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METHODOLOGY

The challenges of estimating the distribution 
of flight heights from telemetry or altimetry 
data
Guillaume Péron1*  , Justin M. Calabrese2,3, Olivier Duriez4, Christen H. Fleming2,3, Ruth García‑Jiménez5, 
Alison Johnston6,7, Sergio A. Lambertucci8, Kamran Safi9 and Emily L. C. Shepard10

Abstract 

Background:  Global positioning systems (GPS) and altimeters are increasingly used to monitor vertical space use 
by aerial species, a key aspect of their ecological niche, that we need to know to manage our own use of the air‑
space, and to protect those species. However, there are various sources of error in flight height data (“height” above 
ground, as opposed to “altitude” above a reference like the sea level). First the altitude is measured with a vertical error 
from the devices themselves. Then there is error in the ground elevation below the tracked animals, which translates 
into error in flight height computed as the difference between altitude and ground elevation. Finally, there is error 
in the horizontal position of the animals, which translates into error in the predicted ground elevation below the 
animals. We used controlled field trials, simulations, and the reanalysis of raptor case studies with state-space models 
to illustrate the effect of improper error management.

Results:  Errors of a magnitude of 20 m appear in benign conditions for barometric altimeters and GPS vertical 
positioning (expected to be larger in more challenging context). These errors distort the shape of the distribution of 
flight heights, inflate the variance in flight height, bias behavioural state assignments, correlations with environmental 
covariates, and airspace management recommendations. Improper data filters such as removing all negative flight 
height records introduce several biases in the remaining dataset, and preclude the opportunity to leverage unam‑
biguous errors to help with model fitting. Analyses that ignore the variance around the mean flight height, e.g., those 
based on linear models of flight height, and those that ignore the variance inflation caused by telemetry errors, lead 
to incorrect inferences.

Conclusion:  The state-space modelling framework, now in widespread use by ecologists and increasingly often 
automatically implemented within on-board GPS data processing algorithms, makes it possible to fit flight models 
directly to the output of GPS devices, with minimal data pre-selection, and to analyse the full distribution of flight 
heights, not just the mean. In addition to basic research about aerial niches, behaviour quantification, and environ‑
mental interactions, we highlight the applied relevance of our recommendations for airspace management and the 
conservation of aerial wildlife.
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Background
Describing the distribution of animals in environmental 
space is fundamental to understanding their resource 
requirements, cognitive processes, energetic strate-
gies, and ecological characteristics. The distribution 
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of animals in horizontal space has dominated ecologi-
cal studies [1], however the vertical dimension is also 
important for flying animals, and for that matter also div-
ing and tree-climbing animals [2–5]. For example, flight 
height data document the vertical niche and community 
ecology of aerial foragers [6, 7]. Flight height data quan-
tify the flight strategies and associated energy allocation 
tactics [8, 9], and their relationships with environmental 
factors (e.g., [10]). Lastly, from an applied perspective, we 
need an accurate, error-free description of the distribu-
tion of birds and other animals in the aerosphere to avoid 
collisions with man-made structures and aircraft, in the 
current context of increasing human encroachment into 
the airspace [11, 12].

However, monitoring vertical airspace use by wildlife 
remains challenging. Ground-based surveys are limited 
in their field of vision and time window. Airborne moni-
toring (e.g., from glider planes) is logistically challeng-
ing and constrained by weather conditions. Radar-based 
methodologies are not usually specific enough to assign 
records to species (but see [13, 14]). Animal-borne track-
ing methodologies such as global positioning systems 
(GPS) and altimeters have therefore become popular to 
monitor flying species [15]. They record data even when 
the animals are out of sight for ground-based observers, 
over extensive, potentially uninterrupted periods of time, 
and with no uncertainty about which species or individu-
als are being monitored. For example, we can record rap-
tors soaring over the high sea at night [16]. However, the 
data that GPS and altimeters record are not error-free 
[17–20]. Usually, a few unambiguously erroneous posi-
tions are recorded beyond unpassable barriers  like the 
ground [10, 21–25], making the occurrence of errors 
particularly more obvious in flight height data than other 
movement tracking data.

Most of the research into ways to deal with sampling 
errors in positioning data has focused on horizontal 
animal movement [20, 26–28]. There is very little guid-
ance for ecologists about the challenges specific to ver-
tical space use data [29]. Many practitioners consider 
that vertical movement data need to be “filtered” before 
analysis, i.e., they discard some records before proceed-
ing with the analysis. They may discard records that are 
too far from preceding ones (as often done for horizontal 
data [27]), too far beyond impassable barriers [24, 25], or 
obtained from an unreliable configuration of the GPS sat-
ellite network [29]. Instead of discarding the more erro-
neous records, researchers have also sometimes chosen 
to reset them to plausible values [21, 23]. However, when 
applied improperly, such filters can have undesirable con-
sequences. We start by reviewing the sources of error in 
GPS and altimeter flight height data. Next, we reanalyse 
case studies into the flight height of three raptor species 

[10], and complement them with novel data from con-
trolled field trials and from simulations, in order to 
illustrate the stakes of proper error-handling in vertical 
airspace use data.

