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Abstract

This paper develops theory for bulk acoustic streaming in soft porous materials, with applications to biological tissue.
The principal results of this paper are: (i) streaming equations for such porous media, which show interestingly
significant differences from those that describe streaming in pure fluids; (ii) the Green functions obtained for these
equations in isotropic, infinite media; and (iii) approximate evaluation of the sources in the streaming equations from
acoustic wave forms often used, and the streaming velocities and particle trajectories resulting therefrom. People are
now investigating acoustic enhancement of delivery of therapeutics such as drug molecules or other particulates,
introduced directly into cellular tissue. A comparison of the predictions of the theory in this paper to available data is
made and shown to be surprisingly good. Some macroscale effects of the ultrastructure of the tissue that are not
contained in the current paper are pointed out for future studies.

Introduction
This paper develops the theory of bulk acoustic stream-
ing in porous media, particularly soft materials, adapting
the standard derivation of such streaming in fluids. One
of our original motivations for this study was for certain
applications where the transport of therapeutic molecules
within tissue is assisted with the application of sonication.
In general, we call the assistance of sonication for directed
transport of particles Acoustic Shepherding. Under this
rubric falls one set of applications where convection-
enhanced delivery (CED) is enhanced by the application
of ultrasound: we call this UeCD (ultrasound-enhanced
convective delivery). CED is a standard term in the field
and means the delivery of molecules in suspension into
tissue by the application of a pump and UeCD is the assis-
tance that sonication might afford for the advection of
the suspended particles. (We will provide references in
the more detailed discussions below). We emphasize that
this is already distinct from several other applications of
ultrasound in biomedicine such as destroying tissue; diag-
nostic ultrasound for imaging; or ultrasound for opening
the blood–brain barrier for drug delivery. Rather, the pur-
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pose here is to have ultrasound (for such therapeutic
applications) assist volume transmission of the drugs. The
motivation for this application in turn stems from looking
at the current practice in intraparenchymal infusions. This
is done by inserting one or several catheters and pump-
ing the therapeutic solution through. The tissue is a highly
resistive medium for fluid flow, and there are many path-
ways that may lead the flow to undesired areas. Since there
is only place of control where the pressure may be applied
(the port of the catheter for single-port catheters, or the
ports in a multiport catheter), the fluid is at the mercy of
the medium to guide its path once it leaves the catheter.
Sonication offers the potential to focus and direct the
acoustic beams as we desire, and guide the fluid and par-
ticles to reach the target, and avoid other areas. We also
mention that we expect applications of Acoustic Shep-
herding in other areas as well, perhaps in environmental
or geophysical applications. However, the purpose of this
paper is more modest, as stated above.
We develop the basic theory for bulk streaming and

derive the Green functions for it. Our central simplify-
ing homogenized medium assumption, further elucidated
below, is consistent with that of the ultrasonic medical
imaging community; namely that there is a longitudi-
nal wave mode that propagates as if tissue – or the
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porous medium in question – were a homogeneous con-
tinuum. We ignore both the shear waves and the slow
wave of Biot’s theory (we discuss the validity of these
assumptions later). Following this Introduction, there are
four principal sections in this paper. The goal of the
“Acoustic streaming in fluids and porous media” section
is to propose equations for bulk streaming and the form
of the source terms therein that drive the streaming; and
that of the “Green’s functions for the streaming equations”
section is to write the Green function solutions for these
equations (in isotropic, homogeneous, infinite porous
media). We discuss in detail the simplifying assump-
tions made, and this necessitates some review of known
material from the corresponding treatments of acoustic
propagation and streaming in pure fluids. In the “Stream-
ing in acoustic beams in homogeneous media” section,
we work out the streaming source terms and the stream-
ing velocities, for several simple acoustic sources that are
often used. The “Ultrasound-enhanced convective deliv-
ery (UeCD)” section presents numerical results and also
discusses experiments that have been performed on in-
vivo brain tissue. In the following “Acoustic effects in
structured porous media” section, we speculate on new
effects that depend on the ultrastructure of cellular tissue
not contained in this paper. We sum up in a conclud-
ing section. Two appendices discuss relevant material that
would impede the discussion if placed in the main text.
Apart from a recapitulation of well known results in

the theory of bulk streaming in fluids in the “Review of
streaming in bulk fluids” subsection, the rest of the calcu-
lations and discussions are new, as far as we know. How-
ever, the principal new theoretical results are contained
in the “Green’s functions for the streaming equations”
section and its referents, where we summarize the stream-
ing equations for porous media, the Green functions
which also contain the pure fluid Green functions in cer-
tain limits, and a discussion of the various effects in fluid
flow in porous media that we have omitted in obtaining
the simplified equations. The new applications of these
results are contained in the “Streaming in acoustic beams
in homogeneous media” section, where the Green func-
tions are applied to specific forms of acoustic sources,
and comparison with experiments in the “Ultrasound-
enhanced convective delivery (UeCD)” section.

Prior work
We will postpone a review of prior work to two subse-
quent sections for the following reasons. The first is that
our paper contains two somewhat separate sets of cal-
culations: (i) the bulk streaming equations and Green’s
functions for porous media which are not restricted to
biological tissue; and (ii) applications of this theory to
tissue and with specific acoustic sources to test if our the-
ory can interpret some experiments on UeCD that have

been performed by a variety of groups around the world.
For the first, we are aware of only one such calculation
to which we refer in the “Comparison with prior work”
subsection. As for the second, it may be wondered why we
do not review in detail the truly vast literature on acoustic
effects in tissue beyond the paragraph in the “Biological
effects of sonication” subsection. Again, the reason is that
we have developed a theory for bulk streaming in homog-
enized media, and do not treat non-thermal streaming
effects that are circulatory and depend on the presence
of a nearby boundary. It is the latter that is much dis-
cussed in the literature on biological effects of ultrasound:
such effects are qualitatively different from the effects
described by the theory in this paper, and our discussion
on them is confined to the “Acoustic effects in structured
porous media” section. However, we are careful within
our treatment to examine many different phenomena that
could occur in porous media, even under the restrictions
mentioned, to attempt to isolate the principal ones. Of
course, when we venture to interpret experiments, it could
be that the effects we do not develop in our theory are
important ones. In the “Acoustic effects in structured
porous media” section, we argue why this is unlikely to
be the case. In short, the direct precursor to our basic
theory is reviewed in the “Comparison with prior work”
subsection, and the phenomena it focuses on in tissue are
essentially independent of most of the vast literature on
acoustics-tissue interactions which are briefly reviewed in
the “Biological effects of sonication” subsection.

Notation and conventions
All quantities are measured in cgs units, unless otherwise
mentioned, and throughout we shall assume we are deal-
ing with a harmonic component of an acoustic signal, i.e.,
the time dependence of the signal is assumed of the form
e−iωt , where in fact the angular frequency ω is assumed
real as well as positive. (This therefore restricts the vari-
ety of waveforms we can treat by Fourier synthesis). The
symbol := or =: means that the quantity facing the colon
is defined to be the quantity facing the equals sign. The
unsymmetric convention is adopted for the Fourier trans-
form, e.g.,

f̃ (k) :=
∫

d3x exp (−ik · x) f (x) (1)

so that 1/ (2π)3 occurs in the inverse, and similarly for the
time – frequency transforms. Some further notation: we
use ∗ to denote convolution, and ∗· to denote convolution
and inner product. In other words, if g, f, andH are scalar,
vector, and second rank tensor fields, respectively, then in
Cartesian coordinates,
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f (x) ∗g (x) :=
∫

d3x′f
(
x′) g (

x − x′) ; (f (x) ∗·H (r))i

:=
∑

k=x,y,z

∫
d3x′f

(
x′)

k · Hki
(
x − x′) (2)

I will denote the 2nd-rank identity tensor, whose Cartesian
entries are the Kronecker delta δij. Also we use the usual
ahistorical [1] adjectives Eulerian and Lagrangian as syn-
onyms for the more descriptive but less used spatial and
material, respectively. Our treatment will be in the Eule-
rian/spatial picture. Except for the “Acoustic effects in
structured porous media” section, we adopt what we call
the Imaging Community assumption: namely, the first
order acoustic fields propagate as if they are longitudinal
waves in a homogeneous medium (except for scattering
from large inhomogeneities). This assumption has been
quite successful in focusing acoustic beams even across
the skull in brain [2], though in clinical application the
focus must always be confirmed by magnetic resonance
imaging to ensure safety. Thus there is certainly experi-
mental authority for this assumption, which essentially is
that one may regard the tissue as a medium with an effec-
tive speed of sound and density suitably averaged over the
ultrastructure of the tissue. It is difficult to improve this
via theory as is discussed in the third paragraph of the
“Terms neglected” subsection. We have therefore provi-
sionally adopted this assumption in the paper. Through-
out, c will denote the speed of sound in the medium in
question, and δ the Dirac delta. Citations for terms imme-
diately available from a search on the world-wide web are
often omitted.

Acoustic streaming in fluids and porousmedia
In this section, we shall arrive at some equations for
acoustic streaming in a porous medium which contains
fluid–filled interstices. These interstices are referred to as
connected pore space in the geophysical literature and as
interstitial space for applications to biological tissue. We
assume they fill up a volume fraction φ of the total space.
If we concern ourselves with live brain tissue for exam-
ple, then φ � 0.2, and the acoustic frequencies used are
generally ultrasonic between 1 − 10MHz. The intersti-
tial fluid in brain flows in channels whose widths have
been estimated of the order of 50 nm [3] based on dif-
fusive transport, though taking them to be twice that on
average is consistent with experiments on advective trans-
port [4]. The skin depth is of the order of

√
ν/ω, (where ν

≈ 0.007 cm2
� sec is the kinematic viscosity of the fluid,

i.e., water at body temperature), which ranges from about
100 − 300 μm, and is thus much larger than the channel
widths. We shall therefore assume that the fluid is always
in an inner boundary layer, in terms of boundary layer
theory terminology.
There are at least two important differences between

tissue and the usual porous medium description of rocks

in geophysics. One is that the porous solid frame itself,
consisting largely of cells with a weak connecting net-
work, has about 80% of occluded fluid within it. The
matter being treated is very soft and has even been called
“liquid tissue”: see for example the index entries for this
term in [5]. The second distinction is that the pore
(= interstitial) space in tissue is not filled with pure fluid,
but is itself a suspension which has a finite hydraulic con-
ductivity irrespective of the cellular obstacles. The same
is true of the cellular interiors. Thus we have two suspen-
sions, separated by thin membranes connected by a weak
scaffolding network. In ultrasound imaging, the speed of
acoustic disturbances is taken to be close to that of water
throughout, and the image is regarded as created by scat-
tering inhomogeneities distributed within this medium.
The speed of propagation is that in seawater, but the atten-
uation of sound is at least two of orders of magnitude
larger. Our treatment below will be ‘schizophrenic’: we
will treat slow fluid flow with Darcy’s law for a porous
medium, but the first order acoustic wave will propagate
in a uniform medium. We first review the known theory
of streaming in pure fluids.

