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Abstract

Urban air quality simulation is an important tool to understand the impacts of air
pollution. However, the simulations are often computationally expensive, and require
extensive data on pollutant sources. Data on road traffic pollution, often the
predominant source, can be obtained through sparse measurements, or through
simulation of traffic and emissions. Modeling chains combine the simulations of
multiple models to provide the most accurate representation possible, however the
need to solve multiple models for each simulation increases computational costs even
more. In this paper we construct a meta-modeling chain for urban atmospheric
pollution, from dynamic traffic modeling to air pollution modeling. Reduced basis
methods (RBM) aim to compute a cheap and accurate approximation of a physical
state using approximation spaces made of a suitable sample of solutions to the model.
One of the keys of these techniques is the decomposition of the computational work
into an expensive one-time offline stage and a low-cost parameter-dependent online
stage. Traditional RBMs require modifying the assembly routines of the computational
code, an intrusive procedure which may be impossible in cases of operational model
codes. We propose a non-intrusive reduced order scheme, and study its application to
a full chain of operational models. Reduced basis are constructed using principal
component analysis (PCA), and the concentration fields are approximated as
projections onto this reduced space. We use statistical emulation to approximate
projection coefficients in a non-intrusive manner. We apply a multi-level
meta-modeling technique to a chain using the dynamic traffic assignment model
LADTA, the emissions database COPERT IV, and the urban dispersion-reaction air quality
model SIRANE to a case study on the city of Clermont-Ferrand with over 45, 000 daily
traffic observations, a 47, 000-link road network, a simulation domain covering 180 km2.
We assess the results using hourly NO2 concentration observations measured at
stations in the agglomeration. Computational times are reduced from nearly 3 h per
simulation to under 0.1 s, while maintaining accuracy comparable to the original
models. The low cost of the meta-model chain and its non-intrusive character
demonstrate the versatility of the method, and the utility for long-term or many-query
air quality studies such as epidemiological inquiry or uncertainty quantification.
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Introduction
Air quality simulations at urban scale are a key tool for the evaluation of population
exposure to particulate matter and gaseous air pollutants. The simulations are however
subject to costly computational requirements and complicated implementation. Studies
in exposure estimation or uncertainty quantification, for example, require many solutions
to the model. The 2016 study by theWorld Health Organization [1] on the global disease
burden of air pollution excluded many pollutant species and health outcomes from the
study due to lack of robust evidence. The use of advanced modeling methods in air
pollution studies can provide precise estimations, however lower-cost but less precise
models are often used in these scenarios due to high computational costs. Advanced
models can be rendered feasible in this context if we can reduce the computational cost
without significant loss of accuracy.
Let us consider a generic stationary model over a physical domain � ⊂ R

d , with d = 2
or 3, and parameter domainD ⊂ R

Np

M : D → R
N

p �→ c(p)

The model output for a given parameter vector p ∈ D, c(p) ∈ R
N , will be a large-

dimension vector representing the solution over a grid covering �. M can represent
various types of atmospheric pollution models, from highly complex formulations based
on partial differential equations and fluid dynamics [2,3] to simpler, and more com-
monly operational, formulations such as Gaussian dispersion models. Even in the case of
the (comparatively) simpler models, the computational time necessary for the solution
ofM in practical applications over large domains with many parameters (e.g., emissions
sources) can be high. Thiswouldmake numerous solutions to themodel too costly in prac-
tice. Methods of model order reduction (MOR) can reduce computational costs without
introducing significantly increased model error, and for a range of varying parameters
p ∈ D.
VariousMOR techniques have been studied in the context of air qualitymodels (AQMs).

In [4] the meta-modeling technique using statistical emulation by radial basis functions
(RBF) was tested on pollutant concentration fields over Clermont-Ferrand approximated
by the ADMS-Urban model [5] using daily profiles for traffic emissions. In [6], statistical
emulationwas used to evaluate the sensitivity of some input parameters on a global aerosol
model. A Gaussian process emulation was used for the study of model uncertainty in [7]
for accidental release scenarios. Gaussian process emulation was also used in [8] for the
Sobol’ sensitivity analysis of a dispersion model representing the Fukushima event.
In this paper, we will consider a modeling chain for air quality modeling over the

agglomeration of Clermont-Ferrand and surrounding area in France. Air quality mod-
els are known to commit significant errors [2,9–11], however these errors are strongly
dependent on the calibration and inputs to the model. Providing more precise input data,
such as data on pollutant emissions from road traffic, can greatly improve the accuracy of
the modeled concentration field. The advantage of a modeling chain is the use of the best
(most precise) information available on various inputs by using traffic and emissionsmod-
els. In [9], the authors provide a review of modeling chain techniques for traffic pollutant
emissions, atmospheric dispersion, and effects on water quality.
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The modeling chain studied here consists of the dynamic traffic assignment model
LADTA [12,13], an emissions model Pollemission [14] based on COPERT-IV emissions
database [15], and an urban AQM, Sirane [16]. The computation of a pollutant concen-
tration field over the agglomeration for any given time requires the solution of eachmodel
in the chain, which proves costly for long time periods.This brings us back to MOR tech-
niques. However in this case, we have a chain of multiple models to reduce, which leads us
to questions on the implementation of MOR techniques: whether to build a single reduc-
tion over the full chain, or a chain of meta-models? How can we treat the large parameter
dimension of the chain? The use of modeled traffic emissions here presents additional
difficulty in the construction of an air quality meta-model, due to the increased spatial
and temporal variation of pollution emissions (compared to daily profiles or averaged
emissions).
We resort to projection-basedMOR techniques based on reduced basis (RB) [17] to con-

