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Abstract

Heavy metals and hydrocarbons are of the most common marine pollutants around the world. The present study
aimed to assess the concentration of petroleum hydrocarbons and heavy metals in tissues of the snail cyclope
neritea, water and sediments from two sites of the study area (Temsah lake and Suez canal) represent polluted and
unpolluted sites respectively. The results showed that, the levels of the heavy metals (Pb, Cd, Co, Mg and Zn) in the
polluted area have reached harmful limits recorded globally. Lead in water, sediment and tissue of the snail
reached to 0.95 ppm, 4.54 ppm and 7.93 ppm respectively. Cadmium reached 0.31 ppm, 1.15 ppm and 3.08 ppm in
the corresponding samples. Cobalt was not detected in water, but it reached 1.42 ppm and 10.36 ppm in the
sediment and snails tissue respectively. Magnesium in water, sediment and tissue of the snail reached 3.73 ppm,
9.44 ppm and12.6 ppm respectively. Zinc reached 0.11 ppm, 3.89 ppm and 12.60ppm in the corresponding
samples. Meanwhile, hydrocarbons in the polluted area (site1) reached 110.10 μg/L, 980.15 μg/g and 228.00 μg/g in
water sediment and digestive gland tissues of the snails respectively. Whereas, hydrocarbons in the unpolluted area
(site2) were estimated as 14.20 μg/L, 55.60 μg/g and 22.66 μg/g in water, sediment and tissue of the snails respectively.
The combination of histopathological image with monitoring of the metal level in the digestive gland of the
present snail provides an important tool for early detection of impending environmental problems and potential
public health issues. Petroleum hydrocarbons are toxic to the marine fauna when present above certain limit in
the marine water. The major detoxification organ in molluscs is the digestive gland, which has been used as a
bioindicator organ for toxicity assessment. The effect of high crude oil on the digestive gland tubules of exposed
snails when examined microscopically reveals a series of histological changes which indicates that the cellular
compensatory mechanism is activated by hydrocarbons. These changes include vacuolation and presence of
pyknotic nuclei.
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Introduction
Adverse anthropogenic effects on the coastal environ-
ment include eutrophication, heavy metals, organic, oil
spills and microbial pollution. Consequently, levels of
contaminants in the marine environment are increasing
continuously. In order to establish adequate coastal
management programs, it is important to characterize
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the environment of concern chemically. The extent of
contamination can be assessed by measuring pollutant
concentration in water, sediments and exposed animal
tissues samples. Trace metals can be divided to essential
and non essential elements. Essential elements occur
naturally in all organisms, essential elements in high
doses can be poisonous causing hazardous effects on or-
ganisms. Non essential elements do not have any posi-
tive effects on organisms and they are harmful already in
low doses. They can inhibit an essential element to bind
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to enzyme and disturb the normal enzymatic function in
the body [1-9].
As compared with the open sea, lagoons are more sub-

ject to pollution, particularly by heavy metals from indus-
trial, agricultural and urban origin. Near shore sediments
are found in a wide variety of environments (bays,
lagoons). The water sediments interface is more important
to biological fauna as compared with surface sediments,
since meiofauna live about the reduced zone in sediment.
Therefore, the composition of sediment has a significant
influence on the living conditions of marine organisms.
The trace metal results were obtained by sediment ana-
lysis, unlike sea water analysis, where the detection limit
and contamination risks are significantly reduced [9].
It is well known that molluscs accumulate organic and

metal pollutants at concentrations several order of mag-
nitude above those observed in the field environment.
Fewer studies have been done on gastropod molluscs,
some of which are considered as useful biomonitors of
certain metals [10]. Most metals are generally concen-
trated many times within an organism’s soft tissue.
Advancement in technology as well as increase in

population have led to environmental concerns relating
from indiscriminate dumping of refuse and discharge of
industrial effluents, petroleum waste water and crude oil
spills replete with most common heavy metals in our en-
vironment [7,11].
Histopathological patterns represent a rapid, sensitive,

reliable and comparatively inexpensive tool for assess-
ment of stress response to xenobiotics [12-14]. These
cascades of stress related responses including histopa-
thology are now increasingly being used as biomarkers
Figure 1 A map of Suez Canal showing the two investigated sites. Th
of environmental stress since they provide a definite bio-
logical endpoint of historical exposure [15-17].
Heavy metal pollution of terrestrial and aquatic ecosys-

