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Regulation of voltage-gated potassium
channels attenuates resistance of
side-population cells to gefitinib in the
human lung cancer cell line NCI-H460
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Abstract

Background: Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines.
Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP
cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer.

Methods: To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells,
as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a
gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux.

Results: In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to
Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib
and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf
signaling pathway.

Conclusions: The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance
to gefitinib.
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Background
Epidermal growth factor receptor (EGFR) is an oncogene
that is involved in the development and progression of
several human cancers, including non-small cell lung
cancer (NSCLC). Approximately 10–30% of non-small
cell lung cancer (NSCLC) patients have EGFR gene mu-
tations. EGFR tyrosine kinase inhibitor (TKI) therapies
are effective for NSCLC patients who have EGFR kinase
domain mutations that target four exons (exon 18-exon 21)
[1, 2]. Gefitinib (ZD 1839, Iressa), a small-molecule EGFR
TKI, was approved by United States’ Food and Drug
Administration (FDA) in 2003 for NSCLC, which com-
prises 80% of lung cancers [3]. Gefitinib sensitivity occurs

in patients who have EGFR mutations, such as L858R or
exon 19 deletion. However, a T790M-like secondary muta-
tion in exon 19 of EGFR was also associated with resistance
to gefitinib in NSCLC cells that contain the L858R-EGFR
mutation [4]. Moreover, KRAS mutations also demonstrate
resistance to gefitinib in vitro and in vivo [4, 5].
Accumulating evidence indicates that cancer stem cells

(CSCs) have self-renewal properties in various solid
tumors, and play a role in tumor development and pro-
gression [6, 7]. Side-population (SP) cells, a fraction of
cancer stem cells, can be identified by efflux of Hoechst
33342 dye [8]. Moreover, SP cells have higher clonogenic
potential and expression levels of ATP-binding cassette
(ABC) transporters than main-population cells (known
as Non-SP cells) [9, 10]. Several groups have suggested
that SP cells that were dye-excluding cell portion in a
tumor including lung cancer were responsible for anti-
cancer drug resistance [11, 12]. SP cells in tumors
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possess phenotypes and signaling pathways similar to
those of normal stem cells, which have high efflux of
drugs [13, 14]. High expression levels of ABC transporters,
especially ABCG2, in normal stem cells and tumor stem
cells are considered to be responsible for drug resistance
[15–17]. In various types of tumor, SP cells related to drug
resistance have been isolated [18–20].
Recently, several reports have proposed that ion chan-

nels regulate the survival and growth of cancer stem
cells [21, 22]. Silencing of chloride intracellular channel
1 (CLIC1), which is significantly overexpressed in stem/
progenitor cells from human glioblastomas, reduced the
proliferative and clonogenic capacity of stem/progenitor
cells [21]. The transient receptor potential cation chan-
nel, subfamily M, member 7 (TRPM7) also leads to in-
creased cancer stem cell proliferation in glioblastoma
multiforme (GBM) through activation of the JAK2/STAT3
and/or Notch signaling pathways [22]. Moreover, blockade
of CLIC1 induces apoptosis of 1,3-Bis(2-chloroethyl)-1-
nitrosourea (BCNU)-resistant cancer stem cells of
GBM [23].
However, research regarding the voltage-gated potas-

sium (Kv) channel expression patterns of SP cells, and
the involvement of Kv channels in reducing the resist-
ance of SP cells to gefitinib, has not been reported.
Therefore, the present study was performed to com-

pare Kv channel expression between SP cells and Non-
SP cells in a gefitinib-resistant NCI-H460 cell line, which
had wild-type EGFR and KRAS mutations [4], and to
examine the inhibitory effect of combination treatment
with gefitinib and Kv channel blockers or a Kv7 opener
on the viability of gefitinib-resistant SP cells.

Methods
Cells and reagents
The human lung adenocarcinoma cell line (NCI-H460)
was obtained from Korea Cell Line Bank (Seoul, Korea).
The cells were maintained in complete growth medium
supplemented with 10% fetal bovine serum (WelGene,
Korea) and 1% antibiotics (Sigma-Aldrich, St. Louis,
MO, USA) in an incubation system at 37 °C with 5%
CO2. The cells were harvested using 1% trypsin-EDTA
(Sigma-Aldrich) when they were in the logarithmic
phase of growth, for SP analysis. Hoechst 33342 and
fumitremorgin C (ABCG2 blocker) were purchased from
Sigma-Aldrich. The anti-cancer drug gefitinib (Santa
Cruz Biotechnology, CA, USA), tetraethylammonium
(TEA, Sigma-Aldrich), 4-aminopyridine (4-AP, Sigma-
Aldrich), and flupirtine (Tocris Bioscience, Bristol, UK)
were used to blockade cell growth.