struct cheap and accurate meta-models. A projection-based meta-model for the dynamic
trafficmodel was built in [18]. Here we will complete themodel chain with the conversion
from traffic assignment and emissions model outputs on a coarse traffic network to pollu-
tant dispersion model inputs on a fine traffic network. We then construct a meta-model
for the AQM using statistical emulation by RBF interpolation with a weighted distance
on the parameter domain to build a low-cost meta-model chain for the entire system.
The motivation for this choice will be discussed in detail in “Case study on Clermont-
Ferrand” section. An important aspect of the selected MOR method is its non-intrusive
character. Among non-intrusive methods, various techniques are used to approximate
the coefficients of a projection onto the reduced basis without relying on the equations of
the original model. Refs. [19] and [20] present a two-grid non-intrusive method using a
rapid low-fidelity numerical simulation followed by a post-processing step to aproximate
the reduced basis solution from high-fidelity numerical simulation. This was applied to
computational fluid dynamics and to a geotechnics problem with non-linear behavior,
respectively. In [21], a non-intrusive reduced order data assimilation method was applied
to particle dispersion in the case of sufficiently numerous measurement data, using a
reduced basis of the model solution manifold and a second basis representing the avail-
able measurement data to correct model error. In [22], a regression mapping training
inputs to the coefficients of the projectedmodel output is approximated using an artificial
neural network, and is tested on a one-dimensional unsteady combustion problem. In [23],
a non-intrusive method is applied to stress tensor field reconstruction of a parametrized
beam and pressure field reconstruction in computational fluid mechanics. This method
also employs POD interpolation [24] to reconstruct reduced basis projection coefficients,
and treats parameter domain reduction based on sensitivity analysis using a coupling with
active subspaces, which can be useful in the case of problems presenting a low-dimension
active subspace.
In “Meta-modeling methods” section, we will describe the meta-modeling technique

based on RB methods. In “Case study on Clermont-Ferrand” section, we will describe the
case study over Clermont-Ferrand: input and measurement data, computational domain,
and selected models. In “Results” section, we will summarize the results of the meta-
model on the AQM chain, studying accuracy, precision, and computational savings. The
full meta-model chain will reduce computational costs to under 0.1 s per simulation while
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maintaining comparible accuracy, which will allow us to use the chain for high numbers
of simulations in future work.

Meta-modelingmethods
Computation times for large problems are commonly on the order of hours, making
many-query contexts, such as sensitivity analysis and optimization, hardly feasible. Model
reductionmethods are of great interest to applications of parametrizedproblems involving
many-queryor real-time study.Wewill beginherebydetailing theMORmethodas applied
to the AQM part of the chain, and we will discuss the details of the full meta-model chain
in “Case study on Clermont-Ferrand” section.

Reduced basis method

We will rely on a projection-based method of model order reduction using a reduced
basis. Let us consider a model, or model chain, M which takes input parameter vector
p ∈ D ⊂ R

Np and computes an output vector c(p) over a grid ofN points. We will define
the output solution set to the model XN = {c(p)|p ∈ D} ⊂ R

N , where the parameter
dimension is Np. Reduced basis methods exploit the parametrized structure of the model
and construct a low-dimensional space approximating the solution setXN [25,26].While
the discrete model output is of high dimension N , the reduced order solution will be of
dimension N � N . A key factor of the reduced basis methods is the small Kolmogorov
n-width [27]. The n-width measures to what extent XN can be approximated by an n-
dimensional subspace, and can be studied during the sampling of the solution space.
Our objective is to construct a reduced basis {�AQ

n }1≤n≤N of N basis functions such
that the projection of any simulated state, �Nc(p), onto the reduced basis is sufficiently
precise. The basis representing atmospheric concentration fields will be denoted by AQ
(air quality). To construct a RB, we first need to sample a large number of solutions in
XN . This so-called training set should represent the variability in the solution states. We
will sample the solution space by Latin Hypercube Sampling (LHS). Sampling by LHS
was chosen for this study because many of the parameters are independent in practice.
In addition this allows more flexibility when using the meta-model in the (quite realistic)
case of uncertain parameters, or in rare scenarios such as pollution peaks, where a reliable
meta-model is necessary but not guaranteed if it is trained over the most likely input
values. Next we will construct the RB by principal component analysis (PCA).
We use LHS to select Ntrain sample points (p1, . . . ,pNtrain ) in the parameter domain D,

and compute model simulations from each point to build the training ensemble YAQ =
[c(p1), . . . , c(pNtrain )] to train the model reduction. As is common practice in PCA appli-
cations, we will first compute the ensemble mean c̄ = 1

Ntrain

∑Ntrain
i=1 c(pi) of the training

ensemble. PCA is computed on the centered ensemble ȲAQ = [c(p1)−c̄, . . . , c(pNtrain )−c̄].
The eigenvalues {λk}1≤k≤N and eigenvectors {�AQ

k }1≤k≤N of the covariance matrix
C̄AQ = (ȲAQ)T (ȲAQ)

of the training ensemble are such that

Ntrain∑

i=1

∥
∥
∥
∥
∥
c(pi) − c̄ −

N∑

n=1
�AQ

n �AQ
n

T (c(pi) − c̄)

∥
∥
∥
∥
∥

2

2

=
N∑

k=N+1
λk , (1)

for eigenvalues λ arranged in decreasing order. N = 5 principle component basis func-
tions ψ