tems has long been recognized as a serious environmental
concern. This is largely due to their non biodegradability
and tendency to accumulate in plants and animals tissues.
As a result, metal bioaccumulation is a major route
through which increased levels of the pollutants are trans-
ferred across food chains, creating public health problems
[18-20]. Therefore, it is important to determine the bio-
accumulation capacity for heavy metals by certain orga-
nisms in order to assess potential risk to human health.
Several authors [9,13,21] have reported the importance

of molluscs as good indicators for monitoring heavy
metal pollution even through abnormally high environ-
mental concentrations, since heavy metals affect numer-
ous biological processes involved in the development
and maintenance of molluscan populations such as fee-
ding, growth, reproduction and general physiological ac-
tivities [22].
Contamination of the sea with petroleum hydrocar-

bons, especially in shipping channels and ports, where
crude and refined petroleum products are transported in
significant quantities of oil entering the water column
and sediment. The hepatopancreas of molluscs is the
major site of petroleum hydrocarbons (PHC) detoxifica-
tion. The main route for elimination of hydrocarbon me-
tabolism is through faecal matter [23].
This study aimed to investigate the concentration of

Pb, Cd, Co, Mg, Zn and hydrocarbons in water, sediment
and soft tissues of Cyclope neritea snail from two diffe-
rent sites at Suez Canal, Egypt, map(1). The first site is
e first site; Timsah Lack and the second site; Suez Canal.



Table 1 Concentration of heavy metals (ppm) in water, sediment and digestive gland tissue of Cyclope neritea snails
(Mean ± SD) at the two investigated sites

Metal Timsah Lake (site1) Suez Canal (site2)

Mean ± SD Mean ± SD

Water Sediment Digestive gland tissue Water Sediment Digestive gland tissue

Pb 0.95 ± 0.04 4.54 ± 0.05 7.93 ± 0.03 0.92 ± 1.04 2.11 ± 0.82 3.93 ± 0.50

Cd 0.31 ± 0.04 1.15 ± 0.17 3.08 ± 0.20 0.50 ± 0.02 1.00 ± 0.13 1.72 ± 0.07

Co 0.00 ± 0.00 1.42 ± 0.17 10.63 ± 0.21 0.00 ± 0.00 0.67 ± 0.96 2.66 ± 0.25

Mg 3.73 ± 0.20 9.44 ± 1.18 12.6 ± 0.96 2.63 ± 0.01 3.92 ± 0.37 5.86 ± 0.15

Zn 0.11 ± 0.04 3.89 ± 0.20 12.6 ± 0.96 0.13 ± 0.01 1.33 ± 1.00 4.44 ± 0.80
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located in Timsah Lake which receives effluents from
many industrial sources site (1) where as the second site
is Suez Canal where there is limited industrial or an-
thropogenic activity site (2).
Moreover, an attempt has been made to elucidate the

response of the digestive gland of Cyclope neritea snails
to heavy metals and PHCs and to identify histopatho-
logical biomarkers.

Materials and methods
Heavy metal content (Pb, Cd, Co, Mg and Zn) and hy-
drocarbons were analyzed in the water, sediment and
soft tissues of Cyclope neritea snails from two different
sites at Suez canal, the first was polluted, site1 (Timsah
lake) while the second unpolluted site2 (Suez Canal)
from the main canal (Figure 1).

Water and sediment
From both sites water samples were collected directly in
a precleaned polyethylene bottles then sealed until
analysis, sediment samples were collected using a pre-
cleaned PVC corer and immediately kept in polyethylene
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Figure 2 Concentration of heavy metals (ppm) in water, sediment an
(polluted area).
bags which were sealed and kept in an ice box for fur-
ther analysis in the laboratory. Sediment samples were
washed with bidistilled water and dried at 60°C then
ground in a glass mortar and reduced into fine particles.

Samples collections
Snails were collected from both sites by hand picking.
The soft tissues were removed from snail’s shells with a
sharp knife and dried at 60°C. The dried tissue was
ground into fine powder and stored in a desiccator for
further analysis.

