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Abstract

Computing the mechanical response of materials requires accurate constitutive
descriptions, especially their plastic behavior. Furthermore, the ability of a model to be
used as a predictive, rather than a descriptive, tool motivates the development of
physically based constitutive models. This work investigates combining a homogenized
viscoplastic self-consistent (VPSC) approach to reduce the development time for a
high-resolution viscoplastic model based on the fast Fourier transform (FFT). An
optimization scheme based on a least-squares algorithm is presented. The constitutive
responses of copper, interstitial-free steel, and pearlite are investigated, and the model
parameters are presented. Optimized parameters from the low-fidelity model provide
close agreement (<2 MPa, ~1 % error) with stress-strain data at low strains (<10 %) in
the high-fidelity FFT model. Simple adjustments to constitutive law parameters bring
the FFT stress-strain curve in alignment with experimental data at strains greater than
10 %. A two-phase constitutive law is developed for a pearlitic steel using a single
stress-strain curve, supplemented by data for the constituent phases. Sources of error
and methods of using material information are discussed that lead to optimal estimates
of initial parameter values.
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Background
The usefulness and predictive value of a material model is dependent on two factors:

the range over which the description of the mechanisms and physics included in the

model are applicable and the parameters used to accurately tune a model to measured

results. The determination of the latter has been an active area of research for many

years [1]. This central objective is foremost in nearly all modeling applications, which

transcends a multitude of engineering fields because it can be applied to problems all

the way from fundamental material research up to product design. While many fields

can benefit from such a model, the acceptable computational time varies based on the

application and intended end user. While researchers may be able to wait weeks for a

solution, product designers may be willing to wait only a matter of seconds. From con-

tinuum power-law plasticity models to highly detailed crystal plasticity, full-detailed

physically based models and short computation times are often mutually exclusive.

This study explores a hardening model embedded within two crystal plasticity frame-

works: a homogenized viscoplastic self-consistent (VPSC) algorithm [2] and a full-field

viscoplastic model based on the fast Fourier transform (VP-FFT) [3]. Both frameworks
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utilize the same core set of viscoplastic crystal plasticity descriptions, relating local

stress tensors to local shear rate tensors, and microstructure texture information to

predict the constitutive response and texture development of the material microstruc-

ture. However, these two frameworks differ in the level of detail utilized and computa-

tion time required for simulation. The VPSC code is a serial code that can be run in

seconds on a personal laptop where the effect of each grain’s environment is homoge-

nized, while the VP-FFT microstructure is discretized to generate full-field solutions

and is a parallelized code that was formulated for use on a supercomputer requiring

minutes to hours to compute similar microstructures.

Constitutive laws that relate local stress tensor and crystal geometry to the local

strain rate tensor control the stress-strain responses of these methods. A hardening

law, contained within the constitutive law, prescribes the local stress at which shear will

occur on a given slip system and evolves with accumulated strain. In order to predict

the stress response of a material, the appropriate parameters for the hardening model

must be developed because no theory exists to predict them a priori [4]. These parame-

ters can be determined through manual iterative educated guessing or purely mathem-

atical optimization. Even for a simple material response, this can be excessively time

consuming. Such a method coupled with the VP-FFT code could require weeks of trial

and error.

Adjusting parameters in equations, a.k.a. curve fitting, is a ubiquitous approach for

development of constitutive laws in all materials, ranging from polymers [5–7] to

metals [8–15] to nanocomposites [16] to geological materials [17] and even to con-

struction materials [18]. It is used with simple [13] to complex, multiphase models [8]

under loading conditions such as uniaxial tension [10], creep, and fatigue [19]. Decreas-

ing simulation computation time during curve fitting is advantageous for quicker con-

stitutive law development. Previous studies typically achieved this by first fitting

physical parameters to analytical curves and using single element finite element (FEM)

simulations [12], while others have used multi-step optimization approaches [8]. The

novelty of the approach used here is a separate simulation tool in which only grain av-

erages are computed (i.e., VPSC) compared to the full-field VP-FFT to reduce curve-

fitting time. It is shown that VPSC provides an adequate first guess for the constitutive

law used in the full-field VP-FFT with minimal adjustments required. We offer this

work in the spirit of the Materials Genome Initiative, namely, as a method for encoding

data on the mechanical behavior of materials in a form that can be used for a broad

range of scientific and engineering purposes.

The remainder of this manuscript is laid out as follows. The “Background”

section consists of the background and theory of the computational models uti-

lized. The “Methods” section contains the optimization scheme in MATLAB uti-

lized to find best-fit parameters within VPSC and a discussion of the materials

investigated within this study. In the “Results and discussion” section, the results

of the optimizations and how the parameters fare in the VP-FFT predictions of vis-

coplastic response are presented and discussed for the three materials considered.

A comparison of the texture evolution between VPSC and VP-FFT is also pre-

sented. Additionally, the dependence of constitutive law parameters on the VP-FFT

domain size is discussed. Finally, conclusions are provided in the “Conclusions”

section.
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VPSC

The VPSC computer code used in this study was developed at Los Alamos National La-

boratory with applications to a range of materials such as copper, titanium, and steels

[20–22] and complex loading histories [23].