Isolation of side population
The protocol was based on that of Goodell et al.
[24]. Briefly, the NCI-H460 cells were re-suspended

at 1 × 106 cells/mL in pre-warmed RPMI 1640 (WelGene)
with 2% fetal bovine serum. Hoechst 33342 dye was added
at a final concentration of 5 μg/mL in the presence or ab-
sence of fumitremorgin C (10 μg/mL), and the cells were
incubated in a 37 °C water bath for 90 min with intermit-
tent shaking. At the end of the incubation, the cells were
washed with ice-cold Hank’s Balanced Salt Solution
(HBSS) (Sigma-Aldrich), centrifuged down at 4 °C, and
resuspended in ice-cold HBSS. Propidium iodide (Sigma-
Aldrich) at a final concentration of 2 μg/mL was added to
the cells to gate the viable cells. The cell preparations were
filtered through a 40-μm cell strainer (BD Biosciences,
San Jose, CA, USA) to obtain a single cell suspension.
Cells were analyzed and sorted into SP and Non-SP using
BD FACSAriaIII® (BD Biosciences).

Real-time RT-PCR analysis
Total RNA was extracted using a Hybrid-R prep kit
(GeneAll, Korea), according to the manufacturer’s proto-
col. Reverse transcription was performed using M-MLV
reverse transcriptase (Thermo Fisher Scientific, Fremont,
CA, USA) and random primer (Promega, Madison, WI,
USA) according to the manufacturer’s instructions. Real-
time reverse transcription-PCR (real-time RT-PCR) was
done with SYBR Green reagents (TAKARA, Japan) on
Step-One Plus (Applied Biosystems, Foster City, CA,
USA). Primers were designed to generate a PCR product.
The relative mRNA expression level of the genes was
normalized to GAPDH, and expressed as fold change
relative to Non-SP cells. Table 1 represents the list of
primers used for real-time RT-PCR.

Cell proliferation assay
A cell proliferation assay was performed using the Cell
Counting Kit-8 (Dojindo, Japan). Sorted SP cells were
plated in 96-well culture plates (SPL, Korea) at 5 × 102

cells per well, and cultured in the complete growth
medium. CCK-8 solution was added to each well at 0,
12, 24, 48, and 72 h. After 4 h of incubation, the absorb-
ance was determined through a 450 nm filter in a micro-
plate reader (TECAN, Männedorf, Switzerland), and the
growth curve was plotted using optical density (OD)
values. Each experiment was performed in triplicate.

Inhibitory effect of gefitinib, TEA, 4-AP, and flupirtine on
NCI-H460 cell viability
The cells were seeded in 96-well plates at a concentration
of 1 × 103 cells per well. After treatment with gefitinib, Kv
channel blockers (TEA, 4-AP), and the Kv7 channel opener
(flupirtine), the cell viability was measured using the 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay. Briefly, 0.5 mg/mL of thiazolyl blue tetra-
zolium (Sigma-Aldrich) was added to the cells, and the
cells were then incubated for 4 h. The MTT formazan
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was dissolved with dimethyl sulfoxide (DMSO) (Sigma-
Aldrich), and the absorbance at 570 nm was determined
using a microplate reader. The results were presented as a
percentage of the control values.

Western blotting assay
The western blotting assay was applied to study the pro-
teins related to the EGFR-Ras-Raf signaling pathway.
Proteins were extracted and subjected to 10% SDS-
PAGE, then transferred to PVDF membranes. The mem-
branes were blocked with 5% skim milk in Tris-buffered
saline with Tween™20 (Sigma-Aldrich) for 1 h at room
temperature. The membranes were reacted with primary
antibodies overnight at 4 °C. The primary antibodies were
as follows: phosphorylated EGFR (1:500); Ras (1:500);
phosphorylated Raf (1:500); phosphorylated Erk1/2 (1:500,
all from Cell Signaling Technology, Danvers, MA, USA);
and β-actin (Santa Cruz Biotechnology, 1:1,000). β-actin
protein was used as the control.

Statistical analysis
Data were generally presented as the mean ± SE, and the
statistical differences between experimental groups were
analyzed with Student’s t-test using the statistical software

Origin 8.0. A p value of < 0.05 was considered statistically
significant in all cases.

