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Abstract 

Background: The number of cumulative confirmed cases of COVID-19 in the United States has risen sharply since 
March 2020. A county health ranking and roadmaps program has been established to identify factors associated with 
disparity in mobility and mortality of COVID-19 in all counties in the United States. The risk factors associated with 
county-level mortality of COVID-19 with various levels of prevalence are not well understood.

Methods: Using the data obtained from the County Health Rankings and Roadmaps program, this study applied a 
negative binomial design to the county-level mortality counts of COVID-19 as of August 27, 2020 in the United States. 
In this design, the infected counties were categorized into three levels of infections using clustering analysis based 
on time-varying cumulative confirmed cases from March 1 to August 27, 2020. COVID-19 patients were not analyzed 
individually but were aggregated at the county-level, where the county-level deaths of COVID-19 confirmed by the 
local health agencies. Clustering analysis and Kruskal–Wallis tests were used in our statistical analysis.

Results: A total of 3125 infected counties were assigned into three classes corresponding to low, median, and high 
prevalence levels of infection. Several risk factors were significantly associated with the mortality counts of COVID-19, 
where higher level of air pollution (0.153, P < 0.001) increased the mortality in the low prevalence counties and elder 
individuals were more vulnerable in both the median (0.049, P < 0.001) and high (0.114, P < 0.001) prevalence counties. 
The segregation between non-Whites and Whites (low: 0.015, P < 0.001; median:0.025, P < 0.001; high: 0.019, P = 0.005) 
and higher Hispanic population (low and median: 0.020, P < 0.001; high: 0.014, P = 0.009) had higher likelihood of risk 
of the deaths in all infected counties.

Conclusions: The mortality of COVID-19 depended on sex, race/ethnicity, and outdoor environment. The increas-
ing awareness of the impact of these significant factors may help decision makers, the public health officials, and the 
general public better control the risk of pandemic, particularly in the reduction in the mortality of COVID-19.

Keywords: Adverse health factors, County-level confirmed and deaths, Race/ethnicity, Segregation index, Physical 
environment
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Background
Coronavirus disease 2019 (COVID-19) is an infectious 
disease caused by a novel coronavirus with an estimated 
average incubation period of 5.1  days [1]. It spreads 
through person-to-person transmission, and has now 
infected 215 countries and regions with over 24 mil-
lion total confirmed cases as of August 27, 2020 [2]. The 
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United States had 5 867 785 confirmed cases on August 
27, 2020, the highest in the world, but there were only 69 
confirmed cases on March 1, 2020 [3].

The United States has been suffering from a severe epi-
demic, with COVID-19 related deaths occurring all over 
the country. For instance, New York City had the larg-
est number of total deaths (23  674), accounting for the 
majority of deaths in the infected counties, while no one 
in King county, Texas was infected as of August 27, 2020 
[3]. Therefore, it is of great interest to find out the risk 
factors that influence the number of deaths of COVID-
19. It is known that infectious diseases are affected by 
factors other than medical treatments [4, 5]. For example, 
influenza A is associated with obesity [6], and the spread 
of the 2003 severe acute respiratory syndrome (SARS) 
events depends on seasonal temperature changes [7].

The County Health Rankings and Roadmaps program 
was launched by both the Robert Wood Johnson Founda-
tion and the University of Wisconsin Population Health 
Institute [8]. This program has been providing annual 
sustainable source data including health outcomes, 
health behaviors, clinical care, social and economic fac-
tors, physical environment and demographics since 2010. 
We explored putative risk factors that may affect the 
mortality of COVID-19 in different areas of the United 
States in order to increase awareness of the disparity and 
aid the development of risk reduction strategies.

Methods
Data sources
We collected the number of cumulative confirmed cases 
and deaths from March 1 to August 27, 2020, for counties 
in the United States from the New York Times [9]. The 
COVID-19 confirmed cases and deaths were identified 
by the laboratory RNA test and specific criteria for symp-
toms and exposures from health departments and US 
Centers for Disease Control and Prevention (CDC). The 
county health rankings reports from year 2020 were com-
piled from the County Health Rankings and Roadmaps 
program official website [8]. There were 77 measures 
in each of 3142 counties, including the health outcome, 
health behaviors, clinical care, social and economic fac-
tors, physical environment, and demographics. We refer 
to the official website of the County Health Rankings and 
Roadmaps program [8] for detailed information.