Review of the sources of error in flight height data 
from GPS and altimeters
Throughout we refer to flight height h, which is the dis-
tance to the ground below the bird, different from flight 
altitude z. The flight altitude denotes the distance to a 
reference altitude, often the ellipsoid, i.e., a geometri-
cally perfect (but simplistic) model of the sea level, as 
documented by the World Geodetic System (WGS84 or 
EPSG:4326). Alternatively, some GPS devices may pro-
vide the altitude relative to the empirical sea level, as 
measured at a reference point over a reference period. 
For example, in France the “NGF-IGN 1969” norm 
means that altitude is measured relative to the mean sea 
level in the port of Marseille between 1884 and 1896. 
Alternatively again, some GPS devices may measure the 
altitude relative to the geoid, which is a model of the sea 
level if it was only influenced by the local gravitational 
field and the rotation of the Earth, i.e., without the effect 
of landmasses and wind [30]. There are databases and 
simple formulae to convert from one system of reference 
to another, but this nevertheless represents a first poten-
tial source of error in flight height data.

Flight height above the ground is computed as

where zDEM
(

x, y
)

 is the ground altitude predicted by a 
digital elevation model (DEM) at the recorded horizontal 
position 

(

x, y
)

 , in the same system of reference as z. Errors 
in h can then be caused by errors in any of the three com-
ponents: z , zDEM , or 

(

x, y
)

 (Fig. 1). Importantly, depending 
on the application, researchers might want to study z not 
h [8, 9]. In the list below, only the first and second sources 
of error influence z. The other three influence h but not z.

1.	 Error in z when z is given by a GPS

If recorded by a GPS, z is affected by the “user equiva-
lent range error” (UERE) and the “vertical dilution of pre-
cision” (VDOP) [31, 32].

The UERE stems from diffusion and diffraction in the 
atmosphere, reflection from obstacles, and receiver noise 
[31, 32]. The acronym UERE usually directly refers to the 
root mean squared error, but here we will use the nota-
tion σUERE instead. σUERE is usually in the order of a few 
meters and considered constant over time for a given 
device. Some GPS manufacturers specify the horizontal 
σUERE , or alternatively it can be estimated from the data 

h = z − zDEM
(

x, y
)

,
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[33]. The σUERE is however reputedly larger in the verti-
cal axis than the horizontal axes [19, 34], meaning that 
manufacturer-provided σUERE should be considered con-
servative for vertical applications and should be used 
with appropriate caution.

The vertical position dilution of precision factor 
(VDOP) quantifies the effect of changes in the size and 
spatial configuration of the available satellite network on 
the precision of GPS records [31, 32] (Additional file  1: 
Fig. S1). The more satellites are available and the more 
evenly spread apart they are, the more reliable the posi-
tioning is. Some GPS manufacturers do provide a VDOP 
value for each record, but many only provide a more 
generic DOP value.

When σUERE and VDOP are known, the error-gen-
erating process can then be approximated by a Gauss-
ian process with time-varying standard deviation 
σz(t) = VDOP(t) · σUERE (Eq. 6.45 in [32]). Therefore, the 
DOP is not a direct index of precision. The spread of the 
error distribution increases with the DOP, but the error 
on any given record is stochastic. The DOP is therefore 
not intended to be used as a data filter (e.g., discard any 
data with DOP above a given threshold), but instead it 
should be used to model the error-generating process.

2.	 Error in z when z is given by an altimeter

If recorded using an altimeter, z is computed 
from the barometric pressure, using the formula 
z = c · T · log (PREF/P) [35, 36]. c is a calibration con-
stant that mostly depends on the composition of the air 
(e.g., percentage of vapour) and on the gravitational field. 
T is the air temperature in Kelvin, P is the air pressure, 

and PREF is the air pressure at an elevation of reference 
(both pressures in mbar or in Pascal). However, this for-
mula only holds when the atmosphere is at equilibrium. 
Changes in temperature, pressure, and air composition, 
i.e., the weather, alter the link between z and P. These 
influences are difficult to control fully because one would 
need to measure the weather variables both where the 
bird is, and at the reference elevation immediately below 
the bird. In other words, altimeters can be more accurate 
than GPS to monitor flight height, but only over short 
periods of time when the weather can be considered con-
stant and the altimeter is calibrated for that weather. One 
should ideally regularly re-calibrate the altimeters using 
direct observations of flight height and accurate meas-
ures of PREF and T. Unfortunately, field calibrations are 
rarely feasible in practice (but see [37, 38]). The conse-
quence is that altimeters are often miscalibrated. The 
degree of miscalibration depends mostly on the weather. 
This generates temporal autocorrelation in the error time 
series. Over a restricted time period, the error patterns 
are thus more akin to a bias (a systematic over- or under-
estimation of flight height) than to an error in the statisti-
cal sense of a zero-mean, identically and independently 
distributed random process. Importantly, altimeter data 
still allow one to compute the derivative of flight height, 
i.e., climb rate, because the amount of bias can be con-
sidered constant over short periods of time. In the fol-
lowing (cf. “The magnitude of vertical errors in GPS and 
altimeters” in “Results”), we will directly compare the 
errors from GPS and altimeters using controlled field 
experiments.