Review of streaming in bulk fluids
The material in this section is well known, and all the
equations used here are contained in Lighthill’s semi-
nal review article [6] on streaming in bulk fluids. (Some
earlier classical references on acoustic streaming are men-
tioned there). Our purpose in reviewing it is to establish
notation that will help emphasize key differences from
porous media, and also serves for us to introduce a more
complete Green function for fluid streaming than is usu-
ally encountered. There are at least three streaming effects
that have been examined in the past: the focus here is
related to the streaming due to attenuation in bulk flu-
ids. Another is due to phase differences (not depending
on attenuation), and finally the third (historically the first
to be treated), is “Rayleigh” streaming due to the presence
of a boundary. We now review the first, and return to the
others later.
We shall throughout assume that the fluid is at rest in

the absence of the wave. In the presence of the sound wave
then, the total velocity (at a spatial point x and at a time t
which are both understood but suppressed as arguments
for the moment):

v =: v1 + v2 (3)

where v1 is the first order disturbance due to the acous-
tic wave regarded as a perturbation, and has zero average
over a cycle of a harmonic wave. We assume here for sim-
plicity that v2, which is a period-averaged correction term
second order in the magnitude of the acoustic perturba-
tion, is steady. (It is not difficult to include a term allowing
for transients in the streaming). Similarly, we assume the
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pressure has an oscillating component p1 (with zero mean
over the cycle) as well as a steady second order component
p2 needed to accommodate the continuity equation for
the streaming velocity. The density has a resting uniform
value of ρ0 and an oscillating zero mean component ρ1.
Throughout this paper, we set the pressure in the absence
of sound waves to zero: again, a superimposed time inde-
pendent pressure gradient can be accommodated without
difficulty. The density has of course a second order com-
ponent which we shall assume is related by an equation
of state to the pressure. We shall not need it. Then an
expansion upto second order quantities results in the lin-
earized equation for the momentum transfer due to a
steady streaming velocity:

−η∇2v2 = −∇p2 + f (4)

where the right hand side is an effective body force due to
the nonlinear Reynolds stress:

f = −∇ · (ρ0 〈v1v1〉) (5)

v1v1 is a dyadic, and 〈〉 denotes averaging over a complete
cycle of the harmonic wave. Lighthill refers to f as the
forcing function for streaming arising from momentum
conservation. We shall call it streaming force. In connec-
tion with the left hand side of (4), Lighthill remarks that
it is usually incorrect to neglect the convective nonlinear-
ity in v2 for even moderate acoustic strengths, despite the
fact that it is formally a fourth order quantity. However, as
we shall see, we will not need this term in our treatment
of the porous medium, so we omit it. Define

v0 := 〈ρ1v1〉�ρ0 (6)

Then, the equation of continuity averaged over a cycle is

∇ · v2 = −∇ · v0 (7)

(Lighthill refers v0 as the forcing function arising from
mass conservation. We shall call it conservation force.
Rudenko [7] and others adopt the approach of defining v2
such that it is divergence-free, by adding the term ρ1v1

ρ0
into

its definition. In such a case, the momentum Eq. (4) will
have a different expression for the body force from that
in (5). The particular arguments we make below will be
affected by this transformation, but the end result will be
the same).
Continuing, we also note that, at least as an approxima-

tion,

v0 ≈ 〈I〉
c2ρ0

(8)

where I is the averaged intensity covector of the acoustic
wave. (A fuller expression for 〈I〉 is in Pierce [8]). Except
where stated otherwise, we will assume this approxima-
tion. Substituting (7) into the divergence applied to (4), we
see that the pressure obeys

∇2p2 = ∇ ·
(
f − η∇2 〈I〉

c2ρ0

)
(9)

We can obtain an order of magnitude estimate for the
terms within brackets on the right hand side by con-
sidering a plane wave, for example. Let the attenuation
coefficient for the pressure amplitude be β in the direc-
tion of propagation i.e., we write I = I(z = 0)e−2βz. β is
of the order of 0.1 cm−1 in brain tissue at ultrasound fre-
quencies of, say, 1.6MHz [9], while it is only of the order
of 5×10−4 in water at that frequency. The streaming force
then has the form

f ≈ 2β 〈I〉 /c (10)

The second derivative on the right hand side of the
equation generates a factor of 4β2 so that we may roughly
write the right hand side as

2β
c

(
1 − 2ηβ

cρ0

)
∇ · 〈I〉 (11)

The ratio
2ηβ
cρ0

: 1 (12)

in water, for the frequencies we consider, is less than 10−10

and so is usually neglected. Lighthill remarks in a foot-
note that we may, if we wish to correct for a small effect,
compute the divergence free velocity, and add to it the
term v0 which will then produce the correct divergence.
We shall provide the Green function including the forcing
term from mass conservation in the next section.

Streaming in porous media
We now write down the porous medium streaming
equations, in close analogy to those for pure fluids. In
order to do so, we will have to neglect a number of
terms. Terms neglected below are discussed in the subsec-
tion following. Now, the equations for a two phase porous
medium are also conventionally written in a homogenized
picture, which itself involves a number of assumptions, the
most central one for our purposes being that the medium
appears “homogenized” on the scale of a wavelength. This
means that the two phases, solid and fluid, have charac-
teristic length scales considerably smaller than a wave-
length. The wavelengths in medical ultrasound approach
100 μm; and the cellular obstacles are of the order of
20 μm, with intercellular widths of the order of 50 nm.
This continuum treatment of porous media is due to Biot
[10, 11], and corrections to it from the ultrastructure of
themedium are entirely beyond the scope of the paper.We
begin with the standard theory of porous medium dynam-
ics. The equation of motion of the fluid in the interstitium,
and of continuity of fluid, as written for example in Coussy
[12], are (loc. cit. Eqs. (3.39) and (1.49b))
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ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p − γw (13a)

∂

∂t
(φρ) + ∇ · (φρv) = 0 (13b)

w := φ (v − u) (13c)

The actual density of the fluid is ρ, the interstitial fluid
velocity is v, γ ≡ 1/K is the inverse of the hydraulic con-
ductivity K, and u is the velocity of the porous solid frame
(conventionally this symbol is reserved for the displace-
ment). While we confine ourselves to scalar conductivi-
ties here, it is obvious how to generalize to tensors. The
equation of continuity allows us to rewrite themomentum
equation:

∂

∂t
(φρv) + ∇ · (φρvv) = −φ (∇p + γw) (14)

Now we write

w= w1+w2 + · · · (15a)
φ = φ0 + φ1 + · · · (15b)

and so for the other dynamical variables, where the suf-
fix indicates the order of a quantity, and all first order
quantities are assumed to vanish when averaged over a
cycle.

Remark 1 According to our Imaging Community
assumption mentioned above, both φ1 and w1 vanish, and
not just on the average. The solid (cell walls, say) and fluid
are assumed here to oscillate together and so preserve the
fraction of interstitial space. This is also why we do not
consider fluctuations in the hydraulic resistivity or conduc-
tivity. That would contribute a term like γ1w1 in second
order and would vanish without even averaging. (See also
the text in the last paragraph of Appendix 1). If the walls
were rigid, then w1 = v1 and this second order term would
have a contribution.

Expansion to second order and averaging over a cycle
gives us

〈φ0∇ · (ρ0v1v1)〉+
〈
φ1∇p1

〉+〈γφ1w1〉 = −φ0∇p2−γφ0w2

(16)

The first term is the Reynolds stress as before. Neglect-
ing the second and third terms on the left hand side (see
below!) gives us the Eulerian velocity of streaming

γw2 = −∇p2 − ∇ · (ρ0 〈v1v1〉) (17)

The equation of continuity (13b) upon averaging gives

∇ · (ρ0φ0v2) = −∇ · 〈φ0ρ1v1〉 − ρ0∇ · 〈φ1v1〉 (18)

The solid does not stream, so that u2 is zero, and so we
also have

∇ · (ρ0w2) = −∇ · 〈φ0ρ1v1〉 − ρ0∇ · 〈φ1v1〉 (19)

Neglecting the second term on the right hand side (again,
see below), we get

γw2 = −∇p2 − ρ0∇ · 〈v1v1〉 (20a)

∇ · w2 = −φ0
∇ · 〈ρ1v1〉

ρ0
(20b)

This has the form of Darcy’s law, now supplemented by
a streaming force term, as we shall call the second term
on the right hand side of (20a), together with an equation
of continuity for the fluid, which is compressible. There
is of course a perhaps unconscionable number of terms
neglected in arriving at these equations, which we will dis-
cuss below. However, we cannot neglect the divergence of
the streaming velocity. Taking the divergence of Eq. (20a),
and substituting (20b), we find

∇2p2 = ∇ ·
(
f + γφ0

ρ0
〈ρ1v1〉

)
(21)

with

f := −ρ0∇ · 〈v1v1〉 (22)

For a porous medium we restrict I (and f) to be those
quantities arising only from the standard sound wave in
tissue. Let us therefore assume that the approximations
(8) along with the definition (6) and (10) hold for acous-
tics in porous media as well. Then, by the same argument
as in the previous subsection for a plane wave, we see
that the ratio of the magnitude of the second term within
the parentheses on the right to that of the first is of the
order of

φ0
2Kβcρ0

: 1 (23)

where K is the magnitude of the hydraulic conductivity.
We see now that the ratio of the two factors instead of
being 10−7 : 1 as for a pure fluid, (if we introduce the
higher attenuation coefficient appropriate to tissue into
equation (12)) is of the order of 100 : 1 for brain tissue, and
dominates the other term. Another way of saying the latter
is that v0 in (6) is much smaller than the total streaming
velocity in a pure fluid and hence may be neglected there,
but not in a porous medium, where it is dominant.We will
confirm this order of magnitude argument on the relative
ineffectiveness of the streaming force, and of the impor-
tance of the conservation force, with detailed calculations
below.
Thus, an approximate equation for the isothermal mean

Eulerian streaming velocity due to acoustic sources in
a passive porous medium is (20a), supplemented by the
equation of continuity (20b). The right hand sides of these
equations need separate evaluation from a knowledge
of the acoustic sources and the linear wave propagation
characteristics in the medium.
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Terms neglected
We now discuss several of the neglected terms. Even in an
isotropic homogeneous porous medium, as Biot showed,
[10, 11] there are three acoustic modes: known as fast,
slow, and shear. The slow mode for such soft materials as
gels or tissue is largely diffusive at even the highest fre-
quencies we currently envisage, and damps quickly within
the medium [13, 14]. The shear wave propagates only in
the solid framework. Moreover it is very highly damped
(for the frequencies we consider), and its wavelengths then
are so small such that Biot’s theory itself is not be a good
approximation. For the bulk or volume effects treated in
this paper, we neglect this.
Continuing, Eq. (13a) neglects the inertial drag term,

as Coussy points out, or what is called the “dynamic tor-
tuosity”, which couples the fluid inertia to that of the
solid. This results in an acceleration that must be added
to the left hand side of that equation within the brackets
of the form [12]

a = (a − 1)
(
af − as − w

∇ · u
φ

)
(24)

where a > 1 is a number, and af , as are the accelerations
of fluid and solid, which include the convective term since
these are Eulerian quantities. Now, to first order in |v| /c,
these are indeed important in determining the dispersion
relation of the acoustic waves. However, we neglect their
second order contribution. Next, there is yet a further
addition to, say the right hand side of (20a), neglected by
Coussy, that arises from a more careful treatment of aver-
aging the Navier Stokes equation in a porous medium. In
form given by Whittaker [15] (see his Eq. (116)), it is

−ρ0
φ

∇ · (v1Bv1) (25)

where B is a dimensionless, positive definite matrix of
the order of unity. Its spatial scale is that of the inter-
stitial widths (for which, see Introduction section). A
first principles evaluation of this term would depend on
the microscopic model assumed for the porous medium.
Whitaker in another paper [16] — see his equation (C.10)
there — evaluates this for a bundle of capillary tubes, for
which its average reduces to 1/4 of the streaming force
we use in (20a), and in the same direction, thus enhancing
this force. We do not specifically account for this term: it
merely introduces a further numerical uncertainty which
is relatively small in comparison with all the other approx-
imations (and because the streaming force will turn out to
be unimportant).
Now we turn to the terms already discussed, namely〈

φ1∇p1
〉
, 〈γφ1w1〉 , and 〈φ1v1〉. It may be thought that the

Biot theory of acoustics in porous media would suffice to
evaluate these terms, particularly as it has been shown to
work well for soft matter such as gels [13]. However, the

theory is quite unstable for such soft porous materials. It
is easy to see why, for example by using the formulas given
in the review paper by Pride [14]. In particular Eq. (9.21)
of Pride’s article is an explicit expression for the ratio of
the amplitudes w1 and u1. (Pride uses the letters to mean
the displacement amplitudes, while we mean the velocity
amplitudes, but this makes no difference for the ratio of
the two in a harmonic wave). In cgs units, both numerator
and denominator in his expressions involve subtracting
(about) 1 from a product of two numbers, one of which is
of the order of 1010 and the other of the order of 10−10.
It seems hopeless to compute all the numbers from first
principles and get even the sign correct. The imaging lit-
erature essentially bypasses the Biot theory and assumes
a single velocity of sound as in a homogeneous medium.
This is tantamount to assuming w1 = 0, in which case
it is easy to justify ignoring the above terms. We there-
fore accept the simplifications introduced, and defer a
more rigorous study of them to the future. The equations
we have are a natural extension of Darcy’s law, with the
change in the continuity equation as we have pointed out.
Next, the usual arguments suffice for us to neglect the

bulk velocity term of the form η∇2w2 (known as the
Brinkman term) in the porous streaming equations. This
also applies to any convective nonlinearities of the form
(w2 · ∇)w2 although these are the terms, as Lighthill men-
tions, that dominate streaming in pure fluids at any but
the weakest acoustic intensities. We can see that if L is the
characteristic length scale for variation of w2, the relative
ratios of