AQ
n are selected to represent IN = 98% of the variability in the concentration state,
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where the Relative Information Content is IN =
∑N

k=1 λk
∑Ntrain

k=1 λk
. This means that the error of

projecting any member of the training ensemble onto the basis, ErrN , will be bounded
by the tolerance ErrN ≤ εN = √

1 − IN [25]. The 98% tolerance cutoff is selected on a
case-by-case basis: the goal is to keep N small and IN as close to 1 as possible. Here the
98% precision is attained relatively quickly, then improvement slows as N > 5 increases.
For any new parameter, we can thus represent the solution as

c(p) 	 �Nc(p) = c̄ +
N∑

n=1
αAQ
n �AQ

n (2)

with projection coefficients α
AQ
n = �

AQ
n

T
(c(p) − c̄).

Statistical emulation

Once we have constructed the reduced basis by PCA, we need a reduced order modeling
scheme to approximatednew solutions.Classical reducedbasismethodswhich replace the
approximation space with the reduced basis space are intrusive and require the modifica-
tion of the computational code.Wewould like to use a non-intrusivemethodwhich can be
applied to a black-boxmodel ormodel chain, which is particularly pertinent in the context
of operational models. The non-intrusive implementation allows the freedom of choice
of the best available model. In particular, this allows the models to be updated with tech-
nological advances, and a model chain which is meta-modeled by linking non-intrusive
meta-models maintains maximal versatility. It also makes for simpler implementation, as
the calculation code does not need to be modified. While many MOR methods exist, the
non-intrusive character of few of these methods is particularly advantageous in problems
relying on operational models.
Weconsidermeta-modelingby the emulationofprojectioncoefficientsαAQ

n , 1 ≤ n ≤ N .

First we select a linear trend, which will be a least squares regressionRn(p) =
Np∑

k=1
βn,kpk ,

calculated from the training simulations {c(pi)}1≤i≤Ntrain . To this we add an interpolation

termon the residualsαn(pi)−Rn(pi),IN (p) =
Ntrain∑

i=1
ωn,iφ

(
dθ (p,pi)

)
.We chose to compute

this interpolation using RBF. We chose cubic RBFs φ and a weighted Euclidean distance
dθ (·, ·) to represent the varying ranges of each input parameter.

dθ (p1,p2) =

√
√
√
√
√

Np∑

i=1
θi(pi1 − pi2)2, (3)

where θi = 1
(

max
p∈D pi − min

p∈D pi
)2 . We then define the emulated projection coefficients

as follows.

α̂AQ
n (p) =

Np∑

k=1
βn,kpk

︸ ︷︷ ︸
Least squares regression

+
Ntrain∑

i=1
ωn,iφ

(
dθ (p,pi)

)

︸ ︷︷ ︸
Residual interpolation

. (4)
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Fig. 1 Meta-modeling chain over Clermont-Ferrand

The weights {ωn,i}1≤n≤N ;1≤i≤Ntrain are chosen such that the interpolation is exact for the
sample points {pi}1≤i≤Ntrain ,

α̂AQ
n (pj) = αAQ

n (pj) =
Np∑

k=1
βn,kpj,k +

Ntrain∑

i=1
ωn,iφ

(
dθ (pj ,pi)

)
. (5)

The emulated solution is finally

ĉN (p) = c̄ +
N∑

n=1
α̂AQ
n �AQ

n . (6)

The regression represents the relation between the model parameters and the RB pro-
jection coefficients, and computed from the training set (pi,α(pi))1≤i≤Ntrain . This provides
an initial trend to be corrected by the interpolation. In practice, the interpolation of the
residual is the most important part of the emulation. The size of the training set Ntrain
plays an important role in the precision of this emulation, as the regression and interpo-
lation are trained on this set. In [4], this method of approximating projection coefficients
is compared to approximation by Kriging. The two meta-models showed similar results,
and we chose RBF emulation for its simpler (and thus more accessible in operational
applications) implementation and lower computational cost.

Case study on Clermont-Ferrand
In this workwewill apply themeta-modelingmethod described in “Meta-modelingmeth-
ods” section to a modeling chain over the city of Clermont-Ferrand in France. We will
build ameta-model chain representing road traffic emissions and the dispersion and reac-
tion of pollutants over the urban agglomeration and surrounding area using data over a
2-year period form 2013 to 2015. The model chain is represented in Fig. 1.

Traffic emissions modeling

Traffic emissionsmodeling is done using the dynamic traffic assignmentmodel LADTA.A
meta-model was constructed [28] to represent the traffic flow and speed simulations over
a road network of 19, 628 oriented links, where nearly 45, 000 traffic flow observations are
available each day. Emissions of NOx and PM are computed using Pollemission code [29]
basedon theCOPERT-IVemissionsdatabase [30,31].Adetaileddescriptionof this section
of the modeling chain and its input parameters can be found in [28]. The varying input
parameters consist of 23 traffic parameters and 6 emissions parameters. These parameters
are time-dependent or considered sources of uncertainty. They include temporal traffic
demand, computed using traffic observations, the capacity and speed limits of traffic
network links, multiplicative coefficients on origin-destination matrices representing the
spatial distribution of traffic demand, traffic direction (morning versus evening), engine
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size, type, and emission standards of the vehicle fleet, and ratio of heavy-duty vehicles to
personal cars.
The emissions model provides traffic emissions estimations for NOx and PM10. How-

ever the atmospheric pollution model incorporates chemical reaction parametrizations
which treat NO2, NO, PM2.5, and PM10. In order to approximate emissions of NO2, NO,
PM2.5, and PM10, we would like to estimate what proportion of NOx consists of NO, and
what proportion of PM10 is PM2.5. In the deterministic case, we set the ratio NO2

NOx = 0.15
[32–34], and the ratio PM2.5

PM10
= 0.75 [35,36]. In order to construct a meta-model which

can account for varied or uncertain speciation ratios, we will draw LHS parameters for
the training ensemble in the intervals (pNO2 , pPM2.5 ) ∈ [0.1, 0.25]× [0.65, 0.8]. The output
of the traffic-emissions coupling is the emissions on each link of the traffic network in
g/15min.