Chemicals and method of analysis
Estimation of trace metals in water and sediment was
carried out by suitable volume of water or digestion of
one gram of sediment with conc. Nitric acid (HNO3)
and conc. Perchloric acid (HClO4) (4:l) and analyzed in
Atomic absorption specterophotometers perkin-Elmer,
Analyzed TM 300 (USA) at suitable current and wave
length for all studied heavy metals [24,25]. The values
were expressed in ppm and the standard deviation
was calculated. The hydrocarbons in all samples were
Mg Zn
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Figure 3 Concentration of heavy metals (ppm) in water, sediment and digestive gland tissue of Cyclope neritea snails in Suez Canal
(unpolluted area).

Table 2 Concentration of hydrocarbons in water,
sediment and digestive gland tissue of Cyclope neritea
snails in the study area

Site Water (μg/L) Sediment (μg/g) Digestive gland
tissue (μg/g)

Timsah Lake 110.10 980.15 228.00

Suez Canal 14.20 55.60 22.66
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extracted by Soxhlet instrument and measured by a
Spectrofluorophotometer.

Statistical analysis
SPSS13 for Windows software was used for the statis-
tical analysis of the heavy metal contents in water, se-
diment and digestive gland tissue of snails at the two
investigated sites by using Mann–Whitney test.
For histolopathological examination the digestive gland

of Cyclope neritea was taken out of their shells and
dropped immediately into Alcoholic Bowin’s, fixative then
processed in the usual manner for histological investiga-
tion and stained with Haematoxylin and Eosin.

Results
Mean ± SD of the heavy metals at the two investigated
sites were tabulated in Table 1. Statistical Mann–Whitney
test was applied for all parameters at the two sites.
Heavy metals in Site 1 (Timsah Lake, polluted area)

are shown in Table 1, Figure 2. The results revealed
that the values of heavy metals in water are 0.95 ± 0.04,
0.31 ± 0.04, 0.00 ± 0.00, 3.73 ± 0.20 and 0.11 ± 0.04 ppm
for Pb, Cd, Co, Mg and Zn respectively. Meanwhile,
heavy metals values in sediment are 4.54 ± 0.05, 1.15 ±
0.17, 1.42 ± 0.17, 9.44 ± 1.18 and 3.89 ± 0.20 ppm for Pb,
Cd, Co, Mg and Zn respectively. Besides, the values of
heavy metals in digestive gland tissues are 7.93 ± 0.03,
3.08 ± 0.20, 10.63 ± 0.21, 12.6 ± 0.96 and 12.6 ± 0.96 ppm
for Pb, Cd, Co, Mg and Zn respectively.
On other hand, heavy metals in Site2 (Suez Canal, un-

polluted area) are shown in Table 1, Figure 3. The re-
sults revealed that, the values of heavy metals in water
are 0.92 ± 1.04, 0.50 ± 0.02, 0.00 ± 0.00, 2.63 ± 0.01 and
0.13 ± 0.01 ppm for Pb, Cd, Co, Mg and Zn respectively.
Meanwhile, heavy metals values in sediment are 2.11 ±
0.82, 1.00 ± 0.13, 0.67 ± 0.96, 3.92 ± 0.37 and 1.33 ± 1.00
ppm for Pb, Cd, Co, Mg and Zn respectively. And
the values of heavy metals in digestive gland tissues
are 3.93 ± 0.50, 1.72 ± 0.07, 2.66 ± 0.25, 5.86 ± 0.15 and
4.44 ± 0.80 ppm for Pb, Cd, Co, Mg and Zn respectively.
The Mann–Whitney test was made between the heavy

metals concentrations of the digestive gland tissue of the
snails and both water and sediment in the two sites,
asymptotic significance (2-tailed) = 1.00 and 0.18 re-
spectively was not significant at P < 0.05 level. Also, the
Mann–Whitney test was made between the heavy metals
concentrations of the digestive gland tissue of the snails in
the two sites, asymptotic significance (2-tailed) = 0.047
was significant at P < 0.05 level.
On the other hand, the concentrations of petroleum

hydrocarbons were tabulated in Table 2, Figure 4. The
results revealed that concentration of petroleum hydro-
carbons are 110.1, 980.15 and 228.00 ug/g for water,
sediment and digestive gland tissues respectively in site
(1). Meanwhile, they are 14.2, 55.6 and 22.66 ug/g for
water, sediment and digestive gland tissues respectively
in site (2). The Mann–Whitney test was made between
the petroleum hydrocarbons concentrations of the diges-
tive gland tissues and both of water and sediment from
the two sits, asymptotic significance (2-tailed) = 0.0499
was significant at P < 0.05 level.