γw2, ρ (w2 · ∇)w2, η∇2w2 are those of γ , ρw2/L, η/L2,
(26)

respectively, in terms of order of magnitude. (A term
ζ∇ (∇ · w2) where ζ is the second viscosity will be even
more negligible than the Brinkman term). An upper esti-
mate of the relative importance of the terms neglected is
obtained by choosing a lower limit for the length scale and
an upper limit for the velocity. For the length scale, we
take to be the lowest wavelengths we consider: this is of
the order of 1/10mm. Choose further a hydraulic conduc-
tivity of tissue no larger than 10−6 (which is quite high for
tissue), and a viscosity of the order of 0.01. The amplitude
of the velocity due to an acoustic beam is of the order of
p/ρ0cwhere p is the pressure amplitude. (This is far larger
than any streaming velocity so we are erring on the side of
caution). One cannot apply more than 10 atmospheres of
pressure, and so the velocity amplitudes are no larger than
about 107/105 = 102. This gives the ratios in the form

106 : 104 : 102 (27)

where we have been extremely generous in allowing for
the importance of the non-Darcy terms. It is seen that the
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the Brinkman term is indeed entirely negligible. The con-
vective nonlinearity has been grossly overestimated but
is still a small effect. The other side of this coin is that a
pure fluid, where the Darcy term is absent, will respond far
more strongly to body forces (the responses are in inverse
proportions to the above coefficients). In fact, without
solving for the velocities, and by regarding the effect of the
Laplacian as being of the order of 1/L2, we may arrive at
a naive estimate of the ratio of the streaming velocities in
the two cases as very crudely

vliquid : vporous∼
(
η∇2)−1 :γ−1�10−4/10−2 :10−7≈ 105 : 1

(28)

Detailed calculations below show that this is indeed the
case.
Finally, in living brain tissue, there is a net influx of

fluid into most regions of tissue coming from the capillar-
ies, which form the source that replaces interstitial fluid
absorbed into the cerebrospinal fluid. In a normal brain,
this is of the order of 0.1−0.4μL /min / gm of brain tissue
[17]. In a diseased state such as primary brain cancer, there
is an additional influx at a rate about ten times higher
from the tumor, i.e., at about 2 μL /min / gm of tumor.
The brain is of the order of 1500 gms, and that even rela-
tively large primary brain tumors will not exceed 100 gms.
Approximating the tissue density to be about 1 gm / cc,
this means an additional term of the order of 3 × 10−6 in
intact tissue (and a term ten times larger in tumor inter-
stitium) which belong to the right hand of Eq. (20b). On
the other hand, by substituting useful values for acoustic
intensities and the speed of sound, we find the retained
term is of the order of 10−4. Thus, the endogenous inter-
stitial flow is indeed negligible and the velocities of the
interstitial fluid even more so, except perhaps close to
the ventricular and cerebrospinal fluid (CSF) sinks. In any
case, a modified form for the continuity equation in brain
tissue would be:

∇ · w2 = −φ0
∇ · 〈ρ1v1〉

ρ0
+ qi (29)

where qi (i for “intrinsic”) must be obtained from exter-
nal considerations and knowledge of tissue properties.
This additional steady source of fluid will of course affect
the resting steady pressure p2 in the medium. As before,
〈ρ1v1〉 is computed from first order acoustics.

Particle trajectories
In the preceding, we have identified what is known as the
“mean Eulerian velocity” of streaming. It is a vector field
in space. If it were truly the mean velocity of a particle sit-
uated at that point, we would simply integrate it to obtain
the trajectory of the particle released at a certain point.
However, as has been well known for a long time, this
is not the case. Andrews and McIntyre [18] constructed

the appropriate general theory to deal with such veloci-
ties for which they use the adjective Lagrangian-mean, but
we have not yet exploited their formalism. Secondly, as
noted by Westervelt [19] decades prior to Lighthill’s arti-
cle, it really should be v + vStokes that should be regarded
as this Lagrangian-mean velocity, where vStokes is defined
in Appendix 1. It is true that vStokes and v0 have the
same divergence, but they need not be irrotational, and so
may have different curls. It should be mentioned that this
addition mentioned by Lighthill is quite distinct from his
suggestion quoted at the end of the “Review of stream-
ing in bulk fluids” subsection of the present paper to add
v0 to the mean Eulerian velocity, when the divergence of
the streaming velocity as given by (7) is ignored! Finally,
and most importantly for our purposes, his remarks per-
tain to pure fluids which were the subject of his talk and
his paper based on it. In Appendix 1, we consider Stokes
drift in detail and argue that it should be neglected for
porous materials such as those in which we are interested.
We therefore ignore this difference.

Comparison with prior work
There is a vast amount of work on streaming and other
acoustic effects in biological tissue which we will men-
tion in the “Acoustic effects in structured porous media”
section. However, we are aware of only the work of
Poesio [20] and his colleagues that directly relates to
our treatment, where they investigate a one–dimensional
model, for applications to geophysics. They make the
conventional assumption that the streaming velocity is
divergence–free. This also immediately results, in their
one-dimensional model, in the fact that any steady
streaming velocity must be constant, so that any non-
constant pressure gradient serves simply to counterbal-
ance the streaming force. Even including the neglected
divergence of the streaming velocity, with all quantities
have only an x-dependence, we have

K−1w = −dp�dx + β

c
I0e−βx (30a)

dw
dx

= βI0
ρ0c2

e−βx (30b)

in obvious notation. These equations for speed and pres-
sure are obviously integrable directly: the velocity is an
increasing function of distance from the acoustic source,
and, depending on the boundary conditions applied, can
be negative, counterstreaming to the source. When the
right hand side of the second equation is set to zero, as
they do, we have immediately that w must be constant.
The effects are essentially trivial in the one–dimensional
case. Secondly Poesio et. al. include both a fast and a slow
wave in computing the streaming force: for soft materials
at any rate the slow wave is damped too fast to matter. A
further problem is that the slow wave must be separately
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treated: the solid and fluid are opposed in phase, and it
can be seen from our treatment above that neglecting the
other terms that arise in this case will require separate
justification at the least, and it may in fact be invalid to
do so. Finally, they compute the attenuation from Biot’s
theory. At least for soft matter, this would result in a
serious underestimate (by two orders of magnitude) in
the attenuation coefficients which drive streaming. It is
the bulk viscosity that drives attenuation of the acous-
tic waves in such media, even though we can of course
entirely neglect bulk viscosity (the Brinkman term) in the
streaming equation. Our treatment is three-dimensional
and includes the non-negligible conservation force.

Green’s functions for the streaming equations
We shall compute the Green functions for streaming
in an infinite, homogeneous medium with no bound-
aries. Henceforth, we adopt the following notation. v, p
(instead ofw2, p2) will now denote the second order steady
state streaming velocity and pressure, respectively. We
re-introduce the Brinkman term, though, and write

γ v = η∇2v − ∇p + f (31a)
∇ · v = −∇ · v0 =: q0 (31b)

into the streaming equations for a porous medium. The
reason for the re-introduction of the Brinkman term is
that we can exhibit the Green functions for streaming in
both pure fluids and for porous media by taking suitable
limits of the Green function covering both theories. This
demands that we retain the bulk viscosity term in addition
to the streaming for a medium described by Darcy’s law.
From (20b), we see that

v0 := φ0
〈ρ1v1〉

ρ0
(32)

provided, as we shall assume, that φ0, ρ0 have no spatial
variation. (For a pure fluid, φ0 = 1). If there are endoge-
nous sources, these must be added to v0 as discussed
above. The streaming force f – see (22) – and the ‘velocity’
v0 are assumed to be prescribed from a knowledge of the
first order acoustic wave in the tissue for the purposes of
exhibiting the Green functions.
We solve for the pressure. Using (31b) in the divergence

operator applied to (31a) we get

∇2p = −η∇2∇ · v0 + γ∇ · v0 + ∇ · f (33)

Since the right hand side is assumed known, the pressure
is obtained as

p = − 1
4π

([
γ − η∇2] ∇ · v0 + ∇ · f) ∗ 1

r
(34)

This is not yet in the usual form which involves a con-
volution directly with the forcing terms f, v0. Before we
proceed to do that, we note that for many computational
purposes, particularly when the divergences are available

in simple form, (34) is the most convenient and stable
equation to use to solve for the pressure. The reason is
that in using (34), we can control the approximations we
make for the first order acoustic disturbances so that these
sources strictly vanish in the absence of attenuation, as
they should. When we write the solution as operations on
f, v0, then for complicated acoustic fields in tissue it is very
easy to make approximations that do not result in energy
conservation in the absence of attenuation, and the results
then become obviously incorrect. If all the calculations are
numerical, then it may be advantageous to use the forms
below, since integrals are more numerically stable than
derivatives. However, in our numerical calculations in the
next section, we have used the form given in (34). Further
remarks on the two forms are given below in the section
on spherical sources.
In Appendix 2, we indicate how to obtain the required

Green function. There we find the velocity to be given by
equation (132), reproduced here:

4πγ v = γ v0 ∗ · ∇∇ 1
r

+ f ∗ · ∇∇ 1 − exp (−αr)
r

+ α2f ∗ exp (−αr) /r

(35)

To make this more explicit, we use the fact that [21]

∇∇ 1
r

= 3x̂x̂ − I

r3
− 4π x̂x̂δ(3) (x) =: Q − S (36)

where Q, S identify the regular and the singular
(distributional) parts of the dyadic tensor1. In Cartesian
coordinates,

∂2

∂xi∂xj
1
r

= 3xixj − r2δij
r5

− 4π
xixj
r2

δ(3) (x) (37)

Applying this to 1/r and to (1 − exp (−αr)) /r in (132) and
collecting terms finally yields

4πγ v = f ∗ · {[1 − exp (−αr) − αr exp (−αr)
]
Q

}
+ α2f ∗ · {(I − x̂x̂

)
exp (−αr) /r

}
+ γ v0 (r) ∗ · (Q − S) (38)

During the calculation, there will occur a term involving a
convolution of f with the singular delta distribution which
has a factor (1 − exp (−αr)). Both terms are regular at the
origin and they cancel for finite α, so we have omitted it
with the result that only v0 remains to be evaluated at the
origin. Equation (38) together with the definitions of the
dyadic tensors in (36) exhibits the Green tensor for the
velocity field to be convolved with the sources f, v0.
The porous medium limit requires α → ∞, and this

limit is evaluated in Appendix 2. However, we can derive
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the porous medium equations more directly from (34) by
discarding the Brinkman term to write

p = − 1
4π

{∇· (f+γ v0)} ∗ 1
r

= − 1
4π

(f+γ v0) ∗ ·∇ 1
r
(39)

The velocity

γ v = −∇p + f (40)

and is therefore given by

γ v = 1
4π

(f+γ v0) ∗ ·∇∇ 1
r

+ f (41)

with the dyadic given by (36) above.
In the form (41) written, the streaming velocity is com-

puted as the sum of three terms, one due to the compress-
ibility of the fluid (indicated by v0) and two due to the
streaming force. For a fixed sound speed, the term due to
v0 is proportional to the interstitial volume fraction, while
those due to the streaming force are proportional to both
the attenuation coefficient as well as the hydraulic conduc-
tivity (and hence to the interstitial fraction, but implicitly).
All terms are proportional to the power of the acoustic
source. Often, the two contributions from the streaming
force cancel with each other.

Streaming in acoustic beams in homogeneous
media
In this section, we assume some very simple acoustic pat-
terns to show the order of magnitude of the streaming
speeds obtained in our theory.We will simply use the bulk
medium approximations

f = 2β |〈I〉| /c (42a)
v0 = φ0 |〈I〉| /ρ0c2 (42b)

(These approximations are true for simple wavefronts
such as plane waves, with small attenuation coefficients.
We have not ascertained the quality of these approxima-
tions from the point of view of the Biot theory for reasons
alluded to earlier in the “Terms neglected” subsection).
We then see that the fluid pressure in a porous medium
without boundaries, Eq. (39) becomes

p = 1
4πDq ∗ 1

r
(43a)

q = −∇ · 〈I〉 (43b)

D−1=2β
c

+ φ0γ

ρ0c2
(43c)

Although the second term in D−1 completely dominates
the first (as discussed extensively before where we have
pointed out that the opposite is true for pure fluids), we
shall retain both because we will see exact cancellation of
the first term in certain cases. The models we compute
will all have streaming velocities dependent on only one

linear dimension, say a radial one r. Denote the streaming
velocity as a function of one variable as v (r), where this is
either a radial speed in a spherically symmetric case, or a
linear speed in a paraxial approximation. Then, the time
taken to reach a given distance R starting from ε will be
computed by

T (R) = φ

∫ R

ε

dr
v (r)

(44)

The appearance of the interstitial volume fraction φ is
because we have been computing the Darcy velocity
which is a factor of φ smaller than the interstitial veloc-
ity (see Appendix 1 of [25] for an elaboration). For the
simple cases we treat below, we can use these convo-
lutions (Green functions) to obtain the desired results,
but we have to accommodate boundary conditions by
adding a solution to the Laplace equation with Neumann
(reflecting) boundary conditions. In other words, we add
a potential � such that

γ v = −∇p − ∇� + f (45)
∇2� = 0 & v|B = 0 (46)

with p given by (43a), i.e., the Green function solution. The
notation v|B means the right hand side of (45) restricted
to the boundary. The boundaries will be specified below
case-by-case.