3.	 GPS horizontal error

Fig. 1  Illustration of the difference between true and recorded flight height. a True flight height above ground (htrue), and true elevation above 
ellipsoid (ztrue). b Adding the five sources of error, with circled numbers referring to headings in “Review of the sources of error”. DEM stands for 
digital elevation model. c Two tracks with the same amount of error. The bird of track 1 is flying high so all the recorded flight height data remain 
positive despite the errors. The bird of track 2 is flying low, so some of the recorded data fall below the digital elevation model
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(

x, y
)

 is also affected by a user equivalent range error 
and a dilution of precision (Fig.  1). The horizontal 
error in 

(

x, y
)

 can thus also be described as a Gauss-
ian process with time-varying standard deviation: 
σxy(t) = 1/

√
2 ·HDOP(t) · σUERE . Note that we use 

here a horizontal dilution of precision factor, HDOP. An 
often-overlooked consequence of errors in the horizontal 
position is that they introduce flaws in the link to spatially 
explicit environmental covariates [39, 40]. In particular, 
the ground elevation zDEM is extracted from a location 
(

x, y
)

 that is slightly different from the true location [24]. 
If the terrain is very rough, then the ground elevation at 
the recorded location 

(

x, y
)

 may be significantly differ-
ent from the ground elevation below the actual location 
of the bird. In the following (cf. “Horizontal errors can 
cause vertical errors” in “Results”), we will use simula-
tions to quantify the influence of horizontal errors.

4.	 Interpolation error in zDEM

zDEM is interpolated from discrete ground elevation 
measurements [41, 42]. The ground elevation is measured 
at a few select locations, but it is interpolated between 
them. The result of the interpolation is then rasterized at 
a set resolution, and the result is the DEM. This process 
can be quite imprecise [41, 42]. At a cliff, for example, the 
ground elevation may drop by several hundred meters 
within a single pixel of the DEM.

5.	 Errors in DEM base data

The original measurements from which DEMs are 
interpolated are not necessarily error-free either. These 
errors are assumed small relative to the other sources, 
however, there is, to our knowledge, not much informa-
tion available about the base datasets from which DEM 
are interpolated and their precision.

Materials and methods
Controlled field trials
To quantify the magnitude of the vertical error in altime-
ters and GPS devices, we conducted three controlled trial 
experiments.

First, we attached an “Ornitrack 25” GPS–altimeter 
unit (Ornitela) to a drone. We then flew the drone above 
the rooftop of the Max-Planck institute in Radolfzell, 
Germany, at heights ranging from 0 (drone landed on 
the rooftop) to 90 m. We conducted 6 flight sessions over 
2 days, each lasting between 15 and 140 min, collecting 
one record every 10 min for a total of 30 records, flying 
between 0 and 100 m above the rooftop. We also moni-
tored the air pressure and temperature on the rooftop, 

which we used to recalibrate the altimeter post hoc. 
Lastly, the drone carried a separate, on-board, altimeter.

In a second, separate experiment, we attached two 
“Gipsy 5” GPS units (Technosmart) to an ultra-light air-
craft, with a vertical distance of 1.8 m between the two 
units. We then flew the aircraft near Radolfzell while the 
two units simultaneously tracked its flight height, col-
lecting one record per second for a total of 11.5  h over 
5 days, flying between 0 and 243 m above ground.

Third, we compared the vertical positions recorded by 
four different units from three different manufacturers: 
Technosmart (AxyTrek and Gipsy 5), Microwave (GPS-
GSM 20-70), and Ornitela (GPS-GSM Ornitrack 85). We 
(RG and OD) carried these units to 21 known geodesic 
points, of which the altitude was precisely documented 
by the French National Geographic Institute. The units 
recorded their position once every minute for a total 
of 894, 934, 560, and 563 data points, keeping only the 
unit * location combinations that yielded more than 25 
fixes. We computed the bias and root mean squared 
error of the vertical measurement by comparing these 
data to the actual, known altitudes of the geodesic points. 
Importantly, the manufacturers do not use the same ref-
erence to compute the altitude: microwave uses the geoid 
(WGS 84 EGM-96 norm), whereas the others use the 
mean sea level (assumed to correspond to the local refer-
ence, meaning the NGF-IGN 1969 norm, but see below). 
We expressed all altitudes in the same norm before com-
puting biases and errors, and accounted for sampling 
effort (number of fixes) and location when comparing the 
performance of different units.

Simulations of flight tracks
We simulated flight tracks that followed Ornstein–
Uhlenbeck processes [43]. This is a well-studied class of 
continuous-time stochastic models, which is not spe-
cific to vertical movement or even to movement [43]. 
In the case of vertical movement, the parameters of an 
Ornstein–Uhlenbeck process represent the mean flight 
height, the variance in flight height, and the autocor-
relation time. The mean flight height varied from 10 to 
800 m (drawn from a uniform distribution). The variance 
in flight height varied from 10 to 750 m2 (6 values within 
this range). The autocorrelation time varied between 0.1 
and 1.5 arbitrary time units (uniform distribution). We 
transformed the raw Ornstein–Uhlenbeck simulations 
using an atanh link as described by Péron et  al. [10] to 
enforce positive flight height. Because these are simula-
tions, we then knew both the true flight height and the 
recorded flight height, which is the true flight height plus 
an independent and identically distributed zero-mean 
Gaussian error.
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Simulations of synthetic landscapes
The objective was to quantify the influence of horizon-
tal errors. We generated synthetic landscapes of varying 
complexity and roughness (Additional file 1: Fig. S2). We 
then transposed the flight track of a lesser kestrel Falco 
naumanni over these synthetic landscapes. The individ-
ual originally flew over extremely flat terrain (the Crau 
steppe in France). The data (P.  Pilard and OD, unpub-
lished) were collected every 3 min using a Gipsy 5 GPS 
unit from Technosmart, and processed through the state-
space model of Péron et al. [10] to account for real sam-
pling errors before use. We then added simulated random 
telemetry noise of controlled standard deviation.