Air quality modeling

Air quality modeling is done using the urban dispersion-reaction model Sirane [16,37]
over a simulation domain of 180 km2. Sirane is used as a static model which approximates
the solution at a given time of the transport-reaction equations satisfied by the pollutant
concentrations. The traffic emissions over a relatively coarse road network are converted
to g/s/link on a finer network representing over 47, 000 line sources. For the calculation
of NO2 concentrations, we provide the so-called background concentrations of pollutant
species involved directly or indirectly in the formation of NO2. The background con-
centrations, provided for NO2, PM10, and O3, represent the imported concentrations of
pollutants, that is, concentrations transported from other locations to the city, and from
the dispersion or reaction of previous emissions in the case of stationary solution.We will
provide line emissions inputs on NO2, NO, PM2.5, and PM10. Input data on meteorologi-
cal conditions (wind velocity, cloud coverage, a precipitation parameter, and temperature)
and surface emissions sources are also provided. The AQM output is the NO2 concen-
tration over a grid at ground level, at 20 m resolution. Hourly concentration observations
are available over 2 years at 5 stations, or around 90, 000 NO2 observations for analysis of
model simulation outputs.

Modeling chain

Themodeling chain consists of these three steps—trafficmodeling, emissions calculation,
and dispersion-reaction modeling—and the conversions between outputs and inputs. In
Fig. 2 we can see the traffic flow (veh/h/link) and associated emissions (g km−1 s−1),
and NO2 concentration (µgm3) simulations at 8 a.m. on a Tuesday in November 2014,
provided by the traffic meta-model and full air quality model. The task remains to reduce
the computational time required to obtain concentration fields by constructing a meta-
model for the entire chain.

Surrogatemodeling chain construction

As noted above, the traffic emissions on a geographically finer road network provided
as input to the air quality model represent over 47, 000 line sources. In the context of
model order reduction, this represents as many parameters, which in the practice of
projection-based reductionmethodsmakes the identificationof theprojection coefficients
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Fig. 2 Simulations over Clermont-Ferrand on 18/11/2014 at 8 a.m. Traffic flow in veh/h/link (left), NO2

emissions in g km−1 s−1 (center), NO2 concentration µgm−3 (right). A75 and A89 are large highways in the
domain

α
AQ
n dependent on 47, 000 parameters unfeasible (or impossible). We thus need to reduce

the complexity of the problem by reducing the dimension of the input parameters. To do
so we will construct a reduced basis of the traffic emissions, again using PCA.

Reduction of line emissions We currently have the full chain parameter vector pTfull =
(pTtraffic,pTe ,pTAQ),where the outputs of the emissionsmodel consist in a coefficient for each
of the links in the road network. These coefficients are then treated as the (very large) input
parameter vector for the air quality model. To reduce the dimension of this vector, we
will use the same method as in “Reduced basis method” section. We first select a set of
training parameters (pTtraffic,pTe ) by LHS to represent the variations of these parameters
in the admissible parameter space D. We compute the emissions solutions E(ptraffic,pe)
to construct a reduced basis {�E

n }1≤n≤Nlin by PCA, representing the variations of the
emissions fields centered around Ē = 1

Ntrain

∑Ntrain
i=1 E(pitraffic,pie). We can compute the

orthogonal projection of any emissions field onto the traffic emissions RB as follows.

E(ptraffic,pe) 	 �NlinE(ptraffic,pe) = Ē +
Nlin∑

n=1

(
(E(p) − Ē)T�E

n
)
�E

n = Ē +
Nlin∑

n=1
αlin
n �E

n .

(7)

For our case study, we chose Nlin = 11 to represent 95% of the variability of the emis-
sions solutions. This corresponds to a relative projection error tolerance over the training
samples of ε2lin = 0.05. In the model chain, the over 47, 000 line source parameters will
henceforth be replaced by theNlin = 11 projection coefficients {αlin

n }n≤Nlin , and the traffic
emissions field for a given parameter approximated by its projection �NlinE(ptraffic,pe)
onto the traffic emissions RB. We perform the same reduction over the hourly surface
emissions with Nsurf = 1 and projection coefficient αsurf . In Fig. 3, we can see the largest
singular values of the PCA step, and the relative mean projection errors of the training
traffic emissions simulations onto the RB {�E

n }1≤n≤Nlin , as defined by

ErrN = 1
Nt

Ntrain∑

i=1

‖�NE(pi) − E(pi)‖2
‖E(pi)‖2 . (8)
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Fig. 3 Left: Singular values of the emissions mass matrix. Right: L2 relative mean projection errors of the LHS
training ensemble of road traffic emissions fields onto the RB

Fig. 4 First four principal components of the emissions mass matrix, NO2 emissions represented

In Fig. 4 we can see the first 4 principal components of the traffic emissions RB.