Local constitutive behavior

Modeling viscoplastic material deformation is largely dependent on local orientation

and available slip systems for each orientation and loading condition. A non-linear

rate-sensitive constitutive model, Eq. 1, dictates the local material behavior by relating

the stress state, orientation, and slip system activities to the local tensor strain rate [24],

where the sum is over all active slip systems with index s.

:
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system is given by τ̂ s and is computed at each strain level by a hardening law. The local

shear rate on slip system s,
:
γs xð Þ, is computed with Eq. 2.
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:
γo is a normalization factor, typically assigned a value of 1, and n is the rate sensitivity

exponent, typically assigned a value of 10. This constitutive equation provides a meso-

scale description of the viscoplastic deformation response of a polycrystalline material

aggregate.

The VPSC algorithm makes use of the Eshelby [25, 26] solution approach by treating

each “grain” (i.e., crystal orientation) as an ellipsoidal inclusion contained within a

homogenous medium. The homogenous medium in this case is the average response of

the grains. The input list of grains (texture information) is a weighted list of orienta-

tions (parameterized as the Euler angles), and therefore, no spatial information is re-

quired or used [2]. Self-consistency is enforced through ensuring that the average strain

rate of the sum of the grains is consistent with the macroscopically applied strain rate.

Thus, in the VPSC model, the stresses are calculated across an average based on the

collection of grains and can be fully anisotropic. It allows for each individual grain to

have a local strain rate that differs from the ensemble average value, thereby weakening

the boundary conditions of the Taylor model, which enforces uniform strain rate over

all grains. The extent of the local variations depends on the interaction model adopted,

which in this case was the affine model.

Hardening model

Because VPSC predicts the stress-strain evolution over a prescribed strain path, a hard-

ening model must be utilized and is implemented as the critical resolved shear stress

term, τ0
s in Eq. 1. The hardening model predicts the evolution of stress due to
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accumulated shear strain in each grain [27]. An extended version of the original Voce

hardening model [28], a function of the accumulated shear strain on each slip system Γ,

was used for this application, as in Eq. 3.

τ̂s¼ τs0 þ ðτs1 þ θs1ΓÞ 1−exp −Γj θs0τs1 j" # !
ð3Þ

The parameters within the modified Voce model are τ0, which is analogous to the ini-

tial critical resolved shear stress (CRSS), and τ1, which captures the magnitude of the

steady-state hardening stress, and θ0 and θ1 model the initial and steady-state slope of

the hardening (or softening) behavior, respectively. Based on this, estimated values of

the parameters can be determined from a macroscopic stress-strain plot by utilizing re-

lationships from a microscopic shear stress-strain plot, shown in Fig. 1. To bridge the

two disparate length scales, the Taylor factor can be utilized [29]. One set of parameters

is required for each slip mode (i.e., combination of slip plane families and family of di-

rections). While the set of parameters need not be unique for separate modes, it can be

changed in accord with more detailed knowledge of the CRSS for a given slip mode. In

fact, in anisotropic materials such as hexagonal metals, anisotropy and texture develop-

ment is used to calibrate such values [30].

VP-FFT

The viscoplastic FFT method is built upon the same theorems, principles, and constitu-

tive law as VPSC. While VPSC utilizes a homogenization (i.e., Eshelby) scheme to com-

pute the grain average stress and strain values, the VP-FFT method uses high-

resolution spatial and Fourier grids over which an FFT is performed to compute the

full-field solution. Therefore, spatial resolution of the microstructure is achieved. The

discretized spatial grid in VP-FFT resolves each grain at whatever resolution is deemed

necessary, providing orders of magnitude more degrees of freedom and spatially re-

solved grain-level detail. Microstructural input for the VP-FFT is a crystal orientation

Fig. 1 A schematic of the dependence of the hardening curve on the modified Voce model parameters
[27], Tome 2012
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for each discretized point within the domain, including a phase identifier. Phase identi-

fication is used to assign slip modes and the associated hardening parameters specific

to the phase.

The VP-FFT is akin to FEM-based crystal plasticity methods, but as mentioned

in the preceding paragraph, the grain structure of a material in a VP-FFT simula-

tion is represented by a regularly discretized grid (i.e., cuboidal “elements”) while

in FEM simulations arbitrarily shaped hexahedral elements are admissible. Full-field

solutions satisfying local equilibrium and compatibility constrains are achieved in

the VP-FFT by use of a Green’s method approach. Use of an FFT to compute the

convolution integral required for the Green’s method reduces computation time

and improves computational efficiency over most FEM simulations. This reduced

computation time and improved efficiency, providing an efficient means for study-

ing microstructures that require high-resolution representation, such as pearlite.

Full details of the mathematics of the VP-FFT method can be found in Lebensohn [3].