Raptor case studies
We reanalysed the data from Péron et al. [10], where the 
field procedure, data selection, and data analysis proce-
dures are described in full. Briefly, we studied three spe-
cies of large soaring raptors: Andean condors Vultur 
gryphus (five juveniles, 1692 individual days of monitor-
ing, 15 min interval), Griffon vultures Gyps fulvus (eight 
adults, 2697 individual days, 1–5  min interval), and 
Golden eagles Aquila chrysaetos (six adults, 3103 individ-
ual days, 6–10 min interval). After applying the analyti-
cal procedure, for each data point, we could compare the 
corrected position, an estimate of the true position, to the 
recorded position, which was affected by the sources of 
errors we listed under “Background”.

For the condors, we selected the period between 11:00 
and 15:00, which concentrates condor activity and there-
fore flight time, and discarded other records. For the vul-
tures, we selected the period between 09:00 and 16:00. 
For the eagles, we selected the period between 08:00 
and 17:00 and, because a lot of time is spent motionless 
in this species even during their core activity period, we 
further removed all the records that were less than 15 m 
from the previous record. We acknowledge the arbitrary 
nature of this data selection and emphasize that it is not 
necessary or even recommended to apply such filters 
before analysis. We, however, stress that in the context 
of the present study, the case studies perform an illustra-
tive function, meaning that we use them to highlight the 
effect of improper error-handling, at least during the par-
ticular time periods that we selected for analysis because 
we consider them relevant for biological inference, and 
that the same analytical procedures can indiscriminately 
be applied to other time frames.

Collision risk
In several instances, we will illustrate the potential effect 
of improper data-handling on management recommen-
dations by estimating the risk of collision with wind tur-
bines as the proportion of records between 60 and 180 m 

above ground (assuming no behavioural adjustment in 
the presence of wind turbines). Collision risk estimated 
from GPS tracks is increasingly used to make recommen-
dations about the choice of locations for new turbines, or 
to schedule the operation of existing ones. We expected 
that the estimated collision risk would depend on flight 
parameters (mean flight height, variance in flight height), 
on the magnitude of errors, and on error-handling. For 
example, a large variance in flight height might lead to a 
high collision risk even if the mean flight height is beyond 
the collision zone. Improperly handled errors may lead 
to positions being erroneously recorded in the collision 
zone when the birds actually flew outside of it, and vice 
versa. The same type of thinking could be applied to 
other types of collision risk, e.g., antennas, utility lines, 
buildings with bay windows, except that the collision 
zone would be at a different height.

Results
The magnitude of vertical errors in GPS and altimeters
During the first controlled field trial (with the drone), 
DOP values between 1.2 and 1.6 indicated that the con-
figuration of the satellite network was reliable through-
out. Nevertheless, 6.7% of the GPS flight height records 
were below the rooftop height, i.e., obviously errone-
ous. For the altimeter, with default settings, 10% of the 
records were below the rooftop height. The default set-
tings of the altimeter therefore did not correspond to 
the atmospheric conditions during the experiment. The 
standard deviation of the difference between the recali-
brated altimetry and the GPS data was 22 m, between the 
recalibrated altimetry and default-setting altimetry it was 
14 m, and between the recalibrated altimetry and the on-
board drone altimeter it was 19 m. This means that, with 
default settings, the altimeters had approximately the 
same precision as the GPS.

During the second controlled field trial (with two GPS 
units attached to the same aircraft), in 35% of cases, the 
lower unit was erroneously recorded above the higher 
unit. The standard deviation of the difference between 
the heights recorded by the two units was 7.1  m. The 
highest of the two units recorded 3% of negative flight 
heights. The lowest unit recorded 13% of negative flight 
heights.

During the third controlled field trial (with GPS units 
carried to a geodesic point of precisely known alti-
tude), the mean absolute bias of the vertical measure-
ment was 27  m on average across units and locations. 
The root mean squared error ranged from 14 to 42  m 
depending on the unit, with a small effect of location. 
However, the within-session standard deviation ranged 
only to 28 m, suggesting that a bias in the sea level ref-
erence point (probably incorrectly assumed to follow 
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the French norm) inflated the RMSE. The average bias 
ranged between − 17 and + 12 m depending on the unit, 
after correcting for significant location effect, but with-
out effect of altitude. Overall, this means that different 
brands of GPS devices yield different rate of error in their 
altitude measurements, which can impair the compari-
son of datasets collected by different devices. We thereby 
recommend accommodating the device-specificity of the 
error-generating process at the data analysis step, and 
also that the devices record their VDOP at each record 
(cf. “Statistical solution” below). Further investigation 
or communication with manufacturers should decipher 
whether this stems from different fix acquisition proce-
dures (e.g., satellite detection) or different post-process-
ing algorithms, and should also make clear which sea 
level reference point different manufacturers are using.