Acoustic sources
We now discuss some acoustic sources to obtain the
streaming force f and the conservation force v0. As is well
known, e.g., in [26], diffraction effects make the ampli-
tude and intensity patterns from simple geometric sources
quite complex even in simplified approximations. “The
difficulty of solving [the equations for streaming] for any
but the simplest acoustic field and the simplest geom-
etry is obvious” [27], and so we confine ourselves to
crude approximations in the hope that the calculations
yield at least the right order of magnitude. We discuss
the different beam patterns we use, and compute the
streaming velocities from the Green functions. We also
add the boundary conditions that may be appropriate to
see how the results are modified (cancellations ensue).
Comparisions with what people have observed in exper-
iments aimed at enhancing drug delivery to the brain is
postponed to the following section. Apart from the pul-
sating spherical source pattern which is included because
it is instructive and serves to illustrate the point made at
the end of the previous footnote, the other sources are
included because they have been, or are approximations
to, the sources used in the experiments we shall examine.
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Spherical pulsations
We consider the form of the spherical source to be

〈I〉 = P
4π

exp (−2βr) /r2r̂ (47a)

so that

∇ · 〈I〉 = −2β |〈I〉| + Pδ3 (x) (47b)

We compute first the convolution of the first term (in
accordance with Eq. (43a):

p1 = P
4πD

β

2π

(
exp (−2βr)

r2
∗1
r

)
(48)

We may compute this directly using spherical polar coor-
dinates; or by using the spherical expansion for the
Laplace kernel [22],

1
|x − x′| =

∞∑
l=0

(
min

(
r, r′

))l
(max (r, r′))l+1 Pl (ζ ) (49)

where ζ is the cosine of the angle between
(
x, x′), and Pl

the customary symbol for the Legendre polynomials, as
well as

∫ 1

−1
dζ ′Pl

(
ζ ′) = 2δl,0 (50)

In either case, we obtain

−∇p1 = P
4πD

1 − exp (−2βr)
r2

r̂ (51)

However, the convolution with the delta function (the sec-
ond term in (47b)) gives, for the negative gradient of the
contribution to the pressure from this term,

−∇p2 = − P
4πD

1
r2
r̂ (52)

The contribution of the streaming force, namely the last
term in (45), to the streaming velocity is from (42a),
using (47a),

γ v3 = 2β
c

〈I〉 = 2β
c

P
4π

exp (−2βr) /r2r̂ (53)

We add (51), (52), and (53). Taking note of the definitions
(43c) as well as (42b), we find two cancellations, and we
are left with our estimate of the streaming velocity being

vS (r) = −v0 (r) (54)

which is negative inward. Let us now correct this calcu-
lation by adding a boundary condition. We assume that
there is a spherical radiator of radius ε, say, and add the
potential � which is harmonic outside this sphere, for
radius r > ε and is adjusted to prevent any streaming at

the surface of this source which is considered an imper-
meable surface within the medium. In fact we can take

� = A
4πD

1
r

(55)

We adjust A to cancel the flux coming from p2 and from
the streaming force term (42a). The delta function contri-
bution can be ignored since the origin is outside the region
of integration, and the result is

vS (r) = P
φ0

ρ0c2
exp (−2βε) − exp (−2βr)

4πr2
(56)

entirely independent of the hydraulic conductivity, and of
the streaming force, the contribution of which canceled
with that of the harmonic potential required to ensure
vanishing streaming at the physical boundary of the radi-
ator. The above solution pertains of course only for r > ε,
and is always positive (zero at the surface) and for βr >> 1
is dominated by the first term.

The Green function singularity The forcing terms in
this example are singular at the origin and serve to illus-
trate the point made in the previous endnote. If we were
to use the isotropic form − 4πδ(3) (x) /3 for the distri-
butional portion S in Eq. (36) of the Green function,
we would obtain 1/3 of the expression (54). A careful
treatment where the limiting forms as the radial coor-
dinate r → 0 are taken first, i.e., before application
of the Dirac delta, using the actually given form for S

defined in Eq. (36) given in explicit form in equation (37),
yields results in agreement with the simpler calculation
given above. In such calculations, the convolution with
the regular part Q of the dyadic may encounter a singular
integrand: that integral then must, as usual, be evalu-
ated as a principal value. In this example, the convolution
with Q vanishes.

Cylinder with radial pulsations
As a second example, let us take an infinite cylindrical
source pulsating radially. We approximate this as

〈I〉 = P
2π

exp (−2βρ)

ρ
ρ̂ (57a)

∇ · 〈I〉 = −2β |〈I〉| (57b)

outside the origin. The expression (57a) is exact for the
period-averaged intensity of an infinite cylindrical source
and is a consequence of Hankel form for the velocity
potential of a propagating wave from the infinite cylinder
[28], and the Wronskian identity

J0 (z)Y1 (z) − J1 (z)Y0 (z) = 2/ (πz) (58)

P of course has a different meaning and unit than for
the spherical source: it is now the power radiated per
unit length of the cylindrical source. We shall again con-
sider the surface of such a radiator to be at ρ = ε while
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the source of the fluid is at ρ = a > ε. Such sources
(though of course not uniform infinite cylinders) do exist,
and we shall compare with experiment in the next section.
This gives

p2 = P
2π

(
φ0γ

ρ0c2
+ 2β

c

)
2β
2π

(
exp (−2βρ)

ρ
∗ ln (1/ρ)

)

(59)

upon using the two dimensional Green function ln (1/ρ)

satisfying

∇2 ln (1/ρ) = −2πδ2 (x) (60)

∇2 now being the two-dimensional Laplacian. Defining

ρ< := min
(
ρ, ρ′) (61)

ρ> := max
(
ρ, ρ′) (62)

we use now the cylindrical expansion for the Coulomb
kernel [22]:

ln
(

1√
ρ2 + ρ′2 − 2ρρ′ cos[φ − φ′]

)
= ln (1/ρ>) +
∞∑

m=1

1
m

ρ<

ρ>

cos
(
m[φ − φ′]

)

(63)

The integration over φ′ disposes of the terms in the sum,
and we are left with

−∇p2 = P
2π

(
φ0γ

ρ0c2
+ 2β

c

)
1 − exp (−2βρ)

ρ
(64)

(Exactly the same results may be obtained by using
the usual three-dimensional Green function 1/r and the
Bessel expansion thereof but the derivation then is more,
and unnecessarily, complicated). Again, by introducing
the harmonic potential A ln ρ to cancel the streaming at
ρ = ε, we obtain in exact analogy to the spherical case
that the streaming velocity is independent of the hydraulic
conductivity and of the streaming force and is given by

γ v =: γ vC ρ̂ (65)

where

vC = P
2π

φ0
ρ0c2

× exp (−2βε) − exp (−2βρ)

ρ
(66)

for ρ > ε.

The circular piston radiator
In the above, we added a harmonic potential to cancel
the streaming at the acoustic source arising from both
the Green function and the source arising from Reyold’s
stress. In the case of a planar piston radiator in a baffle, as

well as the next one we treat below, we are concerned with
streaming within a half space, and so it is just as easy to
use the reflecting Green function

GN
(
x, x′) := 1

|x − x′| + 1
|x + x′| (67)

so that there is no contribution at the plane (considered
to be at z = 0). Then we need the harmonic potential
to cancel only the streaming arising from f. The acous-
tic field from the circular piston radiator, is remarkably
rich. We find that the formulas from [29] are among the
most complete and useful for general purposes, although
their purpose was quite different and meant to expose
the fascinating pattern of wavefront dislocations in such
a radiation field. Many references on acoustics discuss
the fields from such a radiator, but are usually satisfied
with giving approximate expressions under various condi-
tions, e.g., on-axis, in the far field, and so on. We shall not
violate this tradition and use the following crude approx-
imation to compute the radiation fields and the resulting
streaming. In this case we shall compute the streaming
only on-axis, and we make the following simple approxi-
mations. We use the notation introduced in (43b) to write

p2 = 1
4πDq ∗ GN (68)

We shall use the dimensionless cylindrical coordinates
(z, ρ,φ) introduced in [29]. Further, we shall use a drastic
approximation for the intensity (and thus for q as well).We
take the expressions given in [29], and simply average the
on-axis and the on-edge intensities (displayed in Fig. 1a),
so that the expression for q is of the form

q = h (z)� (1 − ρ) (69)

where h (z) is the average just mentioned, and � is the
Heaviside unit function. Thus q is constant in the radial
direction, and zero outside the circle bounding the radi-
ator. Further using the expansion of the Coulomb kernel
in terms of the modified Bessel functions Im,Km, [22], we
eventually find

q ∗ GN = 2π
∫ ∞

0
dz′q

(
z′

) [√
1 + (z − z′)2 − ∣∣z − z′

∣∣

+
√
1 + (z + z′)2 − ∣∣z + z′

∣∣
]

(70)

To find the potential required to cancel the streaming
from the source term, we write a harmonic potential

ψ (z, ρ) :=
∫ ∞

0
dkka (k) exp (−kz) J0 (kρ) (71)
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Fig. 1 The piston radiator. a On-axis and on-edge intensities. b Contributions to the streaming velocities in the calculational method. As the text
indicates, we use the average of the on-axis and on-edge intensities displayed in (a). Our calculation uses the reflecting Green function which is a
sum of two terms shown in (b) as “direct” and “image” sources. The contribution of the streaming force and finally that of the harmonic function
needed to cancel out streaming on the plane of the radiator are also shown. The total streaming velocity is a sum of all these and is dominated by
the direct Green function a little bit away from the radiator

and determine the coefficients a (k) by matching at the
boundary. We find

ψ (z, ρ) := −2β
c
h (0)

∫ ∞

0
dk

J1 (k)
k

exp (−kz) J0 (kρ) (72)

The streaming speed on-axis is in the z-direction and is

γ v = − 1
4πD∇ (q ∗ GN ) − ∇ψ + 1

c
q (73)

This expression is evaluated numerically and will be used
in the next section. However, the terms arising from
our decomposition, evaluated for a particular geometry
(the diameter or aperture of the circular piston was in
this case 0.64 cm), are shown in Fig. 1b to illustrate the
cancellations at the origin to give zero streaming at the
boundary. From the figure, it is also apparent that, beyond
a distance of about the width of the aperture, the conser-
vation force alone determines the streaming velocity. We
should emphasize that this distance in fact is far less than
the far field distance which was 14 cm. This result, namely
the ineffectiveness of all the terms but the pressure gradient

arising from the infinite space Green function, is true for
all the cases we have examined. In particular, the stream-
ing force is not significant, as our order of magnitude
argument in the “Streaming in porous media” subsection
indicated. This also means that the hydraulic conductivity
of the medium is irrelevant.