Study areas
As of August 27, 2020, a total of 3208 counties reported 
confirmed cases in the United States, leaving 3125 coun-
ties with both confirmed cases of COVID-19 and county 
health ranking data recorded to be analyzed in this study. 
The total number of deaths as of August 27, 2020 was 
considered as the outcome of this study.

Assessment of covariates in health factors
We divided the putative risk factors [8] into five catego-
ries: health behaviors (e.g., access to exercise opportu-
nities, insufficient sleep), clinical care (e.g. primary care 
physicians ratio), social and economic factors (e.g., racial 
segregation index), physical environment (e.g., transit 
problems and air quality), and demographics (age, sex, 
rural, and race/ethnicity). For example, there were previ-
ous studies which identified the air pollution may relate 
to high levels of COVID-19 [10] and elder population had 
the high risk in the COVID-19 [11]. Besides these identi-
fied risk factors, we were interested in the adverse health 
factors may link to the mortality of COVID-19. The 
descriptive definition, sources and literature of 12 risk 
factors are presented in Table 1. All deaths resulted from 
complications of COVID-19.

Statistical analysis
The trend of the cumulative confirmed cases varied 
greatly in counties of the United States. We used the 
partitioning around medoids (PAM) clustering algo-
rithm [12, 13] to assign counties with similar trends into 
a homogenous class after standardizing the time series 
of cumulative confirmed cases from March 1 to August 
27, 2020. Based on the clustering results, we used the 
Kruskal–Wallis test [14] to detect whether there were sig-
nificant differences in the distributions of 12 risk factors 
across different classes of counties. The 12 risk factors 
were used to build a negative binomial model [15, 16] for 
every class of the counties. The analysis was conducted in 
R version 3.6.1. This is an open source statistical analy-
sis software available from R project https ://cloud .r-proje 
ct.org/.

Validation analysis
We randomly divided counties (samples) into training 
(70% of the counties) and testing (30% of the counties) 
in each class. The model obtained from the training data 
was employed to predict the death counts of COVID-19 
in the testing data, and the accuracy was assessed by the 
root mean square error (RMSE) of the mortality ratio 
(the number of deaths divided by the number of cumula-
tive confirmed cases).

Results
Three classes of county‑level infection in the United States
The clustering analysis grouped the 3125 counties were 
assigned into three classes. There were 2751 coun-
ties in the first class with the lowest overall cumulative 
confirmed cases. Its medoid was Halifax County in Vir-
ginia. There were 294 counties in the second class with 
a median level of overall cumulative confirmed cases. 

https://cloud.r-project.org/
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Its medoid was St. Clair County in Illinois. There were 
80 counties in the third class with the highest over-
all cumulative confirmed cases. Its medoid was Marion 
County in Indiana. Here, the PAM algorithm selected the 
county with most representative data as the medoid in a 
class [12, 13]. The geographical distribution of the coun-
ties by class was shown in Fig. 1, where the size of a cir-
cle indicated the cumulative confirmed cases on August 
27, 2020. The distribution of deaths on August 27, 2020, 
which clearly differed among the three classes, was also 
presented in Fig.  1. Note that the east, south, and west 
coasts were the most severely hit areas by COVID-19. 
Most counties in the high prevalence class were from 
Massachusetts, New York, New Jersey, Florida, Texas and 
California [9].

Distributions of 12 selected risk factors in the three classes 
of counties
The distributions of the 12 selected risk factors by the 
class of counties are displayed in Fig. 2. The distributions 
were significant different (P < 0.001) for all 12 risk factors. 
For example, the average population in the low preva-
lence class was 38  444, which was 10% and 3% of the 
average populations in the median and high prevalence 
classes, respectively. The average proportion of rural 
residents in the low prevalence class was 64.47%, versus 

2.72% in the high prevalence class. The segregation index 
of non-Whites versus Whites was the largest in the high 
prevalence class, but the smallest in the low prevalence 
class.