With the addition of microstructural detail comes an additional computation

cost. Similar methods for computing the viscoplastic response of material micro-

structures exist in the FEM framework; however, the primary advantage of this

spectral method is efficiency and reduced computation time, especially FEM simu-

lations of comparable sizes. The FFT method has been parallelized with the FFTW

library providing additional reductions in computation times [31, 32]. These re-

duced computation times, regardless of the number of processors used, will not

overtake the speed provided by the homogenization approach in VPSC.

Methods
Optimization method

In order to more efficiently fit the Voce hardening model to an experimental

stress-strain curve within the construct of the VP-FFT code, the similarity of the

VPSC code is exploited by pairing it with a MATLAB-based optimization routine.

By taking advantage of VPSC’s inherent computation speed, a better informed ini-

tial model parameter guess can be made for the more computationally expensive

VP-FFT simulations, thus reducing the number of expensive simulations required

to fit an experimental curve. The method used was the least-squares optimization

routine contained within MATLAB’s optimization toolbox. The least-squares rou-

tine attempts to minimize the sum of the square of the difference between the ex-

perimental and predicted stress value at each strain step. A schematic of the

method that was implemented is shown in Fig. 2, and additional details can be

found in Appendix I.

While the extended Voce equation only requires four parameters to be optimized,

the least-squares curve-fit algorithm does not guarantee a unique solution. In fact, the

initial guess can influence the final solution if the function contains local minima. Thus,

one must check the optimized solution to ensure that it provides a reasonable descrip-

tion of the stress-strain behavior, as well as satisfying the least-squares algorithm. For

example, the error returned by the fitting procedure may be small, but the shape of the

fitted function might suggest that extrapolation beyond the fitted range would lead to

large errors.

Anglin et al. Integrating Materials and Manufacturing Innovation  (2016) 5:11 Page 5 of 20



Materials investigated

The optimization of the Voce parameters using the VPSC code and the subsequent ap-

plication to the VP-FFT code is tested with three material systems: 99.9999 % pure cop-

per, interstitial-free (IF) steel, and pearlite. Copper is selected as a fitting exercise as a

proof-of-concept of the optimization scheme presented here. The τ0, along with the

average Taylor factor, obtained for the IF steel will be used to scale the τ0 value for

pearlitic ferrite due to the lamellar spacing.

Copper

In a previous study [33], a well-annealed 99.9999 % pure copper specimen was pre-

pared with a gauge section for a high-energy X-ray diffraction microscopy (HEDM)

measurement under progressive tensile loading to evaluate the microstructural changes

due to plastic deformation [34]. A roughly 300 × 300 × 100 voxelized domain of orienta-

tion information was measured and subsequently processed to provide phase and grain

identifications for use in the VP-FFT simulation containing about 7000 grains. A weak

crystallographic texture was present in the initial measurement. Therefore, deviations

from sampling the orientations are considered small. A 64 × 64 × 64 extraction from

the strictly solid measured domain containing 213 grains is used in this study. VPSC

simulation input is a sampled list of 500 crystal orientations from the original volume,

weighted evenly. The resulting stress-strain curve data generated during the previous

study, out to 20 % strain, is used as the target for this material. Both computational ap-

proaches used 200 time steps with a 0.1 % strain step size.

IF steel

IF steel contains low amounts of carbon and other alloying elements, resulting in a

relatively simple polycrystalline microstructure. A synthetic voxelized microstructure

for use in VP-FFT was generated using DREAM3D [35] with a log-normal grain size

Fig. 2 Flow chart of parameter optimization routine utilizing built-in MATLAB optimization capability

Anglin et al. Integrating Materials and Manufacturing Innovation  (2016) 5:11 Page 6 of 20



distribution and random orientation distribution in accord with the cubic crystal sym-

metry. The microstructure contained 465 grains and was on a 256 × 256 × 256 voxe-

lized domain. The resulting list of the 465 crystal orientations was used as input to

VPSC. As part of the synthetic structure generation, a crystal orientation was assigned

to each grain. The orientation list for VPSC input assumed equal weight of all grains.

Thus, the VPSC and VP-FFT starting orientation distributions were equivalent save

small variations due to the log-normal size distribution in the VP-FFT input micro-

structure. The stress-strain data used as the target for parameter development was a

tensile test taken to 18.3 % strain [36]. VPSC and VP-FFT used 183 and 18 time steps

with 0.1 and 1 % step sizes, respectively.

Pearlite

Pearlite is a lamellar structure of bcc α-Fe and orthorhombic cementite. Monolithic ce-

mentite is a brittle material, but in pearlite the lamellar structure stabilizes the cement-

ite allowing it to deform plastically [37, 38]. Because of the computational methods

used in this study, it is assumed that cementite deforms by slip.

Synthetic pearlite structures were constructed in a 243 × 243 × 243 domain containing

31 parent ferrite grains with random orientations. Inside these ferrite grains, 226 ce-

mentite lamellae (12.8 % by volume) were placed with planar interfaces parallel to the

habit plane described by the Bagaryatsky orientation relationship (i.e., {112}) between

the two phases [39]. Cementite lamellae are placed with a 16-voxel separation and 2-

voxel thickness, which represent the thicknesses of the ferrite and cementite layers, re-

spectively. The synthetic reconstruction is shown in Fig. 3. The stress-strain curve used

for parameter fitting was from a wire-drawing experiment of commercially pure eutec-

toid pearlitic steel, 0.85 wt.% C, drawn to 150 % true strain [40, 41]. VPSC and VP-FFT

simulations were carried out to strains of 70 and 61 % with step sizes of 0.1 and 1 %,

respectively.