Results
Inhibition of viability of NCI-H460 cells by blockade and
opening of Kv channels
In order to determine the inhibitory effect of Kv channel
blockers (TEA and 4-AP) and Kv7 opener (flupirtine) on
the viability of NCI-H460 cells, cell viability was deter-
mined using an MTT assay. Cells treated with TEA, 4-AP,
and flupirtine at different concentrations were incubated
for 24, 48, and 72 h. The results indicated that the viability
of NCI-H460 cells treated with TEA, 4-AP, and flupirtine
was decreased in a dose-dependent manner (Fig. 1).

Isolation of SP cells within the NCI-H460 cell
In order to isolate the SP cells, the NCI-H460 cells were
stained with Hoechst 33342, which was extruded by
ABC transporters in stem-like cells. Next, we quantified
the SP cells with dual-wavelength flow cytometry. The
results show that SP cells were detected at 1.75% in mul-
tiple independent experiments (n = 34), as illustrated in
Fig. 2a. SP cells were also eliminated in the presence of
fumitremorgin C, which is specific blocker of ABCG2
(Fig. 2b). According to our results, SP cells, which had
dual negative wavelengths of blue and red, were isolated
in gefitinib-resistant NCI-H460 cells.

Characterization of SP cells
In order to confirm the characteristics of the SP cells,
the mRNA expression levels of marker genes were iden-
tified using real-time RT-PCR, and compared to Non-SP
cells. The mRNA expression level of ABCG2 was signifi-
cantly increased in the SP cells. The mRNA expression
levels of OCT4 and NANOG, which are specific markers
of self-renewal, were significantly elevated in the SP cells
(Fig. 3a). Also, to determine the differences in prolifera-
tion potential, the proliferation of SP and Non-SP cells
was measured using the CCK-8 assay. After the sorted
SP and Non-SP cells were incubated overnight, the
CCK-8 assay was performed at 0, 12, 24, 48, and 72 h.
The result reveals that the proliferation potential of SP
cells was also significantly 2 times higher than Non-SP
cells at the 72-h time-point (Fig. 3b).

Comparison of mRNA expression level of Kv channels
between SP- and Non-SP cells
To determine the mRNA expression level of Kv channel
subtypes in SP cells, mRNA expression levels were mea-
sured with a real-time RT-PCR. The result shows that
the mRNA expression levels of Kv channel subtypes in
SP cells were significantly different compared to Non-SP
cells. The expression levels of Kv1.4, Kv7.3, Kv7.5,
Kv10.1, and Kv11.1 mRNA in SP cells were less than in

Table 1 Primers for real-time RT-PCR

Gene
(Accession number)

Sequences Product size
(base pair)

ABCG2
(NM_001257386)

F 5′-AGATGGGTTTCCAAGCGTTC-3′
R 5′-TGGTTGGTCGTCAGGAAGAA-3′

191

ABCC1
(NM_004996.3)

F 5′- ACTGCCTTGGGATTTTTGCT-3′
R 5′- CATGGTGATGCCCAAGAGAG-3′

135

OCT4
(NM_001173531)

F 5′- ATTTTGAGGCTGCTGGGTCT-3′
R 5′- CCTCAGTTTGAATGCATGGG-3′

205

NANOG
(NM_024865)

F 5′-CAGAAAAACAACTGGCCGAA-3′
R 5′-GGTCTGGTTGCTCCACATTG-3′

147

Kv1.3
(NM_002232)

F 5′- TCTCCTTCGAACTGCTGGTG-3′
R 5′- ATGGCCACAATGTCGATCAG-3′

95

Kv1.4
(NM_002233.3)

F 5′-ACGAGGGCTTTGTGAGAGAA -3′
R 5′-TAAGATGACCAGGACGGACA- 3′

144

Kv4.1
(NM_004979)

F 5′-CTCCCTCAGCTCCTTCTTGG-3′
R 5′-GGGCAATGTTCTGAGGGACT-3′

97

Kv7.3
(NM_001204824.1)

F 5′-GGTGCAGGTCACGGAGTATT-3′
R 5′-GGGCTGACTTTGTCAATGGT-3′

174

Kv7.5
(NM_001160134.1)

F 5′-CGCTTTCGTTTTTCTCCTTG-3′
R 5′-CGAGCAAACCTCAGTCTTCC-3′

207

Kv9.3
(NM_002252.3)

F 5′-CAGTGAGGATGCACCAGAGA-3′
R 5′-TTGCTGTGCAATTCTCCAAG-3′

200

Kv10.1
(NM_002238.3)

F 5′-TGACCCCAAACTTATCCGCA-3′
R 5′-CTGCTGATGCCCTCATCCAC-3′

116

Kv11.1
(NM_001204798)

F 5′-GACGTGCTGCCTGAGTACAA-3′
R 5′-AGCCGAGTAGGGTGTGAAGA-3′

121

GAPDH
(NM_002046.4)

F 5′-CTCTGCTCCTCCTGTTCGAC-3′
R 5′-ACGACCAAATCCGTTGACTC-3′

112
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Non-SP cells. In other types of Kv channels, mRNA ex-
pression levels of Kv4.1 and Kv9.3 in SP cells were 1.58-
and 2.03-fold higher, respectively, than in Non-SP cells
(Fig. 4). The mRNA expression level of Kv1.3 between
the SP and Non-SP cells was not significantly different
(p = 0.06). This result indicates that the expression pat-
terns of Kv channel subtypes are different between SP
cells and Non-SP cells.