Histpathological changes
The digestive gland of normal C. neritea is a large,
tubulo-acinar gland which occupies the greater part of
the cavity of the shell spire. The gland is covered by
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Figure 4 Concentration of hydrocarbons in water, sediment and digestive gland tissue of Cyclope neritea snails in the study area.
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squamous epithelium resting on a thin layer of fibrous
connective tissue Figure 5. The digestive gland tubules
are lined with simple epithelium. This epithelium con-
sists of two main cell types, digestive cells and secretory
cells.
The digestive cells Figure 5 are by far the most numer-

ous elements in the wall of the digestive gland tubules.
They are long columnar or cube shaped with domed dis-
tal apices and flat bases by which they rest on a very thin
basement membrane. They vary greatly in length within
the same tubule. The nucleus is basal, usually oval but
may be spheroidal or even irregular. Inside the major
part of the cell body the cytoplasm is lightly stained
and shows various degrees of vaculation and different
contents.
The secretory cells Figure 5 are present in much

smaller number than the digestive cells. They are shorter
pyramidal or cone-shaped, but may sometimes be
Figure 5 A photomicrograph of T.S. of digestive gland of
Cyclope neritea from the unpolluted site (Suez Canal) showing
digestive tubules without hydrocarbon precipitations in the
digestive gland cells. N (Nucleus); dg (digestive gland); d.c (digestive
cell); ex.c (excretory cell); PP (hydrocarbon precipitations). X400.
columnar. They are markedly shorter than the digestive
cells and therefore appear wedged in between groups of
the digestive cells. Their cytoplasm is basophilic and the
body of the excretory cells is usually crowded with nu-
merous spherules (ex.s) of regular form but different
sizes. Each excretory cell contains oval or spherical ex-
cretory bodies (dark granules) which are usually chro-
mophobic, usually retain their natural colour and appear
located inside colourless vacuoles.
These bodies may represent the final stage in elabo-

ration of the excretory material within the excretory
cells. The digestive gland obtained from the polluted
area shows an increase in the secretion of the digestive
cells, where the cytoplasm becomes more acidophilic
and their nuclei start unusual division Figure 6. It can be
seen that the dark granules increased greatly in number
and most of the digestive cells become completely
degenerated and lysing while most of the tubules are
damaged Figures 7, 8 and 9. At much higher concentra-
tions of pollutants the digestive gland tubules become
Figure 6 Digestive tubules T.S. of digestive gland in snail
Cyclope neritea from polluted area (Timsah Lake) showing
hydrocarbon precipitations in the digestive gland cells. X200.



Figure 7 Higher magnification of Digestive tubules in T.S. of
digestive gland of the snail Cyclope neritea from polluted area
(Timsah Lake) showing hydrocarbon precipitations in the
digestive gland cells. N (Nucleus); dg (digestive gland); d.c
(digestive cell); ex.c (excretory cell); PP (hydrocarbon precipitations);
V (vacuolation). X400.

Figure 9 A photomicrograph of digestive gland of the snail
Cyclope neritea from polluted area (Timsah Lake) showing that
most of the digestive cells became polygonal and bi and
multinucleated and finally degenerated and lysed due to
hydrocarbon precipitations. N (Nucleus); PP (hydrocarbon
precipitations); V (vacuolation). X400.
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mostly damaged, necrotic and the cells take cluster
shape and become bi and multinucleated and finally
lysed Figures 8 and 9.