Focused spherical transducer
We use the approach described above for the piston radi-
ator, along with the intensity patterns appropriate for the
focused spherical transducer which are given for exam-
ple by Kino [26] for details. However, we shall simplify the
expressions still further, using a Gaussian paraxial approx-
imation to the beam profile. We account for attenuation
by the approximation

〈I〉 (ρ, z) = 〈
Ī
〉
(ρ, z) exp (−2βz) (74)

where we force Ī (ρ, z) to be divergence free. Then,
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∇ · 〈I〉 = −2β Īz (ρ, z) (75)

The solution for the pressure using the reflecting Green
function becomes

p = 2β
4πD

∫ ∞

0
dz′

∫ ∞

0
dρ′ρ′

∫ 2π

0
dφ′ Īz

(
ρ′, z′

)
GN

(
x, x′)

(76)

Here we have used the same Green function as for the
piston radiator, in effect turning the spherical cap that
is the radiator into the disk that is the projection of the
radiator onto its base plane. In fact, the solution to the
Neumann problem for a spherical cap is readily available,
see [30]. However, we content ourselves with the approx-
imation which results in much simpler formulas. Again,
the justification is to first take a crude look at the results
before investing in what could turn out to be pointless
refinements. This pressure has no normal gradient on the
plane of the radiator and the baffle. Our approximation is
that the unattenuated (period-averaged) intensity in the
z-direction is given by

Īz (ρ, z) =:
P

2πσ 2 (z)
exp

(−ρ2/2σ 2 (z)
)

(77)

where P is the power emitted into the porous medium.
With proper choice of σ (z), this will agree approximately
with the profile given by Kino along the z-axis, and
also ensure that the integral over any constant−z plane
reduces to the total power,

2π
∫ ∞

0

P
2πσ 2 (z)

exp
(−ρ2/2σ 2 (z)

)
ρdρ = P (78)

We choose

σ 2 (z) =: σ 2
f

(
1 + G2 (

z − f
)2) (79)

We obtain G from a least squares fit to the axial inten-
sity profile (ρ = 0) and σf from that to a radial intensity
profile, using Kino’s expressions (see Eqs. (3.3.13) and
(3.3.24) et seq in [26]). For numerical evaluation below,
we have chosen the geometric parameters to be those
for a focused transducer made by FUS Instruments Inc.,
Toronto, Canada, and used in an experiment, with which
we shall compare below. This transducer has a focal
length f = 4 cm, and the half-aperture of the spherical
transducer a = 1.25 cm. We obtained

G ≈ 7.84 cm−1; σf ≈ 0.02 cm (80)

In Fig. 2, we compare the relative on-axis intensities due
to our paraxial Gaussian approximation with one taking
into account the interference of the waves as given by Kino
[26]. The intensity units are arbitrary and the figure is
meant to illustrate only the relative magnitudes of the two
curves. Figure 2a is for the axial and Fig. 2b for the radial
profile and in each case a normalized profile is displayed.

We can see that our approximations are quite close to the
exact results. We use cylindrical coordinates so that

∣∣x−x′∣∣=
√

(ρ′ − ρ)2 + (z′ − z)2 − 2ρρ′ cos (φ′ − φ) (81)

Further, we evaluate only on-axis (ρ = 0). We get

p (ρ = 0, z) = Pβ
√

π

4πD

∫ ∞

0
dz′

exp
(−2βz′

)
σ (z′)

√
2

×
{
exp

[ (
z′ − z

)2
2σ 2 (z′)

]
erfc

[ ∣∣z′ − z
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σ (z′)
√
2

]

+ exp
[ (

z′ + z
)2

2σ 2 (z′)

]
erfc

[ ∣∣z′ + z
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σ (z′)
√
2

]}

(82)

The gradient in the z-direction is easily obtained by noting
d
dz

erfc [|z|] = − 2√
π
exp

(−z2
)
Sign (z) (83)

On the other hand the streaming force is

f (ρ = 0, z) = 2β
c

P
2πσ 2 (z)

exp (−2βz) ẑ (84)

so that on the axis and on the radiator/baffle it is

f (ρ = 0, z = 0) = 2β
c

P
2πσ 2

0
exp

(−ρ2/2σ 2
0
)
ẑ (85)

where

σ 2
0 := σ 2 (0) = σ 2

f
(
1 + G2f 2

)
(86)

The harmonic potential ψ required to cancel the effect
of the streaming force (85) on the radiator is of the same
form as for the piston, though with a different constant of
course. Its gradient turns out to be

−∂ψ

∂z
(ρ =0, z)= βP

πc

{
1
σ 2
0

−exp
(
− z2

2σ 2
0

)√
π

2
erfc

[
z

σ0
√
2

]}

(87)

With this, the streaming velocity along the axis evaluated
exactly on the axis is given by

vF (z) := K
(

−∂p
∂z

− ∂ψ

∂z
+ f

)
(88)

This equation is evaluated using (83) on (82) to obtain the
pressure gradient, and (84) to obtain the streaming force.
The numerical results are described in the next section.

Ultrasound-enhanced convective delivery (UeCD)
One impetus for the theory developed above has been
to examine if streaming can play a role in enhancing the
spread (i.e., increasing the range) of therapeutic parti-
cles injected into the tissue. Such techniques are under
experimentation in animals, from rodents to monkeys,
and we compare the results of calculations of streaming
with those of the experiments in live brains (along with
one ex-vivo brain experiment). It is of some interest per-
haps to illustrate two of the pathways available to such
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Fig. 2 a Comparison of axial intensity patterns. b Comparison of radial patterns. A comparison of the paraxial Gaussian beam intensity patterns of a
focused radiator with more exact diffractive patterns. The on-axis intensity versus axial distance and the off-axis intensity at the focus versus radial
distance are displayed in the two figures

particles within the brain. One is the traditional inter-
stitial space (of volume fraction we have denoted by φ)
shown in blue in Fig. 3a outside the cells that are shown
as empty white spaces. As stated in the Introduction, the
widths of these spaces between cells can be taken to be of
the order of 100 nm. If a particle cloud fills these spaces
up to a volume Vd (which is called the volume of dis-
tribution), the actual volume of the fluid in which these
particles are suspended (called the infusion volume) is
obviously only Vi := φVd. Of course, in practice, one
is given Vi, and Vd is measured in some way (subsec-
tion immediately below) to allow one to infer how far the
drugs or marker particles have traveled. These interstitial
spaces have been known for a long time [17], but more
recently, people have discovered the hidden potential of

another pathway illustrated in Fig. 3b: see e.g., [31] and
also Appendix 1 of the opinion article [32] referring to the
potential of these spaces in understanding drug delivery.
These perivascular spaces are narrow annular spaces (but
with widths of the same order of magnitude as of the inter-
stitium!) of high fluid conductivity surrounding arteries.
They were discovered in the 19th century (and have been
also known as the Virchow-Robin spaces), but were sur-
mised to be restricted to major arteries and end at shallow
depths into the brain after the entry of the blood vessels
in brain parenchyma. In this century however, they have
been shown to extend deep into the brain, down to the
level of small blood vessels and so may serve to spread
a particle quite far from its entry point into a perivascu-
lar region, particularly because these pathways are more
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Fig. 3 Pathways for particle transport within brain parenchyma. a An
illustration of the conventional interstitial pathway available to a
molecule or particle. b The perivascular pathway for particles: larger
particles may prefer such pathways to the interstitial

conductive than the volumetric interstitial spaces. Effec-
tively, given the density of the blood vessels, this makes φ

very small (Vd very large for a given Vi) but it should be
noted that the distribution will bemore sparse than for the
conventional interstitial spaces which surround every cell,
in contrast to the perivascular spaces surrounding blood
vessels which are of course more sparse than cells. How-
ever since it is estimated that there is a capillary for every

few cells, diffusion for small distances from the perivas-
cular space into the surrounding tissue may be effective
in delivering free drugs to the target regions. This diffu-
sion may also be aided by sonication, though of course our
theory does not cover this phenomenon.

Measures of enhancement
The standard measure of how a molecule fills tissue is the
volume of distribution Vd. This term is used quite dif-
ferently in the field of intraparenchymal delivery than in
pharmacokinetics (though the intent is the same) and it is
therefore important to understand how it is ubiquitously
(with rare exceptions) used and measured. It is most often
used in-vivo, particularly with magnetic resonance imag-
ing (MRI) contrast reagents such as gadolinium (chelated),
and with the exception of our own work (see, e.g., [4] for
a variety of sizes of such contrast reagents), Vd is mea-
sured by threshold of the intensity of the MR (image) –
see the experiments quoted below. Such a distribution
volume has very little quantitative significance because (i)
it is highly dependent on the threshold; and (ii) the image
intensity has no linear relationship with concentration of
the contrast reagent in MRI (though it does in X-ray com-
puted tomography (CT)). However, it is certainly true
that if the same method is used with and without sonica-
tion, the relative Vd ’s are an indication of the effectiveness
of the sonication in increasing the spread. Due to the
pronounced irregularity of the distribution in tissue and
the reasons just mentioned, we have chosen rather the
distance or range of a particle to compute and to com-
pare with experiment. This would also generalize to more
restricted pathways such as the perivascular where the
concept of Vd would not be useful. The method by which
we obtain this from the experiments is briefly described
below; that from the theory has already stated in Eq. (44).
The enhancement due to the sonication in UeCD is mea-
sured experimentally by the extra range of the particle
over the duration of an experiment. For theoretical pur-
poses, since it is the time that is directly computed by (44),
we have compared the duration of the experiment versus
what the theory would predict would be required to obtain
the required enhancement of range. It is a trivial numeri-
cal matter to fix the time and compare the ranges but we
have chosen not to do so.

Comparisons with experiments
Table 1 summarizes important parameters for the exper-
iments we have examined. The column entries are as
follows: the first gives the reference for the experiment,
the second gives the strength of the acoustic source: either
a reported pressure in kilopascals or a reported intensity
converted to pressure using the plane wave approxima-
tion. The third column reports where, with respect to the
position of the sound source along the axis of the CED
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Table 1 Important parameters for the experiments examined for comparison with theory

Experiment Source strength (KPa) Where measured:
mm from source

Distance enhanced
−mm (measured)

Sonication time (min)

[33] 125 0 1 2

[34] 1240 4.2 3 4.5

[35] 30 5.5 0.13 30

[36] 150 5.5 0.35 30

[37] 3 2 (from rod tip) 1.37 140

Cornell-Weill(2017)* 1700 56 (focus) 1.3 2

Therataxis (2017)* 0.303W / cm 0 2.5 105

The starred experiments are yet to be published

catheter, the source strength was measured. The fourth
column reports a radial or axial distance of enhancement
of transport of the solute (with sonication as compared
to without) as inferred from the experiments. The final
column gives the effective time of sonication in minutes.
Many of the experiments involve a pulsed source and the
overall time was multiplied by the duty cycle fraction to
obtain this number. The form of the source was also very
variable: these, as well as the operating frequencies, are
mentioned in the discussion below under a listing each of
the experiments. The last two rows refer to as yet unpub-
lished results: see under these experiment listings below
for further details.
Before making some numerical estimates, we point out

that in all the experiments considered, the amount of fluid
available for streaming is fixed entirely independent of the
acoustics. As an example, consider experiments in which
sonication has been used along with fluid delivery into
brain tissue through a catheter. In these, the fluid was
delivered through a pump that introduced a fixed volume
of fluid per unit time. All of the transducers used in the
experiments examined have an axis of symmetry, and the
theory is then pertinent for the speeds along this axis,
less so off-axis, due to the circulation that is demanded by
mass conservation. Also, we have completely ignored the
temperature rise that would be consequent upon sonica-
tion, and its effects on the tissue. It is not hard to write
down equations for the temperature distribution, but the
scope of this paper is only to indicate the simplest (but “no
simpler”!: see the extended discussion in the “Streaming
in porous media” subsection) equations for streaming in a
porous medium. We also ignore the impact of the acous-
tic waves on the medium properties. We have for example
assumed the hydraulic conductivity to be fixed. However,
if the hydraulic conductivity change can be separately esti-
mated, we can certainly include it in the calculation. It
turns out that the results are essentially independent of
the hydraulic conductivity for the cases we have exam-
ined (see remarks at the end of the “The circular piston
radiator” subsection above). The theory does not compute

streaming the presence of the background flow due to
the convective delivery from the catheter that is concomi-
tant with the ultrasound in most of the experiments. In
other words, we examine the effects of CED and of the
ultrasound as if they were additive. Some further param-
eters we have used are: the hydraulic conductivity K is
assumed to be 2 × 10−7 in cgs (cm4 / dyne− sec) which
is close to the value quoted in a seminal paper on CED
from the NIH group that originated it [25] (though as
just stated this makes no difference); the acoustic atten-
uation coefficient β is taken to be 0.16 cm−1 at 1.5MHz
[9]; the speed of sound in tissue is 1.6 × 105 cm / sec;
and the viscosity of water to be that at 37C, 0.007
dyne− sec / cm2.
Table 2 summarizes our findings for in-vivo experi-

ments and some further remarks are made within the
listing of the experiments below. A condition that pertains
to almost all of the experiments is that the observed trans-
port took place well before the far field distance of the
source was reached (i.e., within the near field). We do not
provide details of the published experiments: the sources
cited may be consulted for these. All the programs were
constructed inMathematica 11 and implemented the the-
ory described, using the particular parameters from each
experiment in addition to the other tissue parameters
mentioned just above.