Reduction of resistance to gefitinib with Kv channel
blockers and opener in SP cells
To evaluate their inhibitory effects of gefitinib, Kv chan-
nel blockers and Kv7 opener on viability of the sorted SP
cells, the viability of sorted cells treated with Kv channel
blockers, Kv7 opener, and gefitinib for 72 h was esti-
mated. The results showed that the viability of SP cells
treated with gefitinib alone at an insensitive concentra-
tion (2 μM) [4] was not decreased. Compared to the SP
cells, the viability of Non-SP cells treated with gefitinib
alone at a concentration of 2 μM was decreased by
40.3% (Fig. 5). In cells treated with gefitinib at a concen-
tration of 1 μM, viability was not decreased in the SP
and Non-SP cells. An additional file shows this in detail
(see Additional file 1).
In addition, the viability of SP cells treated with TEA

alone at a concentration of 5 mM or with a combination
treatment of TEA and gefitinib at concentrations of
5 mM and 2 μM, respectively, was decreased by 15.8
and 76.16 (Fig. 5a). After treatment with 4-AP alone at a
concentration of 2 mM, or a combination treatment of
4-AP and gefitinib at concentrations of 2 mM and 2 μM,
the viability of the SP cells was decreased by 16.7 and
72.6%, respectively (Fig. 5b). The viability of the SP cells
treated with flupirtine alone at a concentration of
30 μM, or with a combination treatment of flupirtine
and gefitinib at concentrations of 30 μM and 2 μM, was
decreased 37 and 69.4%, respectively (Fig. 5c). According
to the results, SP cells were less sensitive to gefitinib
than Non-SP cells, and the viability of SP cells with com-
bination treatments was decreased more than with gefi-
tinib as a single treatment. However, the degree of
reduction between SP and Non-SP cells in each group
was not different. Table 2 summarizes the percentage of
decreased viability of SP and Non-SP cells from combin-
ation and single treatments.

Inhibition of activated EGFR-Ras-Raf-Erk signaling pathway
with combination treatment
To determine the signaling pathway involved in gefitinib
resistance in cells with the combination treatment,
western blotting to detect proteins of the EGFR-Ras-Raf
signaling pathway was performed. The result showed that
phosphorylated EGFR (p-EGFR) protein in cells with the
combination treatment was decreased, compared to

Fig. 1 Effect of Kv blockers and an opener on NCI-H460 cell viability.
Cell viability of NCI-H460 cells treated with a TEA b 4-AP, or c flupirtine
for 24, 48, and 72 h was decreased in a dose-dependent manner. Results
are mean ± SE of triplicate experiments, (*) p < 0.05
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single-treatment gefitinib or blockers (Fig. 6). Also, total
Ras protein in cells with the combination treatment was
decreased, compared to single treatment with a gefitinib
or blockers. Phosphorylated Erk (p-Erk) protein in cells

with the combination treatment was decreased as
compared to single treatments with 4-AP and flupirtine.
However, the expression level of phosphorylated Raf
(p-Raf ) protein was not different between the combination

A

B 

SP (%) SE

Hoechst33342 1.75 ±0.37

Fumitremorgin C 0.2 ±0.07

Fig. 2 Isolation of SP cells in a cultured NCI-H460 lung cancer cell line. SP cells plotted in the absence (a) or presence (b) of fumitremorgin C. Results
are mean ± SE of triplicate experiments, (*) p < 0.05
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Fig. 3 Characterization of SP cells in NCI-H460 lung cancer cells.
a Real-time RT-PCR analysis of cancer stem cell marker genes b showing
proliferation of sorted SP cells and Non-SP cells. Results are mean ± SE of
triplicate experiments, (*) p< 0.05

Fig. 4 Comparison of Kv channel expression between sorted SP cells
and Non-SP cells. Real-time RT-PCR analysis of Kv channel subtypes.
Results are mean ± SE of triplicate experiments, (*) p < 0.05

Fig. 5 Inhibitory effect of combination treatment with gefitinib and Kv
blockers (TEA and 4-AP) or an opener (flupirtine) on sorted SP cells and
Non-SP cell viability. Cell viability of SP cells and Non-SP cells treated
with a TEA 5 mM b 4-AP 2 mM, or c flupirtine 30 μM together gefitinib
2 μM. Results are mean ± SE of triplicate experiments, (*) p < 0.05
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treatment and the single treatment. According to the re-
sults, combination treatment with gefitinib and Kv channel
blockers or the Kv7 opener reduced the viability of
gefitinib-resistant NCI-H460 cells through inhibition of the
EGFR-Ras-Raf-ERK pathway.