These controlled field trials, along with other similar 
reports [22, 34], highlight that even in benign conditions, 
GPS and altimeter data are sufficiently error-prone to 
tamper with ecological inference in many cases (range of 
the standard deviation of the error: 4–50  m). The issue 
is only suspected to be more acute in operational con-
ditions when the DOP is larger, the terrain rougher, the 
weather more variable, and there are more obstacles to 
signal diffusion than in controlled field trials. Further-
more, the rate of error depended on the brand of the unit 
and on the location, which can be of importance when 
comparing across studies.

Horizontal errors can cause vertical errors
In the synthetic landscape simulations, the frequency of 
negative flight height records increased with the standard 
deviation of both the horizontal and vertical telemetry 
error (Additional file 1: Fig. S2a), and with the landscape 
roughness and complexity (Additional file  1: Fig. S2b). 
However, the various sources of errors acted in a mul-
tiplicative way, so that even when the telemetry noise 
was small (SD of 1 m), the error in h could be large (SD 
of 20  m; Additional file  1: Fig. S2c; darkest grey curve). 
Perhaps unexpectedly, when the horizontal error was 
large, the error in the height above ground tended to be 
independent of the vertical error in the GPS (on average 
across all simulations; Additional file 1: Fig. S2c; lightest 
grey curve). This means that the effect of the horizontal 
error in the GPS can supersede the effect of the vertical 
error, if the terrain is rough. Even in the absence of any 
vertical error, the horizontal error was indeed routinely 
sufficient to cause 10–20% of the data points to be below 
ground (Additional file 1: Fig. S2a).

Errors inflate the recorded variance in flight height
In the simulations of flight tracks, errors in h inflated 
the variance in the distribution of recorded flight 

heights, i.e., the variance in the true flight height was 
consistently lower than the variance in the recorded 
flight height (Fig.  2). In the raptor case studies, we 
obtained the same result, with the caveat that we did 
not have access to the true flight height, but we could 
instead use the corrected flight heights (Fig. 2).

Indeed, if the vertical movement and error processes 
were independent, the total variance in flight height 
would exactly correspond to the sum of the movement 
and sampling variances (e.g., [44]; see also [45] and 
references therein). When the vertical movement and 
error processes are not fully independent, the total ver-
tical variance is still larger than the vertical movement 
variance. In other words, the total vertical variance is 
a biased estimate of the vertical movement variance 
that confounds telemetry errors with rapid movements. 
The animals would appear more vertically mobile and 
with a more spread-out distribution in the aerosphere 
than they actually are. This type of issue is potentially 
quite widespread in other areas of movement ecology 
that pertain to horizontal movement as well, e.g., in 
behavioural assignment exercises that use movement 
variances (daily displacements, turning angles, etc.) to 
determine the behavioural state of animals.
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Fig. 2  Comparison between the standard deviation of the recorded 
flight height (y-axis) and of the corrected flight height (x-axis), 
assumed to represent the true flight height, in three species of 
large soaring raptors. Each point stands for one bird over its entire 
monitoring period. The state-space model that we used to correct 
the flight heights, and in particular its robustness to variation in 
sampling resolution across populations, is explained in Péron et al. 
[10]. The diagonal line shows where the points should be if the 
recorded flight heights were error-free
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Negative flight height records provide useful information
In this section we focus on negative records, i.e., 
unrealistically low records, but the same logic can be 
applied to unrealistically high records. Negative flight 
height records are more likely to occur when animals 
are near the ground, either perched or flying. If we 
remove the negative records [29], perching and low 
flight are under-sampled in the final dataset [21]. To 
illustrate this point, we used a GPS-tracked flight path 
from a migrating juvenile osprey (Pandion haliae-
tus) as it crossed the sea between the Italian mainland 
and Corsica [16]. During a portion of that sea cross-
ing, its Ornitela GPS unit recorded flight heights that 
oscillated between − 2 and − 7  m below the sea level 
(Additional file  1: Fig. S3, inset). The amplitude of the 
oscillation suggested that the bird followed the swell 
of the waves. The complete sequence (Additional file 1: 
Fig. S3) depicts a progressive loss of altitude as the bird 
glided towards firm ground, and a period of active flap-
ping flight (as per the accelerometry record) very low 
above the waves once the bird had lost all of its accu-
mulated potential energy before reaching firm ground. 
These negative flight height records documented a crit-
ical time period. First, the risk of having to make a sea 
landing were clearly much greater in the few minutes 

when the osprey was flying low over the waves, com-
pared to the rest of the sea crossing when the bird was 
often soaring high [16]. In addition, when flying low, 
the bird had no other choice than to flap and therefore 
expend energy; whereas when higher above the sea, the 
bird had the option to soar and therefore spare energy. 
It is critical that negative flight height records like these 
are maintained, even if, instead of a fully interpretable 
high-resolution sequence like in this example, there are 
just a few isolated negative flight height records in a 
low-resolution dataset.