Factors influencing mortality of COVID‑19 in the three 
classes
There were three common factors, namely, residential 
segregation between non-Whites and Whites, resident 
population, and the percentage of Hispanic population, 
which had statistically significant (P < 0.05) effects on 
mortality in all classes. The negative binomial model was 
used to understand the within-class effects of residen-
tial segregation between non-Whites and Whites and 
the percentage of Hispanic population on mortality of 
COVID-19 as shown in Fig. 3. Note that the higher values 
of both residential segregation between non-Whites and 
Whites and the percentage of Hispanic population the 
higher mortality of COVID-19. In the high prevalence 
class, an increase in both the residential segregation 
between non-Whites and Whites and the percentage of 
Hispanic population resulted in more deaths than other 
two classes of counties.

The significant factors specific to each class based 
on the training data are presented in Table  2. Specifi-
cally, in the low prevalence class, nine variables were 

Fig. 1 The geographical distribution of three classes of counties. The clustering was based on time-variant cumulative confirmed cases from March 
1 to August 27, 2020. The size of circle represented the total confirmed cases on August 27, 2020. The distributions of deaths on August 27, 2020 in 
the three classes of counties were combined
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significantly associated with the mortality of COVID-
19. Higher values in theaverage daily density of  PM2.5 
(0.153, P < 0.001), the percentage of workforce driv-
ing alone to work (0.039, P < 0.001), the percentage of 
workforce that had more than 30  min commute driv-
ing alone (0.015, P < 0.001), the percentage of adults 
who reported less than average 7  h sleeping (0.073, 
P < 0.001), resident population (P < 0.001), the per-
centage of Hispanic (0.020, P < 0.001) and female 
population (0.054, P < 0.001) and segregation index 
(0.015, P < 0.001), significantly increased the num-
ber of deaths, while more people living in rural areas 
(− 0.014, P < 0.001) decreased the number of deaths of 
COVID-19.

In the median prevalence class, eight variables were 
significantly associated with the deaths of COVID-19. 
Higher values in the percentage of workforce driving 
alone to work (0.016, P = 0.008), the percentage of work-
force that had more than 30 min commute driving alone 
(0.013, P < 0.001), resident population (P < 0.001), the per-
centage of population aged over 65 (0.049, P < 0.001), the 
percentage of Hispanic (0.020, P < 0.001) and female pop-
ulation (0.127, P = 0.001) and segregation index (0.025, 

P < 0.001)  led to an increase in deaths as opposite to a 
decrease in deaths of COVD-19 for more people living in 
rural areas (− 0.011, P = 0.007).

In the high prevalence class, four variables were sig-
nificantly associated with mortality. Higher values in resi-
dent population (P < 0.001), the percentage of population 
aged over 65 (0.114, P < 0.001), the percentage of His-
panic population (0.014, P = 0.009) and segregation index 
(0.019, P = 0.005), caused more deaths.

For each class of counties, the model obtained from 
the training data was employed to predict the deaths of 
COVID-19 on August 27, 2020 using the testing data. 
The corresponding RMSE values for the mortality ratio 
were 0.056%, 0.041%, and 0.088%, respectively, in the low, 
median, and high prevalence classes.

Discussion
Using the time trends of the cumulative confirmed 
cases in 3125 counties in the United States, we catego-
rized those counties into three levels of infection. The 
low prevalence class counted for 88% of the 3125 coun-
ties. Their resident population was remarkably smaller 
than the other two classes of counties. But the resident 

Population Primary Care Physicians Ratio Segregation index−non−White/White

% Rural % With Access to Exercise Opportunities Average Daily PM2.5

% Hispanic % Insufficient Sleep % Long Commute − Drives Alone
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population size increased the mortality of COVID-
19 regardless of the level of COVID-19 prevalence. A 
higher population density may increase more contacts 
in social distancing [17, 18], leading to a higher risk in 
mortality of COVID-19. On the contrary, a higher per-
centage of residents living in rural areas in both the low 
and median prevalence classes of counties may reduce 
the mortality. Disparities in race and ethnicity were 
found in the infected populations. For example, Blacks 
were reported to be prone to COVID-19 [19, 20], and 
living settings of racial/ethnic minorities were founded 
to be more crowded, making social distancing difficulty 
[21]. In this study, we found that Hispanics were more 
vulnerable. Further investigation is warranted to study 
the racial disparity in the mortality of COVID-19. How-
ever, the segregation index between non-Whites and 
Whites revealed the racial disparity in health, leading 
to differences in health status not only at the individual 
level but also at the community level [22]. A higher val-
ues in the segregation index indicated the poor health 
status, which may increase the mortality of COVID-19 

[17]. This health inequality increased the mortality 
rates of COVID-19 in all classes of counties.