Discussion
This study shed light on some of the environmental fac-
tors that might have an impact directly or indirectly on
the concentration ability of heavy metals into the bodies
of the investigated host. The concentration of water with
a wide range of heavy metals has become a matter of
great concern over the last few decades [26] and a lot of
studies have been published on the heavy metals at all
Figure 8 A photomicrograph of digestive gland of the snail
Cyclope neritea from polluted area (Timsah Lake) showing the
accumulations of hydrocarbons particles which lead to
damaging and vacuolation of most digestive cells of the
digestive gland cells. N (Nucleus); d.c (digestive cell); PP (hydrocarbon
precipitations); V (vacuolation). X400.
levels of aquatic ecosystem [27-30]. Many authors asso-
ciated the heavy pollution in water with industrial and
municipal discharges. These heavy metals may be taken
up by living organisms, deposited in the sediments or re-
main for some period in the water itself [31,32].
In the present study concentrations of heavy metals in

water, sediment and tissues of molluscs from two sites of
Suez Canal were determined. The highest concentrations
for all studied heavy metals were recorded at site (1)
when compared with site (2). The differences in heavy
metals concentration between site 1 and site 2 might be
attributed to the highly discharge of mixture of indus-
trial, municipal and agricultural drains into site (1), this
opinion agrees with [33,34]. Several authors reported
that the variation in heavy metals concentration in water
might be attributed to the contaminated sediment; these
sediments reflect the quality of water current and form
the major repository of heavy metals in aquatic system.
They added that the rate of accumulation depends
mainly on the environmental parameters. Therefore,
sediments can be used to detect the presence of conta-
mination that does not remain soluble after the dis-
charge into water [35,36].
The data of the heavy metals in the present work re-

vealed that there is a highly significant (P < 0.01) difference
between the two sites, the increase in values of site 1 may
be attributed to a number of factors such as industrial ef-
fluents, agricultural drainage and waste municipal [31].
Water of the two sites showed higher concentrations of
Lead (0.95, 0.92 ppm); Cadmium (0.31, 0.50 ppm), Cobalt
(0.00, 0.00 ppm); Manganese (3.73, 2.63 ppm); and Zinc
(0.11, 0.13 ppm). Meanwhile, sediment of the two sites
showed higher concentrations of Lead (4.54, 2.11 ppm);
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Cadmium (1.15, 1.00 ppm), Cobalt (1.42, 0.67 ppm); Man-
ganese (9.44, 3.92 ppm); and Zinc (3.89, 1.33 ppm), Also,
heavy metals concentration in the digestive gland tissues
of C. neritea snail of the two sites showed higher concen-
trations of Lead (7.93, 3.93 ppm); Cadmium (3.08, 1.72
ppm), Cobalt (10.63, 2.66 ppm); Manganese (12.6, 5.86
ppm); and Zinc (12.6, 4.44 ppm), these finding are in
agreement with [37] where they determined the levels of
heavy metals Lead (Pb), Cobalt (Co), Manganese (Mg),
Zinc (Zn) and Cadmium (Cd) in coastal water, sediment
and soft tissues of the gastropod limpet Patella caerulea
and the bivalvae Barbatus barbatus from seven different
stations in the western coast of the Gulf of Suez. The
highest accumulated metals were Fe, Zn and Mn in both
Patella caerulea than Barbatus barbatus. In the present
study, metals such as Pb, Mg and Zn, exhibited modreate
concentrations. Cadmium and Cobalt metals were below
the detectable limit at both sites.
In concordance with the present study, several rele-

vant studies have been made earlier. The heavy metal ac-
cumulation in the gastropod Cerithium scabridium from
Kuwait coast has been analyzed [38] where the concen-
tration of the cadmium in the gills ranged between 7.06
ppm and 0.09 ppm, which is comparatively lower than
that in the present study. The concentrations of the ana-
lyzed heavy metals exhibited variations in water, sedi-
ments and tissues of the studied animal from both sites.
The assessment and description of toxicants on orga-

nisms is attracting the interest of the researchers working
with marine organisms [2,9,39]. Accumulated hydrocar-
bons were found to interact with cellular hydrocarbons
leading to different histopathological lesions with the
highest necrosis index of cells [18]. Cellular and subcellu-
lar histopathological changes have proved to be reliable
biomarkers in toxicological assays [20]. In the present
study, the accumulations of hydrocarbons lead to dam-
aging and vacuolation of most digestive cells, where
they became polygonal and bi and multinucleated and
finally degenerated and lysed. These results agree with
those of [2,17,40-42].
Further studies are still needed to investigate the effect

of heavy metal contamination on the biochemical pa-
rameters and fine structure to evaluate their potentiality
as sentinel organisms to heavy metal contamination in
aquatic habitats.
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