In addition, if we only kept the records with positive 
flight height, we would obtain a biased sample of the 
distribution of flight height. Both in simulations and 
in the raptor case studies, discarding negative flight 
height records led to the overestimation of the mean 
flight height in the remaining dataset, the underesti-
mation of the variance in flight height, the introduc-
tion of a right skew in the distribution of flight height, 
and the overestimation of the collision risk (Fig.  3). 
The latter result was because negative records mostly 
occurred when the bird was flying below the colli-
sion zone, and thus removing negative records led to 
under-sample safe periods of time. Note that this par-
ticular result pertains to the wind turbine application 

Fig. 3  Removing the negative recorded flight heights introduces biases in the distribution of the remaining flight heights. Left group of panels: in 
simulations, where the true flight height is known. Right group of panels: in the raptor case studies, where the corrected flight height is assumed 
to represent the true flight height. In all panels, the x-axis features the variance in the true (or corrected) flight height. The y-axis features the 
percentage bias in a mean flight height; b collision risk (proportion of time spent between 60 and 180 m above ground); c variance in flight height; 
and d skewness of the distribution of flight height. A percentage bias of + 10% means that the focal quantity is 10% larger after we remove the 
negative records
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case only; in other types of collision risk, e.g., build-
ings and utility lines, the collision zone starts closer to 
the ground.

The simulations nicely complemented the raptor case 
studies by (1) eliminating any debate about whether 
the corrected flight heights in the raptor case studies 
were trustworthy or not (in the simulations, the true 
flight heights are exactly known) and (2) increasing the 
range of flight behaviours, since the raptors tended to 
exhibit lower percentage of time near the ground (in 
part because we purposely tried to exclude time spent 
perched) and different distributions of the sampling 
error. The amount of bias appeared highly dependent 
on the underlying flight behaviour and error distribu-
tion, and therefore not easy to predict and account for 
without appropriate error-handling methodology.

Additionally, there are many other major conse-
quences of discarding negative flight heights. One is 
the disruption of the expected balance of positive and 
negative errors in the remaining data. Negative flight 
height records only arise when the error is negative, 
and so removing them introduces a bias towards posi-
tive errors, thereby disrupting the shape of the distri-
bution of errors in the remaining data. Yet, we need 
the full range of errors to fit the statistical solution that 
we support (cf. “Discussion”). Another, unrelated con-
sequence is the disruption of the sampling schedule 
of the remaining data. Many movement analyses are 
critically sensitive to the sampling schedule, and there-
fore their outcome will not be the same after remov-
ing the negative records. Lastly, and perhaps most 
importantly, negative flight height records can help 
fit the models that separate the error and movement 
processes, because they are unambiguously erroneous 
and can be informed as such in the model-fitting pro-
cedure (cf. “Statistical solution” in “Discussion”). Some 
authors have applied less stringent filters, such as 
removing only the most negative flight height records 
and removing an equal amount of extremely positive 
flight height records. While the effect on the remain-
ing distribution, and on the balance of negative and 
positive errors is supposedly weaker than if removing 
all of the negative records, we warn that the remaining 
records are still affected by the same error process that 
generated the records that were deemed too errone-
ous to keep, thus the issues from the previous section 
(“Errors inflate the recorded variance in flight height”) 
still need to be addressed. In addition, these extremely 
erroneous records are potentially the most informative 
regarding the shape of the error distribution (cf. “Sta-
tistical solution” in “Discussion”).

The mean flight height is not sufficient to describe 
the distribution of flight heights
Flight height datasets are often reduced to a single sum-
mary metric, the mean flight height and its variation with 
environmental and individual covariates [29, 46–49]. This 
decision is mostly based on the ease of implementing 
spreadsheets, linear models, moving averages, or spline 
models. In this section, we instead call for approaches 
that describe the full distribution of flight heights in 
the aerosphere, not only the mean flight height. To jus-
tify this call, we again focus on collision risk estimation. 
Indeed, if the variance in flight height is large enough, 
a proportion of time may be spent in the collision zone 
even if the mean flight height is outside the collision 
zone. In simulations, the proportion of time spent in 
the collision zone indeed depended on both the mean 
and the variance in flight height (Fig. 4a, b). In the rap-
tor datasets, the estimated probability of flying in the 
collision zone did not decrease much for the individuals 
whose mean flight height was estimated above the col-
lision zone (Fig.  4c). Similarly, the individuals that had 
an estimated mean flight height well below the collision 
zone were predicted to spend about 20% of their time in 
the collision zone (Fig. 4c). We strongly recommend that 
collision risk forecasts should not be based on the fixed 
effects of linear models, but instead on the full distribu-
tion of flight heights—a recommendation that will likely 
hold for all studies into vertical airspace use.

Discussion
Statistical solutions
Our results illustrate how the improper treatment of 
vertical errors in telemetry data can flaw the inference 
about the use of the aerosphere by flying animals. To 
avoid these issues, the state-space model framework [50] 
(Fig. 5) has a structure that is naturally aligned with the 
challenges of sampling errors in vertical space-use data. 
A state-space model is a stochastic model describing 
the changes over time in a state variable (here, the true 
flight height), when that variable is imperfectly observed 
(here, the recorded flight height). There is a “state pro-
cess”, separated from an “observation process” (Fig.  5). 
State-space models are routinely used to correct for posi-
tioning errors in satellite-tracking data (chap. 6 in [32]), 
including in wildlife studies [20, 26, 33, 51–53]. Impor-
tantly, these applications are not to be confused with 
another application of state-space models to movement 
data, when the focal state variable is a “behavioural state” 
whose Markovian transitions drive changes in movement 
rates [8, 9, 54]. Indeed, when the objective is, like in this 
study, to correct for positioning errors, the state variable 
is the position itself.
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In studies of flight height, the movement model can 
be set up such that the state variable always stays above 
zero. Then, if the recorded flight height is − 7  m, the 
model “knows” that the error was at least 7 m [22], as for 
example was the case in the osprey example (Additional 
file  1: Fig. S3). Actually, the presence of unambiguously 
erroneous records makes flight height studies better-
suited to apply state-space models than many studies into 
horizontal space use by animals. Indeed, even when in 
theory the model is estimable, sometimes only a subset 