Fig. 3 Visualization of the pearlite grain structure input to the VP-FFT with 31 nodules containing a total of
227 cementite lamellae (black)
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Results and discussion
Copper

The 99.9999 % pure copper sample used in the HEDM study was selected because

there is only one type of slip with no competing deformation mechanisms. Copper is a

face-centered cubic (FCC) material with a slip on the close-packed {111} planes with

<110> Burgers vector, totaling 12 possible slip systems. As there exists only one slip

mode, optimization of constitutive law parameters is fully independent (i.e., all parame-

ters are varied independently). The result of the VPSC parameter optimization is shown

in Table 1.

A VP-FFT simulation of the 64 × 64 × 64 subset of the measured copper specimen

was performed using these parameters. Minor discrepancies are present between the

VP-FFT and experimental stress-strain curves at strains less than 10 %. At strains larger

than 10 %, the VP-FFT flow stress is larger than the experimental data. Adjustments to

τ1 and θ1 can better align the VP-FFT with the other two datasets.

The largest difference, 10.9 MPa (4.2 % error), observed between the two computa-

tional results occurs at the final strain step. However, up to 10 % strain the two curves

match quite well with a mean difference of 1.1 MPa. Initially, the results vary by

4.7 MPa (4.7 %) but quickly converge. Overall, the discrepancy between the two simula-

tions is 4.0 MPa, on average. However, if the VPSC and VP-FFT simulations were car-

ried out past 20 %, the curves would continue to diverge, increasing the mean

discrepancy between curves.

Because VPSC operates on a per-grain basis, the mosaic spread in grain orientation

as a result of plastic deformation, which has been observed during HEDM and electron

backscattered diffraction (EBSD) [42–44], is not captured. Thus, the texture evolution

of VPSC is expected to be an overestimate, while the local nature of VP-FFT has been

shown previously to provide a more reasonable texture evolution, i.e., less rapid sharp-

ening [3]. This may explain the deviations at high strains while maintaining good agree-

ment at low strain.

Fine-tuning of the VP-FFT Voce parameters was not performed in the same

MATLAB framework coupled with VPSC. With experience and understanding of the

Voce hardening law, informed guesses at new parameters were made to bring the VP-

FFT curve in line with the VPSC and experimental curves. To improve the fit at high

strains, the τ1 and θ1 Voce parameters are adjusted by +1.4 and −10.4 MPa, respect-

ively. These specific changes were selected such that τ1 and θ1 were whole numbers,

17.0 and 75.0, respectively. By moving the back-extrapolated intercept higher (i.e., an

increased τ1) and decreasing the steady-state hardening rate (i.e., lowered θ1), the

small-strain data remain in good agreement while increasing agreement at higher

strains. Comparison of the original fit and adjusted parameter stress-strain curves is

Table 1 Best-fit VPSC and subsequent VP-FFT constitutive law parameters for FCC copper

VPSC VP-FFT

τ0 (MPa) 35.8 35.8

τ1 (MPa) 15.6 17.0

θ0 (MPa) 321.6 321.6

θ1 (MPa) 85.4 75.0
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presented in Fig. 4. A more satisfactory fit is found between the two simulations. An

average difference of 1.3 MPa over the 20 % strain range and only a 1.0-MPa (0.4 %)

difference at the final strain are observed. Clearly, the adjusted parameters result in a

VP-FFT result that matches the VPSC result well and, in turn, the experimental copper

data. Changes in the τ1 and θ1 Voce parameters did not result in noticeable changes in

crystallographic texture.

Development of crystallographic texture occurs as grains slip and rotate. Textures at

0, 10, and 20 % are presented in Fig. 5 for both VPSC and VP-FFT. Minor differences

in multiples of a random distribution (MRD) of the starting texture occur, where a ran-

dom texture has an MRD = 1.0, with VPSC having a lower MRD (1.5) than VP-FFT

(2.5) in the <111> corner. Further deformation strengthens this texture (>4 MRD). At

10 % strain, VPSC and VP-FFT have similar textures (3.5 MRD). At 20 % strain, VPSC

and VP-FFT have an MRD > 4. However, the VPSC 4 MRD contour is larger, indicating

that the peak in MRD is higher. Thus, VPSC starts at a more random texture and ends

with a sharper texture. Therefore, VPSC rotates orientations at a higher rate than VP-

FFT (i.e., over-predicting crystallographic textures).

IF steel

A body-centered cubic steel provides two slip modes with relatively similar potential

for a slip. These slip modes are <111> Burgers directions with {110} slip planes and

<111> Burgers directions with {112} slip planes. It was assumed that the hardening be-

havior of these slip modes was captured by the same set of parameters to reduce

optimization complexity. This optimization required approximately 1 h to complete on

a standard work station. The parameters are given in Table 2.