Construction of the air quality meta-model We now can write the reduced concen-
tration model parameters pTc = (αT

lin,α
T
surf ,pTAQ). We will construct a meta-model of the

air quality model to complete the meta-modeling chain, with reduced full parameters as
described inTable 1. The choice to build a separate air qualitymeta-model to complete the
chain of meta-models (as opposed to a meta-model of the chain) was to allow multi-level
assessment using traffic flow and air quality measurement data (a possibility particularly
pertinent in a study of uncertainty quantcification), by a meta-modeling method which
can be generalized in the case of additional models in the chain (such as an economic or
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Table 1 Summary of input parameters to the full
meta-model chain

Dynamic traffic model Emissions database Air quality model

LADTA COPERT IV Sirane

ptraffic ∈ R
23 pe ∈ R

6 pAQ ∈ R
23

Temporal traffic demand ; link capacity and

speed limit ; distance traveled data ;

direction coefficient

Vehicle fleet data Meteorological data ; traffic, surface and

railway emissions ; background pollution ;

NOx , PM composition parameters

Table 2 Model chain input parameter ranges

Input Dimension Range

Traffic meta-model parameters

Temporal traffic profile 13 [0.0, 2.0]

Traffic capacity 2 [0.5, 1.5]

Speed limit coefficient 2 [0.5, 1.5]

Traffic trip distance coefficient 5 [0, 1.8]

Traffic direction 1 [0, 1]

Traffic emissions parameters

Fleet engine type 1 [10, 100]% gasoline

Fleet engine capacity 2 [10, 100]% gasoline/diesel small-midsize

Emission standard 2 [10, 100]% gasoline/diesel after Euro3

Heavy duty vehicles 1 [0, 30]% heave duty vehicles

Conversion NO2
NOx ,

PM2.5
PM10

2 [0.1, 0.25] × [0.65, 0.8]

Air quality model parameters

Wind velocity 1 [0, 17]ms
Wind direction 1 [0, 360]◦

Temperature 1 [−10, 40]◦C
Precipitation coefficient 1 [0, 26]

Cloud coefficient 1 [0, 8]

Background concentration NO2, O3 PM10(µgm−3) 3 [0, 200] × [0, 180] × [0, 120]

epidemiological model). In addition, if a single meta-model represents the full chain, the
training set must be at least as large as the largest training set in the chain, which could
increase offline computational time if onemodel requires a larger training set than others.
Here, Ntraffic

train = 3003 and NAQ
train = 9347.

When constructing the training ensemble for the air quality meta-model, we chose
to draw LHS parameters for the full modeling chain pfull . This choice lead to reduced
variations in the emissions projection coefficients {αlin

n }1≤n≤Nlin versus LHS selection over
uniform distributions of the emissions projection coefficients αlin ∈ [αlin

min,α
lin
max]Nlin . The

projection coefficients are in practice not independent; a strong first coefficient is often
associated to a weaker second or third coefficient, as these principal components tend
to represent different spatial distributions of the emissions. This means that the entire
space [αlin

min,α
lin
max]Nlin represents significantlymore variation in the state E(ptraffic,pe) than

the traffic-emissions model produces. By performing LHS over the full chain parameters
pfull = (ptraffic,pe,pAQ) ∈ R

41, the emissions projection coefficients are computed during
the conversion of traffic meta-model outputs to concentration meta-model inputs.
In Fig. 5 we compare the parameters αlin

n selected by these two methods by plotting
the parameter spaces (αlin

1 ,αlin
2 ) and (αlin

1 ,αlin
4 ). We can see that the parameter spaces in

red, which correspond to performing LHS on pfull and computing the projection coeffi-
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Fig. 5 Projection coefficients on the traffic emissions basis from LHS performed directly on [αlin
min,α

lin
max ]

Nlin

(blue) compared to the projection coefficients of traffic emissions model outputs E(ptraffic ,pe) (red) over a
training ensemble of parameters (pi

traffic ,p
i
e) selected by LHS. Left: the parameter space of (αlin

1 ,αlin
2 ). Right:

the parameter space of (αlin
1 ,αlin

4 )

cients αlin
n of the traffic emissions model output E(ptraffic,pe) represents significantly less

variation than LHS selection directly on the parameters αlin
n . This tactic avoids building a

meta-model unnecessarily representing additional variation of the state by only consider-
ing realistic traffic emissions. In Table 2, we set the ranges of each input parameter which
defines the parameter space D.
Weuse LHS to select a training set ofNtrain = 9347 concentrationfields.Due to the large

input parameter vector (Np = 41), we used a LHS algorithm for 10, 000 training samples,
and removed the concentration fields with numerical instability (this can be attributed
to modeling error, which should not be confused with error in the meta-model). We
use the NO2 concentration fields c(pfull) to construct a reduced basis {�AQ

n }1≤n≤N by
PCA, representing the variations of the concentration fields centered around the sample
concentration mean c̄. Due to the large size of the training set, we compute the largest
75 singular values and approximate IN ∼

∑N
k=1 λk

∑75
k=1 λk

. We set the RB dimension N = 5 to
represent 98% of this variability.
In Fig. 6 we see the first 4 principal components of the concentration RB. We can see

that the first basis function represents urban background concentration in the denser
urban areas. The second seems to represent additional pcollution from traffic. The third
appears to represent situations with strong wind from the east, while the fourth shows the
influence of wind from the north.
For anynewparameter value, the concentrationfield canbe approximatedby theorthog-

onal projection onto the RB, for projection coefficients {αAQ
n }1≤n≤N ,

c(pfull) 	 �Nc(pfull) = c̄ +
N∑

n=1
αAQ
n �AQ

n . (9)