of the parameters of a state-space model are separately 
estimable, a phenomenon called “weak identifiability” 
that occurs when the sampling variance largely exceeds 
the process variance. An example of weak identifiability 
is when the difference between two classes of individuals 
are larger than the differences within the classes [55]. In 
addition, there are large statistical correlations between 
variance parameters in a movement model [52], making 
it extra difficult to accurately separate movements and 
errors in sparse datasets. In that context, unambiguously 
erroneous records, such as negative flight heights, repre-
sent an additional source of information [20]. They can 
help separate the process and sampling variances [10] 
and solve issues of weak identifiability.

As a perspective, we stress that there are also ways to 
obtain unambiguously correct records. These records 
could in theory perform a role similar to that of unam-
biguously erroneous records. For example, sometimes the 
position of the animals can be confirmed, e.g., at a docu-
mented feeding site, a nest, or by an incidental ground-
based sighting. Those records can be matched to the 
GPS track, yielding an exact measure of the local error. 
Animal-borne devices may also include a transponder 
designed to signal passage near strategically placed emit-
ters (e.g., [56]). This type of validation data is routinely 
used in other applications of the GPS technology [32]. 
Lastly, the state-space framework is naturally conducive 
to the joint analysis of multiple sources of error-prone 

Fig. 4  The variance in flight height influences the percentage of time spent in the collision zone of a wind farm (grey area, between 60 and 180 m). 
a Four simulated tracks (where the true flight height is known) with the same mean flight height (200 m) but different variances (10, 50, 100, and 
250 m2). b More extensive simulations. Each point corresponds to one simulated track with a different mean flight height. c Same as (b) but using 
real datasets collected from three raptor species, where the corrected flight height is assumed to represent the true flight height. Each symbol 
stands for an individual over its entire monitoring period

True height
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Recorded height
at �me t

Observa�on 
error

Movement
process
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Recorded height
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Fig. 5  Schematic overview of the principles of a state-space model 
as applied to the correction of sampling errors in flight height data. 
The movement (or state) process accounts for the distribution of true 
flight heights. The observation process introduces sampling errors of 
various origins (cf. “Review of the sources of error” in “Background”) 
and yields the recorded flight heights. It also accounts for the 
sampling schedule. By fitting this model to recorded flight height 
time series, we can retrospectively compute the corrected flight 
height, an estimate of the true flight height
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data (e.g., [57]). In flight height studies, it is therefore 
possible to jointly analyse GPS and altimeter data, or 
multiple GPS streams coming from the same animal. This 
double-data approach is expected to help with statistical 
covariance issues, but cannot be expected to fully resolve 
all identifiability issues [58], which only error-free valida-
tion data can do.

We should eventually stress that several wildlife GPS 
manufacturers already use a state-space model as part 
of the on-board data pre-processing algorithm, i.e., the 
released data have already been corrected by a propri-
etary state-space algorithm which may furthermore 
rely on proprietary validation data (Ornitela staff, pers. 
comm.). From our experience, in wildlife applications, 
these pre-processing algorithms are only applied during 
“bursts” of high-frequency data acquisition, not when 
the users request a more traditional low-frequency data 
acquisition schedule. Importantly, the data may not be 
pre-processed across bursts. The error from the first 
location of a burst is then carried over the entire burst 
sequence. Flight height tracks affected by this issue 
would exhibit a staircase-shaped profile. Overall, this 
type of data pre-processing trades a lower error variance 
against a larger error autocorrelation. Additional state-
space modelling of the released pre-processed data can 
deal with this type of error autocorrelation, but the mod-
els need to be custom-made, i.e., are not routinely imple-
mented in software. Perhaps more worryingly, some 
commercially available GPS units apparently simply trun-
cate the recorded height at zero above sea level (pers. 
obs.). We call for a more open approach to these data 
manipulations, including making the raw, unprocessed 
GPS records available, in addition to any pre-processed 
data, and with a formal description of the pre-processing 
algorithm. Indeed manufacturers may not be aware of the 
specificties of vertical animal movements. Vertical move-
ments are faster and less temporally autocorrelated than 
horizontal movements, and they depend on specific envi-
ronmental covariates [10], making it necessary that end 
users obtain the unprocessed flight height data to param-
eterize the most ecologically relevant models.

We also acknowledge that the fitting of state-space 
models to space use data still requires relatively rare sta-
tistical skills. Nevertheless, there are already several free, 
open-source computing environments to fit state-space 
models to vertical (and horizontal) movement data, and 
thereby estimate the most likely movement track as a by-
product of the estimated parameters, similarly to how 
the individual values would be computed in a generalized 
mixed model with individual random effects:

•	 The crawl [33] and ctmm [59] packages for R com-
pute the likelihood of the state-space model using a 

Kalman filter. This algorithm is fast, but requires all 
the model processes to be Gaussian or approximately 
Gaussian (no truncation or constraint, no excess 
extreme values, no excess kurtosis or skew).