A VP-FFT simulation of the 256 × 256 × 256 IF steel microstructure with random ori-

entations was performed using this set of parameters. The VP-FFT stress-strain re-

sponse is shown in Fig. 6 along with VPSC and experimental data. The degree of

agreement between VPSC and experimental data is quite high. Coincidence of VP-FFT

Fig. 4 Original (“VP-FFT”) and adjusted VP-FFT (“VP-FFT #2”) and VPSC simulation fits to data for copper [33].
An improved fit of the VP-FFT is achieved by small modifications to τ1 and θ1
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and VPSC data is high at small strains with increasing divergence at higher strains. As

discussed in the previous section, adjusting the τ1 and θ1 parameters is required for a

better fit. They are decreased by approximately 2 and 4 MPa, respectively. Upon adjust-

ment, the curves then coincide up to 20 % strain. The adjusted VP-FFT response is also

plotted in Fig. 6.

To compare computation times, VPSC and VP-FFT IF steel simulations were run

with 100, 200, and 400 grains on VP-FFT domains of size 323, 643, and 1283 material

points. Details of the total strain and strain steps are the same as those used above.

VPSC simulations are executed on a personal laptop with a 2.9-GHz Core i7 processor,

while VP-FFT simulations are executed on the DoD ERDC Supercomputer Garnet with

32 2.5-GHz AMD Interlagos Opteron processors per simulation. On average, each VP-

FFT strain step required 57 iterations to reach an equilibrated solution. Computation

times for these simulations are listed in Table 3. VP-FFT computation times are the

total amount of time used on all processors. VPSC’s speed advantage is clear from these

computation times for comparable simulations. Additionally, it is clear that VPSC com-

putation times depend solely on the number of grains in the simulation, while VP-FFT

computation times depend solely on domain size. This indicates that the majority of

the computational effort is associated with solving the non-linear equation for the

stress state, Eq. (2), at each point or grain regardless of how the interaction between

each point or grain and the surrounding medium is handled, i.e., the FFT is a minor

part of the cost.

Pearlite

The philosophy of the approach used for obtaining the Voce hardening parameters for

pearlite is to first decompose an experimental plastic stress-strain curve of pearlite into

Fig. 5 Inverse pole figures to compare crystallographic textures for copper VPSC (top) and VP-FFT (bottom)
simulations at 0, 10, and 20 % with maximum intensity ranging from 0.5 to 4.0 (MRD)
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separate curves for the response of pearlite and cementite using measurements of stress

segregation upon loading. This is necessary due to the brittle nature of cementite in the

absence of a lamellar structure. Optimization is performed on the single-phase curves

individually with a composite VPSC simulation performed as a check of the

optimization. While VP-FFT accounts for the grain structure and subsequent cementite

lamellar network, VPSC can only do this in a limited fashion [45]. Therefore, correc-

tions must be made to τ0 for both phases due to the lamellar structure. Corrections for

ferrite are made with a size scale argument while corrections of cementite are made via

a guess-and-check method within the VP-FFT.

Pearlite has a lamellar structure of ferrite and cementite with spacing on the order of

a micrometer. Clearly, this is a complicated nano-composite, and the physics that de-

scribe the deformation of each constituent phase [46–49] suggests that more sophisti-

cated models could be used, especially for cementite. Nevertheless, for the VPSC and

VP-FFT methods that employ the extended Voce model (Eq. 3) to describe the stress-

strain response, the approach developed in this manuscript offers an efficient approach

to develop a constitutive relation for this class of material. Where more detailed data is

available, such as multiple different strain paths, more complex models, e.g., latent

hardening, may be justified.

Pearlitic ferrite is crystallographically similar to the IF steel studied above and de-

forms via the same slip systems. Cementite’s six primary slip modes are comprised of

[001], [010], and [100] slip directions and (001), (010), and (100) slip planes. These are

unique and should ideally be treated as such; however, the hardening parameters for

Table 2 IF steel VPSC optimized and subsequent VP-FFT Voce hardening parameters

VPSC VP-FFT

τ0 (MPa) 54.3 54.3

τ1 (MPa) 42.2 40.0

θ0 (MPa) 619.2 619.2

θ1 (MPa) 106.8 103.0

Fig. 6 Comparison of VPSC and VP-FFT results to experimental data for IF steel [36]. The small adjustments
to τ1 and θ1 increases the agreement of the VP-FFT and experiment
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these six slip systems are assumed to be identical for computational tractability. This

assumption is also applied to the six <100> {110}1 and the 12 <111> {110} slip modes

separately. If only the cube slip systems are included, then only three independent di-

rections are possible (i.e., [001], [010], and [100]) and arbitrary deformation would not

be possible, i.e., a von Mises criterion is not satisfied. Therefore, the inclusion of the

<100> {110} and <111> {110} cementite slip modes is necessary to ensure five inde-

pendent slip systems are available for slip for an arbitrary deformation. The authors

know no experimental evidence that quantifiable amounts of slip occur on these modes

