value into the software engineering practices.

What are the involved success and risk factors?

Another fruitful consequence of the experience was the opportunity to identify success

(and risk) factors related to restructuring software development in the format of service

delivery. Based on the lessons learned from the experience report, the main success

factors were:

� Success factor service reference model. The adoption of a service reference

model allowed benchmarking the new service format against IT service delivery

best practices and improved the confidence in the solutions provided by the

restructuring approach. These solutions include the internal managerial controls to

facilitate monitoring the compliance with the SLA.

� Success factor senior management support. The idea of the restructuring

addressed specific interests of stakeholders including the directors of both

companies. Therefore, direct support from senior management was obtained for the

process improvement initiative. We saw on several occasions that this support has

considerably facilitated and accelerated the restructuring.

� Success factor relationship of trust. The previous period of over one year

providing development services successfully allowed establishing a relationship of

trust between the contractor and the supplier. This relationship provided the basis

to discuss the new contractual framework for continuous delivery with varying

monthly net payments and gains.

� Success factor previously established capabilities. Some previously established

software engineering capabilities were crucial in the successful transition. Concrete

requirement traceability capacity, for instance, helps to handle request separately by

allowing effective impact analysis, effort estimation and risk assessments for

handling each new request. Moreover, build, test and deployment automation was

also extremely helpful for implementing the continuous delivery strategy.

Concerning the risk factors, we see a direct mapping, in the sense that the absence of

any of the success factors represents a significant risk. Additional risks can also be

identified from not addressing major issues in the the lessons learned.

Conclusions
This article reported on an experience of restructuring software development in

the form of providing IT services in the context of an SME software supplier. The

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 19 of 21
www.jserd.com/content/2/1/10
restructuring involved, in addition to the technical changes, important management

changes, i.e., establishing a contractual framework and capacities for managing service

requests in order to comply with a Service Level Agreement (SLA) made between the

supplier and the customer to satisfy the business needs of the latter.

The restructuring project was guided by the MPS-SV service reference model, which

is compatible to the CMMI-SVC reference model, complementing already established

software engineering practices for the provision of development as a continuous IT

service. The contractual aspects and internal managerial controls employed to facilitate

the compliance with the SLA were described. Those controls included the integrated

use of a managerial spreadsheet, an issue-tracking system, and a Kanban chart to moni-

tor how demands were prioritized to be met.

Further insight into the feasibility and results on such structuring were provided by

discussing valuable and experience-grounded answers to the following core questions:

What are typical stakeholder needs that trigger such a restructuring? Can a service

reference model be helpful to meet those needs? What effort is to be expected? What

are the potential effects on development quality and productivity? What are the main

lessons learned? What are the involved success and risk factors?

The overall analysis of the experience showed that only moderate effort, around one

person month, was required for structuring software development as a service guided

by a reference model and that perceived benefits were obtained in terms of quality,

productivity, and customer satisfaction. The increased customer satisfaction was mainly

related to meeting the customer’s business needs by integrating value considerations

into software engineering practices. Therefore, using a service reference model for

restructuring software development can represent an alternative path towards value-

based software engineering. Nevertheless, we would like to reinforce that, as expected

in an experience report, the obtained results relate to a specific scenario and industrial

environment. However, those results provide preliminary indications into feasibility and

potential benefits, further motivating the conduct of more rigorous studies (e.g., case

studies or controlled experiments) on the impact of applying service reference models

to re-structure software development from a project-oriented to a service-oriented

management format.

A key benefit of the Brazilian standards is the provision of smaller steps in the lower

range of the process maturity levels, which allows, in particular, small companies with

limited resources to systematically define and achieve software and service maturity

levels that suit their needs and means. This report and the identified lessons learned

can serve as a reference for SME companies that operate in the context of an inter-

national software maturity reference model and wish to restructure in order to supply

software development in the format of an IT service. These companies can benefit from

adopting a service reference model, such as the MPS-SV or CMMI-SVC models, in

synergy with their already established software engineering practices.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MK was the executive director of the supplier company and worked directly with the customer on establishing the
contractual framework and the service level agreement. He also worked with the supplier team to enable the
restructuring in the format of the service-oriented approach. He was the lead author of the initial report and of this
extended paper. SB helped to extend the initial report, discussing the overall solution and argumentation line and

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 20 of 21
www.jserd.com/content/2/1/10
enriching it with his strong scientific stakeholder analysis and value-based software engineering background. ROS was
the operations director of the supplier and helped extending the report with additional details of the overall experience. SR
is the main responsible person for the MPS-SV reference model and used her service quality background to help writing
the initial report and to support the extension with the argumentation on the international standards and reference
models. All authors read and approved the final manuscript.