Finally we use the statistical emulation method described in “Statistical emulation”
section to construct an emulator of the concentration projection coefficients α

AQ
n . The full

chain can be computedwith a single codewhich applies the traffic-emissionsmeta-model,
the calculation of emissions RB projection coefficients, and the atmospheric pollutant
meta-model. This meta-model chain provides outputs on traffic flow, speed, and traffic
emissions over the road network, and NO2 concentrations over a 20m-resolution grid.
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Fig. 6 First four principal components of the NO2 concentration field mass matrix. Concentrations are
represented in µgm−3. The top legend corresponds to the first principal component, which displays smaller
variations. The bottom legend corresponds to the other three principal components

Results
In this section, we will summarize the results of the method described in “Meta-modeling
methods” section to the case study in “Case study on Clermont-Ferrand” section using
data over themonth of November 2014. Traffic flowmeasurement data serves as inputs to
the model chain for deterministic simulation, and data on pollutant concentration serves
to study model and meta-model performance. We will compare the meta-model output
to simulations from the full model Sirane, as well as to concentration observation data,
and we will assess computational savings.

Meta-model performance

We introduce the following statistical scores commonly used for evaluation of models
[4]: the normalized mean square error (NMSE), the normalized root mean square error
(NRMSE), and the correlation. We define here the output functionals 
o : RN → R

associated to each of the concentration sensors o, such that the observation data
yobso (p(t)) = 
o(ctrue(t)). We denote by ctrue(t) the unknown true concentration field at
time t, and p(t) the estimated parameters at time t.
For a data set ofM ≤ NtimeNobs measurements (somemeasurementsmay be unavailable

in practice) over Ntime times and Nobs sensors, we use the index m, 1 ≤ m ≤ M. cm =

o(c(p(t))) is the value of the output functional associated to sensor o applied to the
simulated state estimate at time t indexed by m. We use the same notation here where
the simulated state is the full model output c(p) or the meta-model output ĉ(p).M is the
total number of data available, and yobsm is the mth data point. c̄ and ȳobs are respectively
the mean of (cm)1≤m≤M and (yobsm )1≤m≤M .



Hammond et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:37 Page 13 of 22

Fig. 7 Simulation of NO2 concentrations µgm−3 by the full model Sirane and the meta-model chain for
parameters corresponding to conditions on Tuesday November 18, 2014 at 8 a.m. The measurement
locations used for comparison in “Comparison with observational data” section are shown over the
meta-model solution by blue diamonds

RMSE =
√
√
√
√ 1

M

M∑

m=1
(cm − yobsm )2. (10)

√
NMSE =

√
√
√
√ 1

M

M∑

m=1

(cm − yobsm )2

c̄ȳobs
. (11)

Correlation =

M∑

m=1
(cm − c̄)(yobsm − ȳobs)

√
√
√
√

M∑

m=1
(cm − c̄)2

√
√
√
√

M∑

m=1
(yobsm − ȳobs)2

. (12)

Bias = 1
M

M∑

m=1
(yobsm − cm) (13)

Finally we define theNRMSE as RMSE
ȳobs , and themean normalized rootmean square error

(MNRMSE) as the mean over all sensors (or grid points) of the NRMSE calculated over
the concentration ci at each sensor (or grid point) over the month.

MNRMSE = 1
Ngrid

Ngrid∑

i=1
NRMSE(ci) (14)

Comparisonwith the full model chain

Wefirst analyze theprecisionof themeta-modeled concentrationfields as compared to the
full model Sirane. This will help us understand the ability of the meta-model to reproduce
the concentration state and quantify the loss of precision caused the the dimensional
reduction. In Fig. 7 we see the concentration fields of NO2 simulated by the full model and
the meta-model chains, as well as the sensor locations for concentration measurements.
The parameters p correspond to conditions on Tuesday November 18, 2014 at 8 a.m. We
see very similar approximations near the highways east of the city center, however the
metamodel does not perfectly reproduce the variation between heavy-traffic areas and
low-traffic areas. Overall the reduced order simulation is a good representation of the full
model.
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Fig. 8 Top: NRMSE (10) of the emulated NO2 concentration field compared to the projected solution (left)
and compared to the Sirane solution (right), for parameters over the month of November 2014. Center:
correlation (12) over the same set. Bottom: normalized bias (13) over the same set

In Fig. 8, we see statistical scores spatially mapped over the meta-model domain com-
pared to both theprojected solution and the fullmodel solution.The scores of the reduced-
order solution compared to the projected solution give insight into how well the RBF
method of approximate the projection coefficients in order to reproduce the projected
solution. The NRMSE shows that the emulated solutions perform well in approximating
the urban background concentration levels, but do not capture the highest concentrations
along the large highways, where we will see the highest bias levels. The correlation map
also shows low correlation between the meta-model and full model only along the road-
ways, where the dimensional reduction has failed to capture the extent of the increased
concentrations due to traffic emissions. Finally the bias map shows that the meta-model
generally predicts higher concentrations in the denser urban areas when compared to the
full model, again matching the trend of the dimensional reduction reducing the sensitiv-
ity of the meta-model to sharp spatial variations in concentrations. However, the areas
with poor scores remain limited, and we will also consider the significant error that will
inevitably be committed by the full model in the next section.
In Fig. 9 we see the relative errors of the full model concentration projected onto the

reduced basis {ψAQ
n }1≤≤N , averaged over the set of deterministic simulations for the

month ofNovember 2014.We also see the emulated concentration relative error, averaged
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Fig. 9 Relative mean errors (%) mapped over the meta-model domain compared to the full model solution,
for parameters over the month of November 2014. Left: projected NO2 concentration field. Right: emulated
NO2 concentration field