[50–53]. To provide five independent slip systems while minimizing the slip activity on

the <100> {011} and <111> {110} slip modes, τ0 for these modes is scaled by a factor β,

which is the average ratio of the Burgers vector magnitude and interplanar spacing, b/

d, for all slip systems [50] within the slip mode compared to that of <100> {001} (i.e., β

for <100> {001} = 1.00). The b/d ratio is a measure of a system’s barrier to slip. An ideal

slip system has a large interplanar spacing and a small Burgers vector. Hence, b/d will

be small. Therefore, the τ0 for <100> {001} can be specified, and τ0 for the other slip

modes is calculated. β values for <100> {011} and <111> {110} are 2.092 and 3.809,

respectively.

The curve used for fitting pearlite parameters exhibits a similar behavior at low

strains to the response of the IF steel curve. However, owing to the small strains tested

for the IF steel, the large-strain Voce parameters (i.e., τ1 and θ1) cannot be considered

to be reliable for use in pearlitic ferrite. Therefore, a new comparison curve is selected

for the large strains tested.

Cementite’s high strength and network of interconnected lamellae in the fully pearl-

itic microstructure will require a higher stress to achieve the prescribed overall deform-

ation. Therefore, cementite is expected to be the limiting phase in pearlite. The

apparent yield stress of cementite is ~1500 MPa [54] while the generally accepted yield

stress of pearlitic ferrite without length effects is 70 MPa. Therefore, it is reasonable to

expect yield stress values in cementite to be on the order of ten times larger than

ferrite.

Assumptions are required to decompose the single curve into individual contributions.

Tomographic measurements of pearlite have shown that ferrite controls the low-strain

hardening behavior while cementite controls large-strain hardening behavior [36, 54].

Table 3 Computational time required for various size models. VPSC is performed on a standard
personal laptop 2.9-GHz Core i7 processor, and VP-FFT is performed on the DoD ERDC Supercomputer
“Garnet” with 32 2.5-GHz AMD Interlagos Opteron processors per simulation

# grains Resolution VPSC (s) VP-FFT (min)

100 323 8 23.7

643 8 91.7

1283 8 636.1

200 323 14 22.0

643 14 90.2

1283 14 622.3

400 323 26 22.0

643 26 90.2

1283 26 628.2
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Therefore, the ferrite curve used for comparison is those pearlite values below 35 % strain

and the linear extrapolation of data above 35 % strain. The cementite curve is the linear

back-extrapolated data before 35 % strain. To account for the enhanced hardening relative

to ferrite, the curve used for comparison above 35 % strain is the sum of the pearlite data

and the difference of the pearlite data and linear extrapolation above 35 % strain (i.e.,

those values used for ferrite above 35 %), up to 70 %. A depiction of the stress-strain curve

deconstruction is shown in Fig. 7. The resultant hardening parameters from the VPSC

optimization are listed in Table 4 with the resulting VPSC stress-strain curves shown in

Fig. 8. An excellent fit of the VPSC composite and pearlite data is observed save for a

small translation.

While VPSC is an efficient tool for finding Voce hardening parameters, it cannot ac-

count for the load transfer that takes place in the lamellar cementite structure; thus,

overestimating τ0 for ferrite by a factor of 2 and underestimating it for cementite by a

factor of 10 for the final parameters are discussed below and listed in Table 4. This is

the same factor by which the yield stress varies between pearlitic ferrite and cementite.

That is to say that this is evidence that VPSC (and thus the optimization) fails to ac-

count for the structural network found in real pearlite microstructures. Therefore, these

values must be adjusted within the VP-FFT or set by theory. Changes to τ0 of either

phase do not change the hardening behavior except to translate the curve up or down

in stress.

The deformation behavior of pearlite is highly dependent on the microstructural

characteristics. In particular, the yield stress is strongly correlated to the interlamellar

spacing. Typically, an inverse or inverse-square root dependence is observed. The influ-

ence of the interlamellar spacing of cementite on pearlite used here is

σy ¼ kS−10 þ σ∞; ð4Þ

where σy is the yield stress, k the slope, S0 the interlamellar spacing, and σ∞ is the yield

stress of an infinite diameter grain. Because it is assumed that ferrite controls the

Fig. 7 Depiction of the deconstructed pearlite stress-strain curve used to fit the ferrite and cementite hardening
parameters from the same set of data [40, 41]. Ferrite is assumed to control work hardening at low strains
(<15 %) while cementite is assumed to control work hardening at high strains (>35 %)
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deformation at low strains, this relationship is applicable in ferrite only. The slope, k, is

50 MPa/μm [55, 56] given in the macroscopic scale yield stress. As mentioned previ-

ously, to bridge the disparate macro- and meso-scales, a Taylor factor, M, is used. Here,

we use the average Taylor factor in the IF steel VP-FFT calculation (2.376). The IF steel

optimized τ0 is used as the σ∞ in this relationship as it is compositionally similar to

pearlitic ferrite.