Authors’ information
MK holds a MS and PhD in Computer and Systems Engineering from the Federal University of Rio de Janeiro (UFRJ)
and is currently professor of Software Engineering at the Federal University of Juiz de Fora (UFJF) in transference to
Fluminense Federal University (UFF). He is part of the MPS.BR project team and a certified MPS.BR lead appraiser and
process implementation consultant.
SB holds a MS and PhD in Computer Science from the Vienna University of Technology (TUW) and a MS in Social and
Economic Sciences from the University of Vienna. He also received a Habilitation degree (Venia Docendi) in “Praktische
Informatik” for his contributions on empirical software engineering. Currently he is professor of Software Engineering
at TUW and the head of the Christian Doppler research laboratory – Software Engineering Integration for Flexible
Automation Systems. He was lead editor for the book “Value-Based Software Engineering” in collaboration with co-editors
A. Aurum, B.W. Boehm, H. Erdogmus, and P. Grünbacher.
ROS holds a MS and PhD in Computer and Systems Engineering from the Federal University of Rio de Janeiro (UFRJ)
and is currently professor of Software Engineering at the University of Salvador (UNIFACS). He is a certified MPS.BR
process implementation consultant.
SR holds a MS in Informatics from the Catholic University of the State of Paraná (PUCPR) and a PhD in Production
Engineering from the University of São Paulo (USP) and is currently professor of Software Engineering at PUCPR. She is
the coordinator of the service area of the MPS.BR project team and a certified MPS.BR lead appraiser and process
implementation consultant.

Acknowledgements
We would like to thank CNPq (Brazilian Research Council) for financial support. Thanks also to everyone at Tranship
Transportes Marítimos and Kali Software directly involved in the experience reported in this article, especially Rosiene Dilly
(the project manager) and Vagner Lopes (the internalized requirements analyst). This research was in part supported by the
Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.

Author details
1Federal University of Juiz de Fora, Rua José Kelmer s/n, Juiz de Fora 36.036-330, Brazil. 2Institute of Software
Technology and Interactive Systems, CDL-Flex-, Vienna University of Technology, Favoritenstr. 9/188, Vienna 1040,
Austria. 3University of Salvador, Rua Doutor José Peroba 251, Salvador 41.770-235, Brazil. 4Catholic University of the
State of Paraná, Rua Imaculada Conceição 1155, Curitiba 80.215-901, Brazil.

Received: 9 October 2013 Accepted: 5 July 2014
Published: 30 August 2014

References

Anderson DJ (2010) Kanban: successful evolutionary change for your technology business. Blue Hole Press, Sequim, WA
Assembla (2013) Assembla task & issue management., http://www.assembla.com. Accessed 29 Sep 2013
Barney S, Aurum A, Wohlin C (2008) A product management challenge: creating software product value through

requirements selection. J Syst Architecture 54(6):576–593
Biffl S, Aurum A, Boehm B, Erdogmus H, Grünbacher P (eds) (2006) Value-based software engineering. Springer, Heidelberg
Boehm B (2006) Value-based software engineering: overview and agenda. In: Biffl S, Aurum A, Boehm B, Erdogmus H,

Grünbacher P (eds) Value-based software engineering. Springer, Heidelberg
Boehm B, Turner R (2003) Balancing agility and discipline: a guide for the perplexed. Wesley, Addison
Davis F (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS

Quarterly 13(3):319–340
Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test, and deployment

automation. Addison-Wesley, Boston, MA
Humphrey WS (2010) Reflections on management: How to manage your software projects, your teams, your boss, and

yourself. Addison-Wesley, Boston, MA
ISO/IEC (2004) ISO/IEC 15504–1: information technology - process assessment – part 1 - concepts and vocabulary.

ISO, Geneve
ISO/IEC (2011) ISO/IEC 20000–1:2011 – information technology service management. ISO, Geneve
Jordão L, Kalinowski M (2013) Investigando a Aplicabilidade do MPS-SV na Melhoria de Serviços de Desenvolvimento e

Manutenção de Software. In: IX Workshop Anual do MPS.BR (WAMPS). Brazilian Computer Society (in Portuguese),
Campinas, Brazil

Kalinowski M, Reinehr S (2013) Estruturando Desenvolvimento de Software como um Serviço de TI: Uma Experiência
Prática. In: XII Simpósio Brasileiro de Qualidade Software (SBQS). Brazilian Computer Society (in Portuguese),
Salvador, Brazil

Kalinowski M, Spínola RO, Dias-Neto AC, Bott A, Travassos GH (2007) Inspeções de requisitos de software em
desenvolvimento incremental: Uma experiência prática. In: VI simpósio brasileiro de qualidade software (SBQS).
Brazilian Computer Society (in Portuguese), Porto de Galinhas, Brazil

Kalinowski M, Weber KC, Travassos GH (2008a) IMPS: an experimentation based investigation of a nationwide software
development reference model. In: International symposium on empirical software engineering and measurement
(ESEM). ACM and IEEE, Kaiserslautern, Germany

http://www.assembla.com

Kalinowski et al. Journal of Software Engineering Research and Development 2014, 2:10 Page 21 of 21
www.jserd.com/content/2/1/10
Kalinowski M, Travassos GH, Card DN (2008b) Guidance for efficiently implementing defect causal analysis. In: VII
Brazilian symposium on software quality (SBQS). Brazilian Computer Society (in Portuguese), Florianópolis, Brazil