Ex-vivo infusion in brain tissue sample [33];
1.58MHz focused spherical radiator.
Fom Fig. 3 of their paper, it would seem that the
distance penetrated in equine brain tissue is close to
1mm, and our estimated effective sonication time
agrees with the experiment, well within the
uncertainties of the measurements themselves.
In-vivo infusion in primate with intermittent
sonication [34]; 1MHz piston radiator. This
experiment was the first one (as far as we are aware)
to use ultrasonic enhancement of CED drug delivery
in-vivo. This and the following three experiments are
in-vivo with an intact brain within skull. Sound waves
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Table 2 A comparison of theory with experiment for the particle range enhancement due to sonication

Experiment Distance enhanced −mm (meas) Experimental sonication time (min) Theoretical sonication time (min)

[33] 1 2 2.5

[34] 3 4.5 0.5

[35] 0.14 30 35

[36] 0.35 30 28

[37] 1.37 140 24 days?? see text

Cornell-Weill(2017)* 1.3 2 6

Therataxis (2017)* 2.5 105 800

See also Table 1 for meaning of the asterisks

within a brain enclosed by a skull will be subject to
reflections, standing waves, as well as mode
conversions – a situation quite different from our
calculations for progressive longitudinal waves.
Nevertheless, we can investigate some order of
magnitude effects of streaming theory and compare
with the results. All the results that are germane to
our theory for the present case are summarized in
Table 1 of [34]. Their paper is somewhat confusing
but referring to a trial which showed no
enhancement of distribution volume (!), they report
that “distribution ...was enhanced from 9mm to 12
mm due to the sonication”. Assuming this to be true,
(given their source strength one would indeed expect
some effect), theory and experiment are well within
the same order of magnitude. However, this seeming
agreement could be entirely coincidental since the
interpretation of their results is very problematic.
In-vivo infusion in rodent [35]; 1.34MHz piston
radiator. In this and the next reference, there were a
subset of experiments in which microbubbles were
used: we shall not consider those experiments since
their interpretation is beyond the scope of this paper.
Only the experiments comparing CED with and
without sonication but with no microbubbles are
compared here. The distributions were measured by
areas of stained sections. The top left graphs in Figs. 7
and 8 of that paper show the areas of coronal sections
at various distances along an axis perpendicular to
these sections. The area of the central section within
Fig. 7 is about 0.75mm2. If we take this to fill a disk
(see the idealized illustration in their Fig. 2, right),
then the radius of the disk is about 0.49mm. Similarly
the bottom figure shows a central section after
sonication with an area of about 1.25mm2,
corresponding to a radius of 0.63mm. The increase
in radial distance is about 140 microns. By using the
measurements quoted in Table 2 to obtain the power
of the equivalent spherical source, we obtain that
increase of radial distance in under 35min of
sonication, as compared with the half hour reported.

This level of agreement is really suspiciously good
given the crudity of both the theoretical
approximation and the experimental protocol to
obtain the areas.
In-vivo infusion in rodent with time-reversal
acoustics [36]. In this experiment, the results from
their Fig. 5 for Evans blue dye indicate that the extra
radial distance due to sonication is about 350
microns. This is obtained exactly as before by
computing radii of a disk with the areas shown for
the central slice. We should also point out that this
experiment used time reversal acoustics with a
reflector on the skull, thus reinforcing the presence of
standing waves, so that the theory above is not
directly applicable. However, again in the spirit of
seeing if there is any rough agreement, we may use
the same results we developed for focused spherical
radiator. We cannot, given the data available, form a
good estimate of the intensity patterns due to the
time reversal focusing with their reverbator. So again,
the agreement between experiment and theory in
Table 2 must be regarded as fortuitous.
In-vivo infusion into primate [37]; 300 kHz
acoustic horn. This experiment used an acoustic
horn to focus the sound onto a steel rod which was
introduced into the tissue. The steel rod contains the
catheter lumen as well, and the pressure from the
sonication was measured in water just below (2mm)
the catheter lumen and steel rod. We made no
attempt to compute the acoustic fields resulting from
this configuration, but considered simply a spherical
radiator source at the rod tip, with pressure that was
measured to calibrate the source power. Further, the
radial distances which we compare (under CED
conditions, and with and without sonication) are
obtained by using their volumes of distribution
(Fig. 8C of the cited reference). We estimate the
radius of that volume assuming a spherical
distribution (which it manifestly is not as can be seen
from their Fig. 8A). It would have been somewhat
more reliable to use a section which might show a
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disk (circle) for the distribution, but that data was not
available. In this case, as can be seen from Table 2,
our luck has seemingly completely run out. While our
assumptions on the form of the source may have
introduced some error, we are rescued by another
consideration in this case. The electronics and the
radiation pressure changes involved in the pulsed
excitations induces a strong lateral force that can
deflect the steel rod. This is easily observable in fluids
with soft catheters. In a conversation with the senior
author of this investigation, it was confirmed that
strong deflections of the rod were indeed observed.
Thus we surmise that the enhancement – which, it
must be remembered, is still very small by any
macroscopic considerations – has nothing to do with
the effects of acoustic radiation within tissue, but
rather with the vibratory deflections of the steel rod
due to the much lower frequency of the on-off pulsed
transmission that was used. We will therefore ascribe
these published results as irrelevant to Acoustic
Shepherding or to UeCD as understood here.
In-vivo infusion with focused ultrasound
(unpublished); 1MHz focused spherical radiator.
A focused radiator made by FUS Instruments2 was
used in experiments reported at a conference. The
publication has not appeared at the time of this
writing. The authors report directly an increase from
4.2mm to 5.5 mm of the range of tracked MR
contrast reagent particles (Gadolinium). In this case,
our theoretical sonication time seems a little too long.
However, again, we have a mitigating circumstance.
The focused intensity is relatively large (and this is
the intensity that applies at the point of transport). It
has been well known that focused beams considerably
increase the attenuation due to nonlinear effects [38]
and while we have not investigated the modified form
of the Gaussian beam with nonlinearities, a large
increase in pressure gradient due to such
nonlinearities seems well within possibility as shown
in [39]. This would serve to correspondingly decrease
the time and we regard that our results are also
consonant with this experiment as well.
Ex-vivo infusion in porcine liver (unpublished);
1.68MHz radial cylindrical pulsation.We have
undertaken studies using an EkoSonic
Mach4™sonicated catheter along with control unit.
The device has a linear array of several transducers in
an inner lumen surrounded by an annulus through
which fluid flows out of a multitude of microports
into the tissue. We approximate this as a cylindrical
sonicator with radial pulsation treated in the
“Cylinder with radial pulsations” subsection3. We
computed the radial enhancement of particle distance
as follows. The experiments were conducted under

X-ray CT imaging, using Visipaque™contrast reagent.
(We were thus able to measure the concentrations of
the marker particles accurately, in contrast [no pun
intended] to the other experiments reported here). In
any case, we conducted three pairs of experiments
where the proximal/distal half of the length of the
catheter was sonicated allowing us to compare the
radial distances to which the contrast traveled. We
measured such distances in the centers of the
sonicated/unsonicated region and obtained about 1

2
cm or more of enhanced transport over a three hour
infusion. However, it turns out that the sonicator was
degraded considerably during the second half of the
experiment. We took the best experiment (in terms
of distance enhancement) during the first half of the
experiment, and compared with the theory. The
theoretical time indicates an efficiency about 8 times
worse than the best performing experiment. Again,
given the uncertainties and heterogeneity of tissue,
and that we chose the maximum distance attained in
the experiments, we regard this also as within an
order of magnitude agreement, though only just.

Conclusions
The theory of streaming, compared with experimental
results, seems to suggest that such streaming in tissue
may be of similar order of magnitude as regular infu-
sions that are undertaken to spread drug into brain and
other parenchyma, in contrast to widespread belief that it
should be entirely ineffective. This theory also agrees sur-
prisingly well with experiment. However, there is at least
one important feature in all of the experiments available
which seriously limits the usefulness of such applications
of UeCD. Namely, the distances of enhancement have
been generally sub millimeter, and the total distances of
transport of the order of a few millimeters. One point
to make is that such transport away from the catheter
can easily be achieved by CED alone by simply increasing
the flow rate: one hardly needs the assistance of sonica-
tion to reach millimetric distances. Of course, the counter
would be that these are very early times for these studies.
While true, limiting the distances to such small values also
means that we cannot separate confounding effects such
as simply the mechanical vibrations transmitted through
the elastic framework having some effects that would not
be accounted for by the sound waves through (mostly)
the fluid. Thus both for fundamental and practical rea-
sons, it seems important to overcome the limitations of
the current generation of experiments, without compro-
mising the safety of the sonication in living biological
tissue. Another point following upon the above and which
deserves emphasis is that it is indeed relatively useless
to confine the application of sonication pressure to the
same place as that of the pressure driving fluid flow. (This
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point was already made slightly differently in the Intro-
duction). There was only one exception to this, namely the
yet unpublished results from the Cornell Medical Center
(New York). Other than this study, the catheter port even
in [36], which used the time reversal method to focus the
sound, was chosen as the focal poin, reducing the poten-
tial impact of UeCD. After all, the selling point of this
method is that we focus the sound intensities to provide
pressure gradients anywhere as opposed to the catheter
which provides the pressure only at the port or ports of
the catheter. Thus the true benefit of UeCD remain to be
explored.

Acoustic effects in structured porousmedia
In the above, we have examined porousmedium equations
under what we have called the Imaging Community
assumption (see “Introduction”) where the ultrastruc-
ture of the porous medium is not visible to the acous-
tic wave propagation. We examined various phenom-
ena under this assumption and came up with the basic
equations for acoustic streaming. In comparison with
studies in tissue, it seems that the streaming discussed
so far seems adequate to explain the results. However,
in this section, we point out some further phenomena
that reveal themselves when we do consider the ultra-
structure, and indicate why they are unlikely for the
most part to play a role in UeCD. Before we do, we
indicate why we have largely ignored the vast field of
biological effects of sonication. Throughout, our consid-
erations are confined to the cases with no microbubbles,
resonant or otherwise.

Biological effects of sonication
There is an enormous literature on biological effects of
ultrasound: we merely point to [40–42] as a few exam-
ples of many discussions, none of which are relevant to
volume transmission of fluid. We have pointed out that
an effect generally been considered to be non-existent
except in fluid-filled spaces, may however be visible in the
creeping flows currently used in clinical trials of intra-
parenchymally induced drugs [43, 44]. However, the way
in which bioeffects of ultrasound can affect our treatment
is by suggesting different assumptions. As stated, we do
not consider exchange of water between intra– and extra–
cellular compartments. We cannot assess if this would
contribute in any way to macrostreaming. Another effect,
argued for in [45] is that an acoustic wave does alter the
interstitial volume fraction φ, and thereby the fluid con-
ductivity K. However, see our discussion of this point in
the “Comparisons with experiments” subsection. The
purpose of these authors was entirely different: increas-
ing φ allows larger particles that would otherwise not
be able to traverse the interstitial spaces to do so. We
have always assumed free advection of particles in the

fluid, and so this effect is not germane to the present
treatment. We have also not treated the diffusivity of
particles in our equations, assuming that all the effects
we see (particularly for short times) would be due to
advection. There is a well known effect of enhancement
of diffusivity due to wave action, which were investi-
gated long ago [46], and continued to be more recently
[47]4. A rigorous treatment of the mathematics of this
is given in [48] but for the acoustic intensities we have
considered, and the small diffusivity of the tracers, this
effect is even more negligible than the streaming we
have calculated (Application 3 of the cited reference is
the most relevant for our consideration). So, we now
turn our attention to phenomena we have not treated,
but which depend on the fact that that medium has
a microstructure.