CRSS ¼ σy
M

¼ kS−10 þ σ∞
M

¼ kS−10
M

þ τIF steel
0 ð5Þ

The computed τ0 for ferrite, 185.8 MPa, with a 0.16-μm interlamellar spacing is used

in the VP-FFT simulation.

Note that, although the compositions of IF steel and pearlitic ferrite are similar, their

hardening mechanisms may differ (i.e., precipitation hardening versus solid solution

strengthening). Nano-indentation is a possible alternative method for estimating τ0 for

pearlitic ferrite. However, the IF steel test data available in the literature was convenient

for the estimates required for the method developed in this manuscript. Additionally,

this inaccuracy in this portion of the pearlite model is likely minimal considering the

much larger τ0 for cementite.

Due to the inability of VPSC to take into account the lamellar structure of pearlite,

adjustments to cementite τ0 were performed via trial-and-error VP-FFT simulations. τ0
for the cementite <010> {001} slip mode was found through VP-FFT adjustments with

an initial guess coming from VPSC. Initial CRSS values for the other slip modes are de-

termined by the β parameter described previously. Despite the polycrystalline cementite

and ferrite structures used in VPSC optimization, the remaining Voce hardening pa-

rameters, τ1, θ0, and θ1, were constant for all slip modes of ferrite and cementite.

Table 4 lists the Voce hardening parameters used for all phases and slip modes in all

subsequent VP-FFT calculations. These hardening values show the control of the initial

hardening rate by ferrite (i.e., small θ0 for cementite) and the final hardening rate by ce-

mentite (i.e., small θ1 for ferrite).

Figure 9 shows a comparison of the experimental data and the VP-FFT output. While

the initial difference between responses is sizeable, 99.2 MPa (8.0 %), an effort was

made to maximize overall agreement, by visual inspection after each VP-FFT simulation

of the candidate τ0 cementite parameters. In particular, focus was placed on the strain

range 15–30 % where the final average absolute difference is 8.6 MPa. Visually, the VP-

FFT response beyond 25 % strain hardens at a faster rate than the physical experiment

as evidenced by the nearly identical stresses at 25 % and the larger VP-FFT stress by

32.5 MPa (2.0 %) at the maximum simulated strain. While these differences are notice-

able, no further adjustments to τ1 and θ1 are made because the discrepancies between

Table 4 List of Voce constitutive law parameters (MPa) for pearlite

Original τ0 (MPa) Final τ0 (MPa) τ1 (MPa) θ0 (MPa) θ1 (MPa)

Ferrite <111> {110} 444.3 185.8 170.6 2027.9 11.0

Ferrite <111> {112} 444.3 185.8 170.6 2027.9 11.0

Cementite <100> {001} 322.2 2726.0 1.215 0.276 628.9

Cementite <100> {011} 674.1 5702.1 1.215 0.276 628.9

Cementite <111> {110} 1227.4 10383 1.215 0.276 628.9
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simulation and experiment can no longer be attributed to a single phase. Manual ad-

justments would nullify the computational advantages obtained by employing the

MATLAB/VPSC optimization and may disregard the assumptions made in the devel-

opment of this pearlite constitutive law.

In comparison to Cu and IF steel, the fit to pearlite is less accurate. This may be at-

tributed to numerous factors including the development of dislocation structures

within the ferrite that control the ferrite deformation at progressively higher strains

[46–49]. The VPSC and VP-FFT methods and the simple Voce hardening model

(Eq. 3) do not sufficiently account for the physics of such phenomena. Additionally,

there exist collinear slip directions at the ferrite-cementite interface in the Bagaryatsky

orientation relationship (i.e., [010] Fe3C parallel to [111] Fe) that can account for add-

itional hardening. However, this effect of latent hardening is not accounted for in the

Fig. 8 VPSC optimization of pearlite and ferrite curves fit separately. The VPSC stress-strain response of the
composite calculated with the individually fit parameters is also presented

Fig. 9 Comparison of pearlite experimental stress-strain and VP-FFT output [40, 41]
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Voce hardening model employed here. This leads to the difficulties observed in provid-

ing the excellent match between the test data and simulation responses observed in Cu

and IF steel. This final case study may extend beyond the intended capabilities of the

VPSC and VP-FFT methods, but the approach described in this manuscript still is use-

ful for reducing the time required to obtain model parameters to describe the compat-

ible deformation of a lamellar structure of ferrite and cementite.

Domain size dependence

It has been reported that the Voce parameters required to achieve a given stress-strain

response are dependent on the domain resolution [57]. VP-FFT simulations were re-

peated for IF steel microstructures downsampled to cubic domains with edge lengths

64, 81, 125, 128, 189, and 243 voxels from the domain with edge length 256 voxels.

Only a single grain with original volume of 65 voxels was removed during downsam-

pling in the domain with edge length 189 and smaller. Absolute differences between

each VP-FFT and experimental responses are computed at matching strain levels only

(i.e., intermediate strain experimental data points are ignored in comparisons) because

simulations use a strain step of 1 %. This comparison is shown in Fig. 10.