Discussion
In the present study, isolated SP cells responsible for
resistance to gefitinib in the NCI-H460 cell line demon-
strated different Kv channel expression patterns com-
pared to Non-SP cells. Our results also indicated that
the viability of SP cells treated with gefitinib and Kv
channel blockers or the Kv7 opener was more signifi-
cantly inhibited than with single treatments through in-
hibition of the activated EGFR-Ras-Raf-Erk signaling
pathway.
Several research groups have suggested that SP cells

(known as cancer stem cells) were isolated from various
cancer cell lines, including lung cancer, at various fre-
quencies [12, 25–27]. The frequency of isolated cancer
stem cells from human cancers was infrequent [28]. In
our study, SP cells in gefitinib-resistant lung cancer cells
were isolated (1.87%). Moreover, SP cells had character-
istics similar to those of normal stem cells that were re-
sponsible for drug resistance [13, 15]. SP cells in tumor
had high expression of ABC transporters and a high pro-
liferative capacity, similar to normal stem cells [29, 30].
Some reports suggest that ABCG2 regulates self-renewal

and stem cell marker expression in radiation-resistant
glioma cells and NSCLC cell lines [31, 32]. Furthermore,
other studies have proposed that gefitinib is a substrate
extruded by ABCG2 and that a high expression of
ABCG2 is responsible for acquired resistance to gefitinib
[33–35]. Corresponding to previous studies, we isolated
SP cells with high mRNA expression of ABCG2, OCT4,
and NANOG genes and high proliferative potential from
gefitinib-resistant NCI-H460 lung cancer cells. More-
over, SP cells in the NCI-H460 cell line demonstrate less
sensitivity to gefitinib than Non-SP cells.
Potassium channels are involved in the regulation of

anti-cancer-drug resistance. The up regulation of Kv1.5
increased the sensitivity of human gastric cancer
(SGC7901) cells to chemotherapeutic drugs [36], and
Kv1.1 specific blocker reduced gefitinib-resistant H460
cell viability [37]. Furthermore, inhibition of intermediate
conductance calcium-activated potassium (KCa3.1) chan-
nels in a stem-like subpopulation from primary GBM cells
induced reducing motility of stem-like subpopulation [38].
Kv channels are also involved in cell differentiation [39].
In particular, the expression of Kv1.3 was altered in poorly
differentiated breast cancer [40], while Kv1.1, Kv1.2, Kv1.3,
Kv1.4, Kv4.2, Kv4.3 and Kv9.3 decreased, as undifferen-
tiated human mesenchymal stem cells (MSCs) differen-
tiated into adipocytes [41]. In addition, the expression
of neural Kv7 genes was increased during murine myo-
blast cell differentiation [42]. Likewise, our results also
suggested that SP cells which were less sensitive to gefi-
tinib have different mRNA expression patterns of Kv
channel subtypes compared to Non-SP cells.
Over the last several years, in order to overcome the

resistance of TKIs, many molecular targets have been in-
vestigated in cancer cells [43–45]. Kv channels as targets
for suppression of cancer cell growth have been pro-
posed [46–48]. Moreover, the inhibitory effect of com-
bination therapies with EGFR TKIs and potassium
channel blockers on the viability of cancer cells has been
measured [37, 49]. However, the function of Kv channel
blockers and a Kv7 opener on gefitinib-resistant SP cells
has not been reported. According to our results, the com-
bination treatment of gefitinib and Kv channel blockers or
the Kv7 opener further attenuated the resistance of SP
cells to gefitinib compared to single treatments. Therefore,
our results demonstrate the synergic effect of gefitinib and
Kv channel blockers (TEA and 4-AP) or the Kv7 opener
(flupirtine) on the viability of gefitinib-resistant SP cells.