Acoustic microstreaming
In this section, we argue that the widely examined cir-
culatory microstreaming, due to the presence of solid
boundaries such as the cell walls, is unlikely to enhance the
transport of fluid or solutes carried by it. Such streaming –
not considered in our theoretical development above –
has received most of the attention in the literature, though
not in the context of a dense distribution of cells. Nyborg,
a pioneer in acoustic streaming as indicated above, has
also been a pioneer in investigating the biological effects
of ultrasound (see the reviews [41, 49, 50], which all con-
tain references to earlier work and primary sources). We
would expect the direct effect of circulatory streaming to
be null: the velocity field circulates. However one might
speculate that “hydrodynamic dispersion” might enhance
the transport. This mechanism has been well known to
hydrologists for a long time (see the chapter of that name
in [51], where references to the original literature where
these concepts were introduced – [52, 53] and others –
are given). The type of hydrodynamic dispersion that
could play a role is what Bear calls “mechanical” disper-
sion though that name has gotten out of favor: it is due
to the mixing of the particles traveling down different
channels so that even though the Darcy velocity field has
a definite direction, the microchannels along which the
particles move causes a dispersion which mimics a dif-
fusivity that depends on the magnitude V of the Darcy
velocity (see the reference for a detailed explanation and
the conditions under which a mean square deviation is
equivalent to a diffusivity, which demands a Gaussian
distribution). There is another form of dispersion, more
celebrated, called Taylor or Taylor–Aris dispersion which
involves mixing within a channel. We ignore this because
the channels are quite narrow and short. Now, if we create
a random network of channels with characteristic length
L, then over long times, we may expect a diffusivity ∼ LV
from dimensional analysis. The microstreaming velocity
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which occurs within the boundary layer depends on the
displacement amplitude A of the cell walls, the frequency
ω, and the characteristic dimension of the cell. Estimates
suggest

V ∼ ωA2/L (89)

which would result in an effective diffusivity

Deff ∼ ωA2 (90)

To estimate the displacement amplitude, we use the par-
ticle velocity of the homogenized medium as discussed
above, and determine the displacement over a half period
from that. In even the small intensities used in the Cor-
nell in-vivo experiments, this results in V ∼ 0.1mm / sec
at the cannula tip which results in dispersive diffusivity
DH ∼ 2 × 103 μm2 / sec. Such a high dispersivity would
result in a root mean square dispersion rH := √

4DHt,
under spherically isotropic conditions, for the particle.
In 20 minutes, this is of the order of a few millimeters,
much larger than the spread observed in the experiments
described. In the classical treatments, the diameter of
the microstreaming paths is of the order of a wavelength
(1mm in this case). This is indeed much larger than L
so we may expect brancing into various channels and
enhancement of dispersion of solutes.
However, the flaw with this argument is that it fails to

take into account the packed cells in tissue, which will
likely nullify any microstreaming effects. The above esti-
mate was based on an isolated cell. However, from the
extensive work conducted in the 1950’s on such solu-
tions for a boundary in the fluid – see for example
[54, 55] – it may be seen that the microstreaming veloc-
ity just estimated does not reach that value till a distance
from the boundary a few times the cell radius, being a
very small fraction of it within a cell radius. As we have
pointed out, the interstitial widths is about two orders
of magnitude smaller than a cell radius. Thus intuition
would suggest that the intercellular distances being all well
within the width of a boundary layer, and there is no room
for a streaming effect to sustain itself. We can develop
this a bit further, leaving a more detailed verification to
future numerical simulations. In a fluid with an internal
boundary, and restoring subscripts denoting the order of
the quantities, recall that the second order perturbation
equations for the streaming are:

−η�v2−∇p2 = −∇p2 + f (91)
f := −∇ · (ρ0v1v1) (92)

where the concatenation of the velocities is meant to
denote the dyadic. The continuity condition is

∇ · v2 = −∇ · (ρ1v1) /ρ0 (93)

The quantities on the right hand sides of these equations
are presumed known. Let us write

p2 := p + p′; v2 := v + v′ (94)

p := KC ∗ s (95)

where KC is the Coulomb kernel, i.e., the free space Green
function for the Laplacian. Similarly for v, so that these
quantities solve the desired equations but do not have the
right boundary conditions. Suppose further

v|∂C = V (x) , x ∈ ∂C (96)

Now suppose

η�v′−∇p′ = 0 (97a)
∇ · v′ = 0 (97b)
v′∣∣

∂C = −V (x) , x ∈ ∂C (97c)

Then the pair p2 := p+p′; v2 := v+v′ satisfy the equations
and the boundary conditions desired (zero velocity at the
boundaries). One may then attempt to check if the narrow
gaps between obstacles (cells) prevent any microstream-
ing from developing. We speculate that the dispersivity
results in an effective diffusion constant that is likely at
least three orders of magnitude smaller than what we
ascribed to DH above, resulting in a negligible effect on
spreading particles.

Note added A paper [56] came to our attention, thanks
to the anonymous reviewer mentioned in the pre-
vious endnote. In this paper, the beginnings of a
stochastic model for solute transport where the
particle is alternately retained by the cell walls
or advected by the acoustic wave, are indicated.
It is claimed that the resulting model also has
a dispersion, or effective diffusion coefficient of
the same form as equation (90) though from an
entirely different mechanism. However, the paper
has several errors: (i) their final equations have
the wrong probability as a coefficient multiplying
a term due to an algebraic error; (ii) they use
approximations that are not bona fide expansions –
in fact their (invalid) expansion method would
obtain a spurious diffusivity from a purely advective
flow; (iii) their method correctly has only a purely
deterministic limit, which has no transport after
averaging; (iv) their purported agreement between
simulation and analytic solution may also be an
error: if they used the wrong diffusivity for both,
they are perhaps comparing a continuum equation
with its finite difference discretization, which must
agree unless the discretization is poor.Whether their
approach can be salvaged requires further study,
according to methods described in [57], Sections
3.8.3 and 7.2.3, with quantitative estimates for the
effective diffusivity, if any. In any case, if an effective



Raghavan Journal of Therapeutic Ultrasound  (2018) 6:6 Page 21 of 26

diffusivity due to whatever mechanism is compet-
itive with bulk streaming, it would be even more
important to distinguish advective from dispersive
effects, as suggested in the last paragraph of our
“Conclusions and discussion” section.

Oscillatory flow dispersion
In the above, we considered dispersive effects that might
arise from period-averaged streaming velocities near a
boundary. Of course oscillatory phenomena will also
result in such dispersivity. The relevant other param-
eter is the period T of the oscillation, so that the
effective diffusivity from dimensional analysis (and also
from a calculation of the mean square displacement
of a particle following the same methodology of ran-
dom distribution of channel directions) is ∼ v2T
where now v is the oscillatory velocity amplitude.
Thus, this dispersivity is quadratic in the relevant speed in
contrast to the dispersion arising from steady flow which
is linear as indicated above. Further, the numerical fac-
tor, unavailable from dimensional analysis, approaches 1

2
for A/L >> 1, but can be considerably less than that
for smaller A/L (and essentially vanishes as A/L → 1).
However, it is obvious that this can only happen
when the displacement amplitude A is greater than
the length of a channel, which is emphatically not the
case for any reasonable amplitude for sonication, which
has A << 1 μm. Otherwise the particle essentially
returns along the same channel, which is indeed the
case. These oscillatory dispersivities should not pertain
to acoustic amplitudes, but may to pulsatile ones due
to the heartbeat.

Dispersion from peristaltic effects
Peristalsis can be a very strong rectification effect of
an oscillatory field. By definition, this is absent in
the homogenized picture used in our treatment, and
further, it depends on transverse oscillations in the
boundaries of the pore space. Such peristaltic effects,
following the pioneering work summarized in [58] (where
earlier work is cited) have been extensively studied and
are a very current topic in perivascular flows in the
brain. Some work on peristaltic effects of traveling waves
includes [59] within a single channel and [60] in a network
of channels. Any order of magnitude estimate of such
peristalsis due to the small acoustic amplitudes results in
a negligible effect. However, we have not undertaken a
proof that it cannot be present.

Conclusions and discussion
Our principal results are the introduction of the basic the-
ory for bulk acoustic streaming in homogenized porous
media, and to obtain the Green functions for the stream-
ing equations. We analyzed the porous medium equations

in detail to isolate phenomena we feel are the important
ones for streaming. We have illustrated the streaming
effects in some acoustic fields, showing perhaps suspi-
ciously good agreement with experimental results. We
have speculated on the ineffectiveness of several effects
that depend on the microstructure of cells and extracellu-
lar space to transport fluids and particles in acoustic fields;
some mechanisms that occur due to attenuation and oth-
ers that are independent of it. All of these speculations
are just that and require further study for verification or
refutation.
We emphasize that the basic equations for the stream-

ing in tissue, namely (20a) with 20b) are easily writ-
ten down for anisotropic inhomogeneous tissue together
with fluid loss. We have developed and shown that such
equations may be solved for an individual brain (and
other organs) [32, 61]. The chief difficulty in the present
case is to obtain the sources from models of acous-
tic propagation in tissue. However, as we have men-
tioned, these models are now quite advanced, driven
in particular by applications of high intensity focused
ultrasound (HIFU), so we may envisage a combination
of these two classes of software models that would
allow planning of the proper acoustic fields to effect
UeCD and predict its effects on a particular patient.
Such a model will need to be supplemented by address-
ing of safety considerations before any such application
becomes reality.
The experimental studies so far have been limited

in their usefulness in disentangling the mechanisms
for the streaming effects observed. As discussed in
the “Conclusions” subsection of the previous section, one
serious limitation of the usefulness for clinical applica-
tion of the experiments so far conducted is that they have
not yet exploited the ability of sonication to provide pres-
sure gradients away from the catheter. Also, they have
been performed under the conditions of fixed flow rates
infused into the medium. It would be useful to conduct
the experiments at fixed pressure as well, to observe any
effects due to fluid conservation as discussed in the text.
The experiments should also quantitate the tracers used,
i.e., they should track the concentrations of the tracers.
In magnetic resonance imaging, the methods used in [62]
could be used, for example. In addition, ideally, the obser-
vations should be continuous so that the time advance of
the tracer distribution can be studied. Advective or con-
vective effects reveal themselves by showing advance of
fronts or mean distributions linear with time, while dis-
persive and diffusive effects advance in proportion to the
square root of time. This difference would show up par-
ticularly well in one dimensional systems (e.g., excised
tissue in narrow tubes). It would also be useful to com-
pare not merely CED with CED plus sonication (UeCD
as we have called it), but sonication alone compared with
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naturally occurring diffusion. The dispersive effects dis-
cussed in the previous section due to microstreaming
or peristalsis can be distinguished by varying the fre-
quency of the acoustic excitation since the two mecha-
nisms have very different dependences on the frequency
of the ultrasound. Such detailed analyses – which demand
knowing the concentration distribution to extract mean-
ingful parameters – will help elucidate the mechanisms
involved.

Endnotes
1 This identity has a rather checkered history. Refer-

ring to the regular and singular parts, even more recently
than sixty years ago (see e.g., the first edition of Jack-
son’s classic text, now in its third [22]), the singular part
would be routinely omitted despite the fact that it was well
known that the Laplacian of 1/r is a distribution (Dirac
delta). The first volume of the equally classic treatise [23]
appeared in English only in 1964. In that, Gelfand and
Shilov show clearly how such identities should be treated
and their singular parts extracted. The latter involves
integrating an expression over a surface enclosing the sin-
gularity. Unfortunately, they proceed to illustrate this with
the isotropic Laplacian operator, where the surface is cho-
sen to be a sphere, and the result well known. Almost
two full decades after this hardly obscure book had been
available, Frahm rediscovered this amongst other delta
function identities [24]. His result for the dyadic ∇∇ (1/r)
is entirely equivalent to the Gelfand-Shilov method when
using a spherical surface for the regularization, and he
obtained − 4πδ(3) (x) /3 for the singular part. Jackson in
subsequent editions gives this expression as well, with
some “physicist’s arguments” for it. Finally, Franklin – in
the citation referenced – produced the identity we use.We
may also derive it by Gelfand’s method choosing an ellip-
soidal surface for the regularization procedure. In fact the
isotropic singular expression of Jackson and Frahm would
give incorrect results for the spherical source; see “The
Green function singularity” subsection.

2Model RK 100: http://www.fusinstruments.com/
products/lp-100/.

3We accounted for the 20−fold higher concentration of
the viscosity of the contrast agent used (Visipaque 320™)
relative to that of water in the calculation. (The hydraulic
conductivity is reduced by this factor). This makes no
difference to the theoretical results as noted above. We
did not, however, alter the attenuation coefficient of the
sound wave in the calculation.

4We thank an anonymous referee for this more recent
reference which does not allude to the earlier.