While higher resolutions afford more degrees of freedom and higher potential for

mosaic spread of crystal orientations, the viscoplastic constitutive response of the crys-

tal is largely independent of domain resolution. For example, in the previous section

the large difference in VPSC and VP-FFT model resolutions results in a very small dif-

ference in stress-strain response with equivalent Voce parameters. This is confirmed as

no domain response varied by more than 2.0 MPa on average, with a maximum devi-

ation of 3.88 MPa at 6 % strain at the lowest domain resolution. It is clear from this

analysis that no dependence on domain size is present for simply polycrystalline micro-

structures within VP-FFT.

Note that while this work has focused on fitting the predicted stress-strain behavior,

both codes also simulate texture evolution. Thus, one could utilize an optimization that

Fig. 10 Error metrics of the VP-FFT stress-strain curves for an IF steel realization downsampled to various
domain sizes
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tracks both stress-strain and texture, which would require two limit states as opposed

to one. This would require a different optimization algorithm, but there are no obvious

obstacles to implementation.

Conclusions
There is a significant difference in computational time required between the VPSC and

VP-FFT codes, Table 3. Thus, this study provides a method for reducing the amount of

time required to fit experimental stress-strain data with the VP-FFT code. Applying the

Voce parameters optimized through the VPSC to the VP-FFT code saves the user time

and removes guesswork from the fitting process.

The utilization has been illustrated through a viscoplastic self-consistent model [2]

for rapid fitting of the Voce model to experimental stress-strain data through use of

MATLAB’s built-in optimization toolbox. The optimized parameters were shown to be

valid in the computationally time-consuming but higher fidelity VP-FFT code. For

high-purity copper, the parameter values derived with VPSC were immediately usable

in the VP-FFT code and only the initial CRSS value required adjustment.

Applying this method to a pearlitic, biphasic steel resulted in a drastic decrease

in the amount of time required to develop an acceptable hardening model for the

VP-FFT code by decreasing the number of high-resolution simulations required.

The parameters derived from VPSC provided a well-informed initial guess that re-

quired minimal change in order to properly fit the experimental stress-strain curve.

This demonstrated that the method is not limited to a single-phase material. With

sufficient knowledge of each individual phase, a two-phase material constitutive law

can be developed.

Endnotes
1The notation for families of crystallographic planes and directions is extended here

to include the set of slip planes and directions with permutations of the indices that are

distinguishable within the orthorhombic cementite crystal.

Appendix I: details of MATLAB optimization routine
The optimization routine used to develop the Voce hardening parameters throughout

this paper was written in MATLAB 2012 using the lsqcurvefit function built into the

Optimization toolbox. The lsqcurvefit function uses a non-linear, least-squares

optimization technique that seeks to minimize the sum of the square of the residuals.

Because the problem is inherently non-linear, an iterative approach is used. MATLAB’s

ability to call externally compiled programs was exploited for this work, and a detailed

flow chart can be seen in Fig. 11.

The optimization routine, as mentioned previously, utilized the lsqcurvefit func-

tion. However, the function requires data points against which it calculates the re-

sidual and performs the optimization. Once the data has been read in, the

lsqcurvefit function calls the “main program” in order to generate the simulated

data points. The main program starts by assigning the updated parameter values

(as dictated by the least-squares algorithm). Once this has occurred, the input file

editing function is called to write the new parameter values to the input file (exter-

nal text file) and then return a success (or error) flag to the main program. The
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externally compiled VPSC program is then called using the ! command within

MATLAB, which allows the calling of the external program. Once VPSC has com-

pleted the simulation, the output files (text files) are read back into MATLAB. The

simulated stress-strain data is then passed, along with the experimental data, to

the data reducing function. This function reduces the full-scale simulation data to

a list of stress-strain points that coincide precisely with the experimental data pro-

vided. Thus, if there are 80 experimental data points, the reducing function will re-

turn exactly 80 simulated points. The reason behind this reduction is that the

lsqcurvefit function requires simulated values to match each strain point without

any extra information. Since experimental data does not come from a continuous

function, the simulated data must be reduced to a finite number of matching

points.

After the reducing function has passed the reduced data back to the main program,

the program generates a plot to pictorially inform the user the state of the optimization.

The main program then passes the simulated stress data back to the optimization pro-

gram so that the lsqcurvefit function is able to calculate the residual and generate new

parameters.

A limitation of the lsqcurvefit function is that it uses a single set of maximum

and minimum values to control how large of changes can occur during the

optimization. Because the Voce hardening parameters can be orders of magnitude

different, the lsqcurvefit optimizes multipliers (starting a value equal to 1) instead

of optimizing the parameter values directly. Thus, the maximum and minimums

are set at 0 and 10, respectively, and the minimum change is 1E−2. This allows

enough fidelity for fine adjustments but does not allow the large magnitude of θ to

overshadow the τ values.

Fig. 11 Detailed flow chart of optimization routine for hardening parameters implemented within MATLAB
software utilizing external bash commands and built-in MATLAB functions
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