Table 2 Viability of SP- and Non-SP cells treated with gefitinib and Kv channels blocker or Kv7 opener

Cell
viability (%)

Gefitinib (2 μM) TEA (5 mM) 4-AP (2 mM) Flupirtine (30 μM) TEA (5 mM) 4-AP (2 mM) Flupirtine (30 μM)

(Gef 2 μM)

Non-SP 59.68 (±4.54) 79.09 (±5.62) 72.46 (±5.45) 58.08 (±5.67) 20.39 (±3.27) 20.54 (±5.22) 32.02 (±3.48)

SP 105.32 (±10.92) 84.22 (±4.40) 83.32 (±5.43) 63.00 (±8.81) 23.84 (±4.27) 27.44 (±8.87) 30.63 (±3.95)

Fig. 6 Inhibition of the EGFR-Ras-Raf signaling pathway on NCI-H460
cells with combination treatment. The protein expression level of p-EGFR,
total Ras, p-Raf, and p-ERK1/2 was inhibited in cells with gefitinib and Kv
blockers (TEA and 4-AP) or an opener (flupirtine)

Choi et al. BMC Pharmacology and Toxicology  (2017) 18:14 Page 7 of 9



In addition, the signaling pathway related to reducing
the resistance of SP cells to gefitinib with combination
treatment of gefitinib and Kv channel blockers or the
Kv7 opener has not been characterized. Recently, several
reports have demonstrated that K+ channels are regu-
lated by EGFR [50, 51]. Moreover, K+ currents have been
induced by the Ras-Raf cascade [52]. Our study also sug-
gests that the blockade or opening of Kv channels is
associated with the EGFR-Ras-Raf signaling pathway.

Conclusion
The SP cells in the NCI-H460 cell line have different Kv
channel expressions compared to Non-SP cells, and the
resistance of SP cells to gefitinib, with a highly expressed
ABC transporter and a stemness gene, was attenuated
through combination treatment with gefitinib and Kv chan-
nel blockers (TEA and 4-AP) or Kv7 opener (flupirtine).
Therefore, the Kv channels of SP cells are useful targets for
overcoming gefitinib resistance in lung cancer patients.

Additional file

Additional file 1: Effect of gefitinb 1 μM on sorted SP cells and Non-SP
cell viability. Sorted SP and Non-SP cells were seeded at 1 × 103 cells in
96 well culture plates. After 24 h, cells were treated with gefitinib 1 μM.
Cell viability was measured after 72 h. Results are mean ± SE of triplicate
experiments. (PPTX 100 kb)

Abbreviations
4-AP: 4-aminopyridine; ABC: ATP-binding cassette; BCNU: 1,3-Bis(2-chloroethyl)-
1-nitrosourea; CLIC1: Chloride intracellular channel 1; CSCs: Cancer stem cells;
EGFR: Epidermal growth factor receptor; GBM: Glioblastoma multiforme; MTT: 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NSCLC: Non-small
cell lung cancer; SP: Side-population; TEA: Tetraethylammonium; TKIs: Tyrosine
kinase inhibitors; TRPM7: Transient receptor potential cation channel, subfamily
M, member 7

Funding
This research was supported by Basic Science Research Program through
National Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (2012-R1A2A2A01047151,NRF-2014R1A1A3A04052757)
and by the Bio & Medical Technology Development Program of the National
Research Foundation funded by the Ministry of Science, ICT & Future Planning
(2016M3A9B6026771).

Availability of data and materials
All datasets generated or analyzed during this study are included in this
published article and its supplementary information files.

Author’s contributions
SYC carried out experiments, analyzed data and wrote manuscript. HRK
contributed to isolation and discussion of SP cells. PDR contributed to
discussions about the manuscript. SYL designed the study and wrote the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
According to the guidelines of Seoul National University Institutional Review
Board (SNUIRB), the research involving human cancer cell lines obtained
from Korea Cell Line Bank was not target for research ethics review.

Author details
1Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and
Research Institute for Veterinary Science, Seoul National University, Seoul,
Korea. 2Department of Anatomy and Cell Biology, and Biomedical Sciences,
College of Medicine, Seoul National University, Seoul, Korea.

Received: 11 March 2016 Accepted: 28 January 2017

References
1. Melosky B. Review of EGFR TKIs in metastatic NSCLC, including ongoing

trials. Front Oncol. 2014;4:244.
2. Lin Y, Wang X, Jin H. EGFR-TKI resistance in NSCLC patients: mechanisms

and strategies. Am J Cancer Res. 2014;4:411–35.
3. Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R. FDA drug approval

summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist. 2003;8:303–6.
4. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor

receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.
5. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR

inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7:
493–507.

6. Wang K, Zeng J, Luo L, Yang J, Chen J, Li B, et al. Identification of a cancer
stem cell-like side population in the HeLa human cervical carcinoma cell
line. Oncol Lett. 2013;6:1673–80.