Appendix 1: Stokes drift and Lagrangian-mean [18]
velocities
In addition to the streaming due to attenuation described
above, there is also a streaming, independent of attenua-
tion, of fluid particles in a vibratory wave, apparently first
described for waves in fluids by Stokes. The way this drift
is usually derived is by the venerable Method of Averag-
ing. We use it in the very simple form described in the
text by Landau and Lifshitz [63] (the section Motion in a
Rapidly Oscillating Field). If we assume that the fluid par-
ticle is free to move in the sound field, then the position
r (t) of any such particle is obtained by integrating along a
trajectory

ṙ (t) = v1 (r (t) , t) (98)

with an initial condition on r which we shall take to be the
origin. v1 is the same as in the text above, and averages to
zero. We use the ansatz

r =: F + S (99)

where F and S are the fast & slow components, with F
averaging to zero over a cycle. These are both vectors
from an origin, and the idea is that S denotes a slow drift
superimposed on an oscillatory and small F. So,

Ḟ = v1 (S, t) =⇒ F =
∫ t

v1 (S, τ) dτ =: u (S, t) (100)

which defines a displacement u. Considering this to be
small, we get

v1 (r (t) , t) ≈ v1 (S, t) + u · ∇v1 (S, t) (101)

Averaging Eq. (98), we see that the slow component then
satisfies

Ṡ (t) = 〈u · ∇v1〉T ≡ 〈u · ∇u̇〉T =: vStokes (102)

which is an equation involving only the slow variable. We
call this vStokes since Stokes was apparently the first to
derive it in connection with water waves. Among others,
Westervelt derives this for acoustic streaming [19]. In the
literature on fluid streaming, it is pointed out that this
really should be added to the attenuation–driven stream-
ing velocity v (after expressing both in the same reference
frame (e.g., spatial coordinates). Furthermore

∇ · vStokes = ∇ · v0 (103)

where both sides are evaluated to the second order, and
v0 was defined in (6). In other words, the velocities are
equal upto a curl. Westervelt [64] shows this, but his proof
seems excessively complicated involving expressions with
four curls and so on. In case a simpler derivation is use-
ful, we offer one here, though such simplifications must

http://www.fusinstruments.com/products/lp-100/
http://www.fusinstruments.com/products/lp-100/
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undoubtedly have been presented. We write the equation
of continuity to first order:

∂

∂t
ρ1 = −ρ0∇ · v1 (104)

Integrating this, averaging, and keeping terms to second
order we see

∇ · v0 ≡ 1
ρ0

∇ · 〈(ρ1u̇)〉T = −∇ · 〈((∇ · u) u̇)〉T (105)

We thus have to show that

∇ · 〈u̇ (∇ · u)〉T = ∇ · 〈u · ∇u̇〉T (106)

Taking the del operator inside the average,

∇ · 〈u · ∇u̇〉T = 〈∇u : ∇u̇〉T + 〈u · ∇ (∇ · u̇)〉T (107)

while

∇·〈u̇ (∇·u)〉T =〈(∇ · u) (∇ · u̇)〉T+〈u · ∇ (∇ · u̇)〉T (108)

(It is easier and immediate to get this by decompos-
ing into Cartesian components). However the first term
within the time average on the right hand side of (108) is
just ∂

(
(∇ · u)2

)
/∂t while the corresponding term in (107)

is ∂ (∇u : ∇u) /∂t. Both of these being time derivatives
vanish upon averaging over a period of the wave, and thus
the two velocities indeed have the same divergence, and so
are equal upto the curl of a vector field.
However, in the case of porous media, we are always

within the inner boundary layer as we have stated. The
fluid particle are as little free to drift as the solid par-
ticles and this effect should be negligible in a porous
medium. We now show this. We will be rather pedan-
tic in our notation, to avoid ambiguity, and first obtain
a well-known relation between the most natural defini-
tion of a material or Lagrangian velocity and an Eule-
rian velocity at a different location [65]. We present
this derivation only to introduce our notation. Then, the
next subsection argues for neglect of Stokes drift in a
porous medium.
Let

r = −→
f (t|X, s) (109)

be the position of a “particle” at time t, given that it was at
X at time s.

−→
f is supposed to be a diffeomorphism of three

dimensional space (the Jacobian is non-singular). The for-
ward arrow indicates that we are dealing with a function
of the material coordinates. The Lagrangian velocity is
defined as

−→v = ∂

∂t
−→
f (t|X, s) (110)

indicating clearly that X, s are to be held fixed. We have
the basic identity

−→
f (t|X, s) = −→

f
(
t|−→f (s + ds|X, s) , s + ds

)
(111)

for a flow, so that by differentiation we write down a con-
dition of invariance with respect to a change of labeling
time:

∂

∂s
−→
f (t|X, s) + ∂

∂s
−→
f (s|X, s) · ∇−→

f (t|X, s) = 0 (112)

Since there is only one set of variables in space (X), it
should be clearly understood that the gradient is taken
with respect to this set. However, the second term in the
equation in fact is an Eulerian velocity, which we denote

←−v (X, s) := ∂

∂s
−→
f (s|X, s) (113)

Note that Eq. (112) could be written for any quantity
(not just

−→
f ), and says that quantities are conserved along

the characteristics obtained by integrating the Eulerian
velocity along its trajectory. We therefore write the same
equation for the Lagrangian velocity:

∂

∂s
−→v (t|X, s) + ←−v (X, s) · ∇−→v (t|X, s) = 0 (114)

Integrating we obtain

−→v (t|X, s)−←−v (X, t) =
∫ t

s

←−v (
X, t′

) ·∇−→v (
t|X, t′) dt′

(115)

The left hand side involves two different functions and
the first term on the right involves the Eulerian veloc-
ity at the current time at the spatial position where the
fluid particles were originally labeled. Averaging over an
acoustic cycle gives us the difference between the average
Lagrangian and Eulerian velocities.

Absence of Stokes drift in porous media
In this subsection, and only in this subsection, we define
the symbol w as

w := vf − vs (116)

where the superscripts f , s refer to fluid and solid, respec-
tively. (In the main sections, w is defined to be the pore
or interstitial volume fraction times the relative velocity).
The decorations on w will be inherited in an obvious way
from those on the v′s. Then we see that applying (114) in
turn to the fluid and the solid and subtracting yields

∂

∂s
−→w (t|X, s) + ←−w (X, s) · ∇−→w (t|X, s)

+ ←−v s (X, s) · ∇−→w (t|X, s)
+ ←−w (X, s) · ∇−→v s (t|X, s) = 0

(117)

Hence
−→w (t|X, s) − ←−w (X, t) =

∫ t

s
dt′←−w (

X, t′
) · ∇−→w (

t|X, t′)

+
∫ t

s
dt′←−v s (X, t′) · ∇−→w (

t|X, t′)

+
∫ t

s
dt′←−w (

X, t′
) · ∇−→v s (t|X, t′)

(118)
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As before, we now expand

w = w1 + w2 (119)

both with and without decorations. However, upto and
including second order,

vs = vs1 (120)

there being no net drift of the solid. The first order quanti-
ties are of course the same in the Eulerian and Lagrangian
viewpoints. Let us substitute these into (118) and aver-
age over a cycle, retaining only upto the second order
quantities. The result is:

−→w 2 (t|X, s) − ←−w 2 (X, t) (121)

=
∫ t

s
dt′

〈←−w 1
(
X, t′

) · ∇−→w 1
(
t|X, t′)〉

+
∫ t

s
dt′

〈←−v s
1
(
X, t′

) · ∇−→w 1
(
t|X, t′)〉

+
∫ t

s
dt′

〈←−w 1
(
X, t′

) · ∇−→v s
1
(
t|X, t′)〉 (122)

Now −→w 1 = ←−w 1, (to first order the Eulerian and
Lagrangian velocities are the same), and so the first of the
three terms should vanish since the dot product involves
two quantities out of phase with each other. Further, with
our “Imaging Community assumption” for the acoustic
waves, −→w 1 vanishes and so all the terms on the right hand
side of (121) do as well. Hence there will be no Stokes
drift in the context of homogenized porousmedia. Amore
accurate treatment would follow the transition from the
boundary layer behavior of the fluid particles to the behav-
ior in bulk according to the frequency of the wave and the
interstitial widths.

Appendix 2: Green’s functions for the streaming
equations
We here ‘derive’ the Green functions given in Eq. (132)
below. Let us introduce a parameter α with dimensions of
inverse length

α := +
√

γ

η
(123)

The usual method for obtaining Green’s functions is to use
the Fourier transform. With k̂ = k/k denoting the unit
vector in the k direction, (31a) and (31b) give

η
(
α2 + k2

)
ṽ = f̃ − ik̃p, k·̃v= −k·̃v0 (124)

where the tildes of course denote the Fourier transforms
of the quantities without the tilde. Taking the dot product
with k gives

η
(
α2 + k2

)
k·̃v0 + f̃ · k = ik2p̃ (125)

which allows us to substitute for the Fourier transform of
the pressure, and so we obtain

ṽ =
f̃ −

(̃
f · k̂

)
k̂

η
(
α2 + k2

) −
(̃
v0 · k̂

)
k̂ (126)

The inverse transform would give us the desired solu-
tion, but we give here a simple and direct though hand-
waving derivation for the Green function. The result can
be checked directly as well. We note that

∇ 1
|x − x′| = −∇′ 1

|x − x′| (127)

(The prime denotes of course the gradient with respect
to the x′ variables). We may therefore take the gradient
of equation (34), integrate twice by parts, discarding the
boundary terms in each case (so that the sources are such
that the terms must vanish at infinity) to obtain (recall the
notation as mentioned in the Introduction)

−4π∇p = ([
γ − η∇2] v0 + f

) ∗ · ∇∇ 1
r

(128)

We substitute (128) into (31a),

−4πη∇2v+4πγ v = ([
γ − η∇2] v0 + f

)∗· ∇∇ 1
r

+4πf∗δ

(129)

where we write f = f ∗ δ, the convolution with the delta
distribution. We factor η out of the expressions, introduc-
ing the α of Eq. (123). Wemay now write the inverse of the
“Yukawa operator” (which is defined to be ∇2− α2) acting
on the Green function 1/r as

(∇2 − α2)−1 1/r = −1 − exp (−αr)
α2r

(130)

We have obtained (130) by solving for
(∇2 − α2) h (r) =

1/r, discarding one constant of integration by demanding
the solution vanish at infinity, and fixing the other con-
stant by demanding agreement with the Green function
for the Yukawa operator, i.e., we set

−4π
(∇2 − α2)−1

δ3 (x) = exp (−αr) /r (131)

Thus if we apply the Laplace operator to h (r), it is equiv-
alent to applying

(∇2 − α2)−1 to − 4πδ3 (x) which should
yield the Yukawa potential of (131). This fixes the other
constant of integration to be 1/α2. Returning to (129), we
apply

(∇2 − α2)−1 to both sides, and use (130) and (131),
to find

4πγ v = γ v0 ∗ · ∇∇ 1
r

+ f ∗ · ∇∇ 1 − exp (−αr)
r

+ α2f ∗ exp (−αr) /r
(132)

Further expansion of the application of ∇∇ to 1
r and to

exp(−αr)
r is given in the text, in the “Green’s functions for

the streaming equations” section.
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Bulk fluid limit
In a pure fluid, γ → 0, but we must expand to non-
vanishing powers of α, using Eq. (38), dividing first by γ

and then replacing α2

γ
by the viscosity η:

4πv (r)
γ→0−→
α→0

f (r) ∗
{

α2

γ r
+ α (1 − αr)

γ r2
+ 1 − αr + (αr)2 /2

γ r3
− 1

γ r3

}

+ f (r) ∗·
{
r̂̂r
r

(
3

γ r2
− α2

γ
− α (1 − αr)

γ r
− 3

1 − αr + (αr)2 /2
γ r2

)}

− v0 (r) ∗ ·
{
I − 3̂r̂r

r3

}
− 4πv0 (r)

(133)

Thus

v (r)
γ→0−→
α→0

f (r)
8πη

∗·
{
I + r̂̂r

r

}
+ v0 (r)

4π
∗ ·

{
3̂r̂r − I

r3

}
− v0 (r)

(134)

The standard result [6] which is the usual “Stokeslet”
familiar from the fluid dynamics of slow viscous flow is
the first term on the right. The second term arises from
the mass conservation forcing and as Lighthill points out,
decreases like r−3 unlike the first. There is a third term
as well from the Green function singularity. Lighthill also
remarks that such Green functions are of limited value in
discussing streaming in pure fluids owing to the impor-
tance of including the convective acceleration term in the
equations. Then the equations become nonlinear and of
course there are noGreen function or linear superposition
results available. Remarkably, there is an exact solution for
the pure fluid problem with a point source, due to Landau
and Squire: see the quoted paper of Lighthill for details.
As described in the “Terms neglected” subsection, this
nonlinear term is of no importance in the porousmedium.

Darcy (porous medium) limit
The η → 0, α → ∞ limit defines the porous medium.
From (132), we get immediately

4πγ v = (γ v0 + f) ∗ · ∇∇ 1
r

+ Lim
α→∞ α2f ∗ exp (−αr) /r

(135)

Now, Limα→∞ α2e−αr = −δ′ (r), the prime denoting a
derivative with respect to the argument. Thus the second
term evaluates (including the integration with respect to
the angles and using the meaning of the derivative of the
Dirac delta) to

4π
d
dr′

(
r′f

(
x − x′))∣∣∣∣

r′=0
= 4πf (x) (136)

provided Limr′→0 r′ ∂
∂r′ f

(
x − x′) = 0. Thus

γ v = 1
4π

(γ v0 + f) ∗ · ∇∇ 1
r

+ f (137)

This result is also shown starting directly from the
porous medium equation in the “Green’s functions for the
streaming equations” section.
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