•	 The TMB package for R [60] approximates the like-
lihood of the state-space model using the automatic 
differentiation algorithm with Laplace approxima-
tion. That approach makes computing times shorter 
than the next option, while still allowing for flexible 
modelling such as non-Gaussian errors [26], custom 
link functions [10], or multiple data streams.

•	 The Monte Carlo Markov Chain Bayesian framework 
[61–63] generates parameter distributions that itera-
tively converge towards the solution. This option is 
the most flexible in terms of nonlinearities and non-
Gaussian features, such as truncated distributions 
[20], but the computing time can be prohibitive for 
large datasets.

Data requirements and data quality checks
The state-space model-fitting procedure simply 
require  the h or z time series  along with the  times-
tamps [10, 26, 33]. The interval between records needs 
to be sufficiently short that the effect of the temporal 
autocorrelation is visible, which in practice for raptors 
means an interval below 1  h and ideally below 30  min 
[10]. The observation error must not largely exceed the 
movement variance, otherwise the state-space model 
is likely to become unidentifiable. In practice, research-
ers may therefore find the following rough data quality 
checks useful: check that the median interval duration is 
< 1 h (ideally < 30 min), that the number of fixes per day 
is > 4, and that the proportion of records with negative 
flight height is < 50%. In addition, if there are very short 
intervals (< 1 min) we recommend incorporating into the 
movement model some temporal autocorrelation in the 
vertical velocity, in addition to temporal autocorrelation 
in the vertical position.

If available, the VDOP or other metrics of triangulation 
reliability can predict the observation error in the state-
space model, using a log-linear link between the stand-
ard deviation of the observation error and the VDOP, 
which should help with model fitting. Similarly, in case 
the researchers know for sure that there was no error 
on some of the records, they can fix the error parameter 
to zero for these records, which should also help with 
model fitting. On the other hand, the information that 
some recorded values are impossible is coded up using 
adequate link functions [10] and would thereby automat-
ically inform the model about the minimum magnitude 
of the error on the involved records. Lastly, for a better 
fit to the data, environmental covariates that are expected 
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to correlate with movement velocity or movement behav-
iour can also be incorporated using linear links with the 
movement model parameters (autocorrelation time, dif-
fusion rate).

Conclusion
Improper error-handling methodologies yield a flawed 
picture of aerial niches. For example, discarding negative 
flight height records artificially truncates the observed 
distribution of flight heights (Fig. 3), and focusing on the 
mean flight height alone (for example when using linear 
models) does not fully describe the aerial niche (Fig. 4). 
While these observations are quite intuitive, bad prac-
tices remain common enough that it was important to 
stress these issues and illustrate them thoroughly. On the 
other hand, not addressing the occurrence of errors at all 
would artificially spread-out the observed distribution of 
flight heights (Fig.  2), leading for example to increased 
observed vertical overlap between species and individu-
als, which can modify the inference about community 
processes. Improper error-handling procedures would 
also tamper with the quantification of behaviour and 
flight strategies, by increasing or decreasing the observed 
vertical velocity, and interfere with behavioural state 
assignments. Lastly, errors may covary with environ-
mental covariates. GPS positioning accuracy decreases 
with terrain roughness [19]. Thereby, selectively discard-
ing records based on the number of available satellites or 
the dilution of precision would lead to biased sampling 
of terrain roughness. Wind speed decreases near the 
ground [64]. Discarding negative flight height records 
(that predominantly occur near the ground) would lead 
to misrepresent the relationship to wind speed.

Regarding applied consequences, we focused on dem-
onstrating how improper methods would imperfectly 
quantify the time spent by GPS-tracked raptors in the 
rotor-swept zone of wind turbines (Fig.  3b). There are 
many other human–wildlife conflicts for the use of the 
aerosphere, for example bird strikes near airports and 
disturbance of wildlife by drones and other recreational 
aircraft. Regarding bird strikes, GPS-based predic-
tive models of bird flight height (e.g., Péron et al. [10]) 
might help plan ahead the operation of airports. The 
state-space class of model that we advocate is actually 
already used, in real time, to exploit bird activity data 
from radar monitors and generate a warning system for 
airport managers [65]. Regarding recreational aircraft 
and drones, analysing bird-borne GPS tracks may help 
reveal the effect of the disturbance, which is expected 
to increase in frequency as drones in particular become 
more popular [66]. The recommendations we made 

about the effect of errors on the estimation of aerial 
niche overlaps and the quantification of behaviours 
seem particularly relevant in this context.

In conclusion, the issue of properly handling errors in 
flight height data is key to any aeroecology study. We 
strongly advise against ad-hoc “data quality” filters, and 
against statistical tools that only document variation in 
the mean flight height instead of the full distribution of 
flight height. Our proposed statistical framework based 
on state-space models and the analysis of the full distri-
bution of flight heights requires interdisciplinary work 
between experts in flight behaviour and experts in data 
analysis, and the emergence of interface specialists, but 
the insights and the applied decisions based on those 
insights are expected to be more reliable.
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