Table 3 Statistical scores of themeta-model approximation results compared to the
scores of themodel chain using the full air quality model

State estimation

c(p) vs. ĉ(p) Statistical scores over 1-month simulations

Over the full grid MNRMSE (14)
√
NMSE (11) Correlation (12)

Meta-model vs. full model chain 0.274 0.25 0.93

At receptor locations NRMSE (10)
√
NMSE (11) Correlation (12)

Meta-model vs. full model chain 0.22 0.18 0.96

over the same set of simulations. While the emulation of the projection coefficients is
globally responsible for a significant portion of the error, we can see that the regions with
the highest projection error correspond to high errors in the meta-model as well. This is
expected, as the emulated solution can only perform as well as the projected solution. We
see that larger errors are located on roads, mostly the large highway and outside the dense
urban area. Meta-model error remains below 20% over a large portion of the domain,
which shows that much of the spatial variation of the concentration is captured by the
reduced order solution.
In Table 3 we can see statistical scores comparing the meta-modeled concentration to

the full concentration model over all hours of November 2014. We compare both the
entire grid (here cm is the concentration at a grid point andM = Ngrid is the total number
of grid points) and at the NO2 sensor locations. While the dimensional reduction means
the meta-model does not fully capture spatial variations of the simulated concentration
state, we can see that the relative RMSE errors are satisfactorily low, and the correlation
between the two is very high.
In Table 4 we can see these scores when a reduced basis and metamodel are trained

using a subset of 3000 members of the training set only. We can see the necessity of the
larger training set for the air quality model. Here the difference in scores with respect to
Table 3 is caused by the smaller training set of the emulation, rather than by a less precise
reduced basis.
In Fig. 10, we see a visual representation of hourly scores of the meta-model solution

compared to the full solution at each grid point for simulations corresponding to the
month of November 2014. The NMSE (11) remains below 0.4 for most parameters, and
the RMSE (10) often below 10µgm−3. Correlations scores are grouped above 0.75, and
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Table 4 Statistical scores of a meta-model approximation trained on Ntrain = 3000
compared to the scores of themodel chain using the full air quality model

State Estimation c(p) vs. ĉ(p) (Ntrain = 3000) Statistical scores over 1-month simulations

Over the full grid MNRMSE (14)
√
NMSE (11) Correlation (12)

Meta-model vs. full model chain 0.35 0.30 0.91

At receptor locations NRMSE (10)
√
NMSE (11) Correlation (12)

Meta-model vs. full model chain 0.30 0.24 0.94

Fig. 10 Scores of the meta-modeled NO2 concentration field compared to the full model solution, for
parameters over the month of November 2014. Top left: NMSE (11). Top right: RMSE (10) (µgm−3). Bottom
left: correlation (12). Bottom right: bias (13) (µgm−3)

the bias distribution is nearly centered around −2µgm−3, showing a slightly higher
concentration approximation by the meta-model, when averaged over the grid.

Comparisonwith observational data

We next analyze the accuracy of the full model and meta-model compared to observa-
tional data onNO2 concentrations. Sensor locations can be seen in Fig. 7. In Fig. 11, we see

the temporal profile of average NO2 concentrations atM = 4 sensor locations: 1
M

M∑

m=1
cm.

We compare observed, emulated, projected and Sirane modeled concentrations of all
weekdays in November 2014. We see that the bias in the modeled concentrations under-
estimating peak concentrations, notably during heavy traffic periods in the mornings and
evenings. We also notice a seemingly delayed reaction of the model chain to the pollution
increase during the evening peak hour. In [28], this delay was less evident, suggesting that
factors such as the dispersion and reaction parametrizations in the AQmodel or the aver-



Hammond et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:37 Page 17 of 22

Fig. 11 Mean NO2 concentrations µgm−3 at 5 sensor locations over weekdays in November 2014. Curves
show observations, full model simulations, projected simulations onto the reduced basis, and emulated
solutions

Table 5 Statistical scores of themeta-model approximation results compared to
observation data

Scores over 1-month simulations Sirane solution c(p) Meta-model solution ĉ(p)

NRMSE
√
NMSE Bias Correlation NRMSE

√
NMSE Bias Correlation

All 4 stations 0.479 0.499 12.88 0.746 0.461 0.466 10.28 0.728

Lecoq 0.368 0.351 6.81 0.847 0.364 0.347 6.5 0.846

Montferrand 0.366 0.33 2.04 0.833 0.377 0.325 −1.6 0.836

Gare 0.655 0.587 33.13 0.776 0.469 0.52 20.43 0.783

Chamalières 0.474 0.573 16.05 0.719 0.498 0.55 15.8 0.648

NRMSE (10),
√
NMSE (11), Correlation (12), and bias (13) in µgm−3

aging of time scales from 15min to 1 hmay have an effect. The exploration of this question
will require more study of uncertainties in the model chain. We notice that the temporal
trend representing morning and evening peak hours in traffic is reproduced by the model
chain. We also note that the emulated concentrations are closer to the observations than
the full model. This is likely due to the ”smoothing” effect of the dimensional reduction
causing less sharp concentration variations, as small parts of the modeled concentration
fields are not reproduced by the reduced basis.
In Table 5, we compute statistical scores over the month of November 2014, comparing