7. Richard V, Nair MG, Santhosh Kumar TR, Pillai MR. Side population cells as
prototype of chemoresistant, tumor-initiating cells. Biomed Res Int. 2013;
2013:517237.

8. Moserle L, Ghisi M, Amadori A, Indraccolo S. Side population and cancer
stem cells: therapeutic implications. Cancer Lett. 2010;288:1–9.

9. Britton KM, Kirby JA, Lennard TW, Meeson AP. Cancer stem cells and side
population cells in breast cancer and metastasis. Cancers (Basel). 2011;3:
2106–30.

10. Huang B, Huang YJ, Yao ZJ, Chen X, Guo SJ, Mao XP, et al. Cancer stem cell-
like side population cells in clear cell renal cell carcinoma cell line 769P.
PLoS One. 2013;8:e68293.

11. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving
concept. Nat Rev Cancer. 2012;12:133–43.

12. Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug
resistant lung cancer: targeting cell surface markers and signaling pathways.
Pharmacol Ther. 2016;158:71–90.

13. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer
stem cells. Nature. 2001;414:105–11.

14. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al.
The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem
cells and is a molecular determinant of the side-population phenotype. Nat
Med. 2001;7:1028–34.

15. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev
Cancer. 2005;5:275–84.

16. Kathawala RJ, Gupta P, Ashby Jr CR, Chen ZS. The modulation of ABC
transporter-mediated multidrug resistance in cancer: a review of the past
decade. Drug Resist Updat. 2015;18:1–17.

17. Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S. Expression of ABCG2
(BCRP) is regulated by Nrf2 in cancer cells that confers side population and
chemoresistance phenotype. Mol Cancer Ther. 2010;9:2365–76.

18. Hu L, McArthur C, Jaffe RB. Ovarian cancer stem-like side-population cells
are tumourigenic and chemoresistant. Br J Cancer. 2010;102:1276–83.

19. Brown MD, Gilmore PE, Hart CA, Samuel JD, Ramani VA, George NJ, et al.
Characterization of benign and malignant prostate epithelial Hoechst 33342
side populations. Prostate. 2007;67:1384–96.

20. Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell
lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007;
67:4827–33.

21. Setti M, Savalli N, Osti D, Richichi C, Angelini M, Brescia P, et al. Functional
role of CLIC1 ion channel in glioblastoma-derived stem/progenitor cells.
J Natl Cancer Inst. 2013;105:1644–55.

Choi et al. BMC Pharmacology and Toxicology  (2017) 18:14 Page 8 of 9

dx.doi.org/10.1186/s40360-017-0118-9


22. Liu M, Inoue K, Leng T, Guo S, Xiong ZG. TRPM7 channels regulate glioma
stem cell through STAT3 and Notch signaling pathways. Cell Signal. 2014;26:
2773–81.

23. Kang MK, Kang SK. Pharmacologic blockade of chloride channel
synergistically enhances apoptosis of chemotherapeutic drug-resistant
cancer stem cells. Biochem Biophys Res Commun. 2008;373:539–44.

24. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and
functional properties of murine hematopoietic stem cells that are
replicating in vivo. J Exp Med. 1996;183:1797–806.

25. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al.
A distinct “side population” of cells with high drug efflux capacity in human
tumor cells. Proc Natl Acad Sci U S A. 2004;101:14228–33.

26. Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, et al. Isolation and
characterization of cancer stem like cells in human glioblastoma cell lines.
Cancer Lett. 2009;279:13–21.

27. Fang DD, Kim YJ, Lee CN, Aggarwal S, McKinnon K, Mesmer D, et al.
Expansion of CD133(+) colon cancer cultures retaining stem cell properties
to enable cancer stem cell target discovery. Br J Cancer. 2010;102:1265–75.

28. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, et al. Tumor-
initiating cells are rare in many human tumors. Cell Stem Cell. 2010;7:279–82.

29. Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters.
Cancer Res. 2006;66:4553–7.

30. Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells:
therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34:732–40.

31. Wee B, Pietras A, Ozawa T, Bazzoli E, Podlaha O, Antczak C, et al. ABCG2
regulates self-renewal and stem cell marker expression but not
tumorigenicity or radiation resistance of glioma cells. Sci Rep. 2016;6:25956.

32. Galetti M, Petronini PG, Fumarola C, Cretella D, La Monica S, Bonelli M, et al.
Effect of ABCG2/BCRP expression on efflux and uptake of gefitinib in NSCLC
cell lines. PLoS One. 2015;10:e0141795.

33. Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, et al.
High-affinity interaction of tyrosine kinase inhibitors with the ABCG2
multidrug transporter. Mol Pharmacol. 2004;65:1485–95.

34. Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, et al.
Association of variant ABCG2 and the pharmacokinetics of epidermal
growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer
Biol Ther. 2007;6:432–8.

35. Chen YJ, Huang WC, Wei YL, Hsu SC, Yuan P, Lin HY, et al. Elevated BCRP/
ABCG2 expression confers acquired resistance to gefitinib in wild-type
EGFR-expressing cells. PLoS One. 2011;6:e21428.

36. Han Y, Shi Y, Han Z, Sun L, Fan D. Detection of potassium currents and
regulation of multidrug resistance by potassium channels in human gastric
cancer cells. Cell Biol Int. 2007;31:741–7.

37. Jeon WI, Ryu PD, Lee SY. Effects of voltage-gated K+ channel blockers in
gefitinib-resistant H460 non-small cell lung cancer cells. Anticancer Res.
2012;32:5279–84.

38. Ruggieri P, Mangino G, Fioretti B, Catacuzzeno L, Puca R, Ponti D, et al. The
inhibition of KCa3.1 channels activity reduces cell motility in glioblastoma
derived cancer stem cells. PLoS One. 2012;7:e47825.

39. Li GR, Deng XL. Functional ion channels in stem cells. World J Stem Cells.
2011;3:19–24.

40. Pardo LA, Stuhmer W. The roles of K(+) channels in cancer. Nat Rev Cancer.
2014;14:39–48.

41. You MH, Song MS, Lee SK, Ryu PD, Lee SY, Kim DY. Voltage-gated K+
channels in adipogenic differentiation of bone marrow-derived human
mesenchymal stem cells. Acta Pharmacol Sin. 2013;34:129–36.

42. Roura-Ferrer M, Sole L, Martinez-Marmol R, Villalonga N, Felipe A. Skeletal
muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation.
Biochem Biophys Res Commun. 2008;369:1094–7.

43. Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer
in the post-genomic era. Nat Biotechnol. 2012;30:679–92.

44. Eleftheria T, Allison ME, Younsoo B. Combination effects of docetaxel and
doxorubicin in hormone-refractory prostate cancer cells. Biochem Res Int.
2012;2012:10.

45. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as
therapeutic targets. Nat Rev Drug Discov. 2009;8:982–1001.

46. Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers
in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol.
2011;651:26–32.

47. Lee BH, Ryu PD, Lee SY. Serum starvation-induced voltage-gated potassium
channel Kv7.5 expression and its regulation by Sp1 in canine osteosarcoma
cells. Int J Mol Sci. 2014;15:977–93.

48. Ru Q, Tian X, Wu YX, Wu RH, Pi MS, Li CY. Voltage-gated and ATP-sensitive K+
channels are associated with cell proliferation and tumorigenesis of human
glioma. Oncol Rep. 2014;31:842–8.

49. Zhang DY, Zhang YH, Sun HY, Lau CP, Li GR. Epidermal growth factor
receptor tyrosine kinase regulates the human inward rectifier potassium
K(IR)2.3 channel, stably expressed in HEK 293 cells. Br J Pharmacol. 2011;164:
1469–78.

50. Bowlby MR, Fadool DA, Holmes TC, Levitan IB. Modulation of the Kv1.3
potassium channel by receptor tyrosine kinases. J Gen Physiol. 1997;110:
601–10.

51. Wang L, Zhang C, Su X, Lin D. Kcnj10 is a major type of K+ channel in
mouse corneal epithelial cells and plays a role in initiating EGFR signaling.
Am J Physiol Cell Physiol. 2014;307:C710–7.

52. Huang Y, Rane SG. Potassium channel induction by the Ras/Raf signal
transduction cascade. J Biol Chem. 1994;269:31183–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Choi et al. BMC Pharmacology and Toxicology  (2017) 18:14 Page 9 of 9


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cells and reagents
	Isolation of side population
	Real-time RT-PCR analysis
	Cell proliferation assay
	Inhibitory effect of gefitinib, TEA, 4-AP, and flupirtine on NCI-H460 cell viability
	Western blotting assay
	Statistical analysis

	Results
	Inhibition of viability of NCI-H460 cells by blockade and opening of Kv channels
	Isolation of SP cells within the NCI-H460 cell
	Characterization of SP cells
	Comparison of mRNA expression level of Kv channels between SP- and Non-SP cells
	Reduction of resistance to gefitinib with Kv channel blockers and opener in SP cells
	Inhibition of activated EGFR-Ras-Raf-Erk signaling pathway with combination treatment

	Discussion
	Conclusion
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Author’s contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