For the low and the median prevalence class of coun-
ties, more workforce driving alone to work and commut-
ing long-distance may increase the levels of anxiety [23], 
leading to the high mortality in COVID-19. A higher per-
centage of long-distance commuting workforce was also 
linked to a high level of anxiety for commuters [23]. And 
substantial time spent by long-distance commuters could 
inhibit their healthy behaviors [24]. The stress and less 
healthy behaviors may increase individual’s vulnerability 
to COVID-19 [27–29]. Also, long-distance commute may 
be necessary for people who work in relatively higher 
dense areas where the risk of COVID-19 is high.

The counties in both the low and the median class of 
prevalence were accounted for 97.44% of the infected 
counties, where the higher values in the percentage of 
female population increased the mortality of COVID-19.

The percentage of adults with inadequate sleeping time 
was found to increase the mortality of COVID-19 in 
the low prevalence class of counties. Sleeping time was 
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reported to be associated with the health system [25]. 
The higher number of people who had inadequate sleep-
ing time, the more adverse effects of sleep on immunity 
were identified [26]. The air quality also was reported to 
be associated with the mortality rate of COVID-19 [10, 
30, 31].

For both the median and the high prevalence class of 
counties, there was an age trend in the mortality rate of 
COVID-19. In those counties, there was a higher per-
centage of elderly, indicating a larger population of indi-
viduals aged over 65, which increased the mortality rate 
of COVID-19 [11].

One caveat of this study is that we analyzed data up to 
August 27, 2020, and as the data evolves, the risk factor 
dynamics may change accordingly.

Conclusions
This study identified several significant risk factors asso-
ciated with the mortality of COVID-19, and our findings 
are highly valuable and timely for the decision-makers to 
develop strategies in reducing the mortality of COVID-
19. The study relied on mortality data on August 27, 
2020. The counties were randomly divided into the train-
ing and testing data once. However, we offered the epi-
demiological picture to facilitate the identification of 
important factors influencing the mortality of COVID-19 
across different levels of infected counties in the United 

States. Regardless of the regions, the factors linked to 
the poor health status contributed to higher mortality 
of COVID-19. Improving the clinical care and eliminat-
ing the racial health inequality, combined with improv-
ing physical environment were expected to significantly 
decrease the mortality rate of COVID-19. Thus, we rec-
ommended that local governments should reduce physi-
cal and psychological risks in residential environments.
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Table 2 Variables significantly related to the mortality rate of COVID-19 in the three classes of counties

Variable Estimate Pr( >|t|)

Low prevalence class Average daily PM2.5 0.153  < 0.001

Drive alone to work (%) 0.039  < 0.001

Long commute—drives alone (%) 0.015  < 0.001

Insufficient sleep (%) 0.073  < 0.001

Population 1.00 × 10−5  < 0.001

Hispanic (%) 0.020  < 0.001

Female (%) 0.054  < 0.001

Rural (%) − 0.014  < 0.001

Segregation index-non-White/White 0.015  < 0.001

Median prevalence class Drive alone to work (%) 0.016 0.008

Long commute—drives alone (%) 0.013  < 0.001

Population 1.07 × 10−6  < 0.001

65 and over (%) 0.049  < 0.001

Hispanic (%) 0.020  < 0.001

Female (%) 0.127 0.001

Rural (%) − 0.011 0.007

Segregation index-non-White/White 0.025  < 0.001

High prevalence class Population 2.22 × 10−7  < 0.001

65 and over (%) 0.114  < 0.001

Hispanic (%) 0.014 0.009

Segregation index-non-White/White 0.019 0.005
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