the full model simulations and the meta-modeled simulations to the observation data
at M = 4 sensor locations. We again see that the emulated solutions are slightly more
accurate than the full model. The stations at which both the model and meta-model
perform best are those found in dense urban areas, excepting the station Gare, where
heavy traffic induces high NO2 concentrations, which the model fails to reproduce. We
see the highest bias at this location. Finally, the station Chamalières is located outside
the city center, where the model exhibits a higher level of bias. The performance of the
meta-model with respect to observation data is highly satisfactory.
In Fig. 12, we see a visual representation of daily scores of the meta-model solution and

the full solution compared to NO2 observations over the month of November 2014. The
meta-model shows similar score distributions to the full model, excepting the occasional
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Fig. 12 Scores of the Sirane NO2 concentration field compared to the observation data over the month of
November 2014. Top left: NMSE (11). Top right: RMSE (10). Bottom left: correlation (12). Bottom right: bias (13)

outlier. The RMSE (10) is below 25µgm−3 on the majority of days for both the full and
reduced simulations, with the bias distribution nearly centered around 10–15 µgm−3 ,
showing an underestimation of concentrations by the simulations.
While we have seen that the model reduction by statistical emulation causes loss of

precision, and the meta-model simulations contain error with respect to the full model,
comparing to observation data suggests that this error is not significant with respect to
the model error inherent to operational models for urban air quality, and does not reduce
the accuracy of the predicted concentrations at sensor locations.

Computational savings

We have seen that the meta-model chain produces satisfactory results when compared
to observational data, and determined that the loss of precision due to the dimensional
reduction is not higher than the error committed by the full model. Now we will show
the computational savings afforded by the meta-model chain. In Table 6, we can see the
computational times required for a single simulation of the chain by the meta-models or
the full models. The meta-models depend on three reduced bases, representing traffic for
the traffic assignment meta-model, road emissions for the reduction of pollution model
input dimension, and concentration fields for the pollutionmeta-model. The initialization
of the meta-model chain requires loading these bases and building the RBF emulators.
Once the chain is initialized, it can be run for any number of simulations at very low cost,
under 0.1 s for a simulation representing a 1-h period. In comparison, the full model chain
requires nearly 3 h for a single simulation.
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Table6 Computation times using themeta-model or full model chain

Computational times

Meta-model simulation Traffic emissions Compute α̂lin(pm) Compute α̂AQ(pm) Total CPU

Initialize meta-model chain – – – 24min
Emulating αAQ(pm) 0.05 s 0.006 s 0.02 s 0.076 s

Full model simulation Traffic emissions – Compute c(pm) Total CPU

Simulation of c(pm) 117min – 23min 140min

The offline construction of the meta-models required 6000 traffic model simulations
[28] and10, 000pollutionmodel simulations,which represents a significant computational
investment. However, these meta-models are trained over training points {pi}1≤i≤Ntrain ∈
D representing 2 years of data, and once constructed are useful for study over multiple
years. In the absence of highperformance computingmachines or clusters, the simulations
can be run using a pseudo-parallel technique running one simulation per core on desktop
calculation machines. The Sirane simulations described in “Case study on Clermont-
Ferrand” section took around one day using this method on multiple machines of 64
GB RAM or less. Once the meta-model chain is constructed, the online phase for the
simulation given any parameter p ∈ D is very cheap, which makes real-time or many-
query contexts possible, for example for use in uncertainty quantification study.

Conclusions
In this work we constructed a meta-model chain by statistical emulation of reduced basis
projection coefficients for urban air qualitymodeling over the agglomeration ofClermont-
Ferrand. We used the road traffic meta-model constructed in [28], built a reduced basis
representing road traffic emissions, and constructed a secondmeta-model ofNO2 concen-
tration fields over the agglomeration, substituting thus a low-cost chain of meta-models
for a computationally costly modeling chain over a large urban area. This required the
selection of a spatially finer road network for the AQM emissions inputs, the dimen-
sional reduction of the inputs to the atmospheric pollution model, the treatment of traffic
observation data to compute model input parameters, and the appropriate sampling of
the parameter spaces to construct a reduced basis and reduced order modeling scheme.
We chose the method of a meta-model chain, and restricted the variations in the AQM
input parameters with respect to a standard LHSmethod without under-representing the
solution space.
For each simulation of an hourly concentration field, we reduced computation time

from over two computational hours to under 0.1 s. Results show good precision of
the meta-model simulations with respect to the full model chain, and similar accuracy
when compared to measurement data. We saw that a portion of the error between
the meta-model and full-model chains can be attributed to model error, and the
reduced order model does not show significantly increased error. The meta-model
can be used in applications requiring numerous solutions to the model chain, render-
ing various otherwise impractical studies, for example exposure analysis, computation-
ally feasible. This model reduction makes the model chain useful in a wide variety of
applications.
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Here we constructed a chain of meta-models as opposed to a single meta-model of
the full modeling chain. This was done in order to make use of traffic and emissions
simulations and data, and for the versatility of a chain of meta-models in our applications.
A comparison of the precision, parameter sensitivity, as well as the stability of the meta-
model formulation (inversion of matrices) of each method, would make for an interesting
follow-up study. In future work, we will use this low-cost meta-modeling chain in the
study of uncertainty quantification and the propagation of uncertainties throughout the
model chain.
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