Kalinowski M, Santos G, Reinehr S, Montoni M, Rocha AR, Weber KC, Travassos GH (2010) MPS.BR: Promovendo a
Adoção de Boas Práticas de Engenharia de Software pela Indústria Brasileira. In: XIII Congreso Iberoamericano en
"Software Engineering" (CIBSE). Universidad del Azuay (in Portuguese), Cuenca, Equador, ISBN 978-9978-325-10-0

Kalinowski M, Card DN, Travassos GH (2012) Evidence-based guidelines to defect causal analysis. IEEE Software
29(4):16–18, doi:10.1109/MS.2012.72

Kemerer CF, Paulk MC (2009) The impact of design and code reviews on software quality: an empirical study based on
PSP data. IEEE Trans Softw Eng 35(4):534–550

Khan SU, Niazi M, Ahmad R (2011) Factors influencing clients in the selection of offshore software outsourcing vendors:
an exploratory study using a systematic literature review. J Syst Softw 84(4):686–699

Lehman TJ, Sharma A (2011) Software development as a service: agile experiences. In: Annual SRII global conference
(SRII). IEEE, San Diego, USA

MCTI (2013) Brazilian ministry of science, technology and innovation., http://www.mcti.gov.br. Accessed 29 Sep 2013
Penn ML (2011) Applying CMMI-SVC process areas to CMMI-DEV projects. Presentation at SEPG North America 2011,

available via CMMI Institute., http://cmmiinstitute.com/resources. Accessed 29 Sep 2013
Penn ML (2013) Harmonization of CMMI-SVC and CMMI-DEV, Presentation at SEPG North America 2013, available via

SEPG., http://sepgconference.org/harmonization-of-cmmi-svc-and-cmmi-dev. Accessed 29 Sep 2013
PMI (2013) A guide to the project management body of knowledge, 5th edn. Project Management Institute, Newtown

Square, PA
Santos G, Kalinowski M, Rocha AR, Travassos GH, Weber KC, Antonioni JA (2012) MPS.BR program and MPS model:

main results, benefits and beneficiaries of software process improvement in Brazil. In: International Conference on
the Quality in Information and Communications Technology (QUATIC). IEEE, Lisbon, Portugal

SEI (2010) CMMI for services, version 1.3 (CMU/SEI-2010-TR-034), available via Software Engineering Institute, Carnegie
Mellon University., http://www.sei.cmu.edu/library/abstracts/reports/10tr034.cfm. Accessed 29 Sep 2013

Selenium (2013) Selenium IDE., http://docs.seleniumhq.org/projects/ide. Accessed 29 Sep 2013
SOFTEX (2012a) MR-MPS-SW – guia geral MPS de software., Available via SOFTEX. http://www.softex.br/mpsbr.

Accessed 29 Sep 2013
SOFTEX (2012b) MR-MPS-SV – guia geral MPS de serviços., Available via SOFTEX. http://www.softex.br/mpsbr.

Accessed 29 Sep 2013
SOFTEX (2014) SOFTEX MPS.BR program website., http://www.softex.br/mpsbr. Accessed 06 May 2014
Travassos GH, Kalinowski M (2013) IMPS 2012: evidências sobre o desempenho das empresas que adotaram o modelo

MPS-SW desde 2008. SOFTEX, Campinas, English edition: Travassos GH, Kalinowski M (2013) iMPS 2012: Evidence on
Performance of Organizations that Adopted the MPS-SW Model since 2008 (trans: Kalinowski M). SOFTEX, Campinas

TSO (2011) ITIL – information technology infrastructure library v2011, Available via TSO – the stationery office.,
http://www.itil.org.uk. Accessed 29 Sep 2013

Turner M, Kitchenham B, Brereton P, Charters S, Budgen D (2010) Does the technology acceptance model predict
actual use? a systematic literature review. Inf Softw Technol 52:463–479
doi:10.1186/s40411-014-0010-x
Cite this article as: Kalinowski et al.: From project-oriented to service-oriented software development: an industrial
experience guided by a service reference model. Journal of Software Engineering Research and Development 2014 2:10.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.mcti.gov.br
http://cmmiinstitute.com/resources
http://sepgconference.org/harmonization-of-cmmi-svc-and-cmmi-dev
http://www.sei.cmu.edu/library/abstracts/reports/10tr034.cfm
http://docs.seleniumhq.org/projects/ide
http://www.softex.br/mpsbr
http://www.softex.br/mpsbr
http://www.softex.br/mpsbr
http://www.itil.org.uk

	Abstract
	Introduction
	Case description
	Discussion and evaluation
	Conclusions

	Background
	RI-1. Survey on perceived utility of structuring software development guided by service reference models
	RI-2. Industry experience report on the feasibility and results on restructuring software development guided by a service reference model

	Case description
	Context and stakeholder needs
	Restructuring software development as a service
	Contractual aspects
	Service level agreement and penalties
	Agreement
	Penalties

	Supplier-side managerial controls

	Discussion and evaluation
	What are typical stakeholder needs that trigger the restructuring from a project-oriented approach to a service-oriented approach?
	Can a service reference model be helpful to meet those needs?
	What is the effort to be expected?
	What are the potential effects on quality and productivity?
	What are the main lessons learned?
	What are the involved success and risk factors?

	Conclusions
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

