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Clustering co-abundant genes identifies
components of the gut microbiome that
are reproducibly associated with colorectal
cancer and inflammatory bowel disease
Samuel S. Minot1* and Amy D. Willis2

Abstract

Background: Whole-genome “shotgun” (WGS) metagenomic sequencing is an increasingly widely used tool for
analyzing the metagenomic content of microbiome samples. While WGS data contains gene-level information, it
can be challenging to analyze the millions of microbial genes which are typically found in microbiome experiments.
To mitigate the ultrahigh dimensionality challenge of gene-level metagenomics, it has been proposed to cluster genes
by co-abundance to form Co-Abundant Gene groups (CAGs). However, exhaustive co-abundance clustering of millions
of microbial genes across thousands of biological samples has previously been intractable purely due to the
computational challenge of performing trillions of pairwise comparisons.

Results: Here we present a novel computational approach to the analysis of WGS datasets in which microbial gene
groups are the fundamental unit of analysis. We use the Approximate Nearest Neighbor heuristic for near-exhaustive
average linkage clustering to group millions of genes by co-abundance. This results in thousands of high-quality CAGs
representing complete and partial microbial genomes. We applied this method to publicly available WGS microbiome
surveys and found that the resulting microbial CAGs associated with inflammatory bowel disease (IBD) and colorectal
cancer (CRC) were highly reproducible and could be validated independently using multiple independent cohorts.

Conclusions: This powerful approach to gene-level metagenomics provides a powerful path forward for identifying
the biological links between the microbiome and human health. By proposing a new computational approach for
handling high dimensional metagenomics data, we identified specific microbial gene groups that are associated with
disease that can be used to identify strains of interest for further preclinical and mechanistic experimentation.

Background
Metagenomic analysis of the microbiome typically falls
into the categories of taxonomic classification, metabolic
pathway reconstruction, or genome reconstruction. While
each has been used to good effect, each also has its own
limitations. Taxonomic analysis is constrained by the size
and quality of reference databases, which have started to
provide decreasing taxonomic precision as the number of
sequenced genomes grows [1]. Metabolic analysis is lim-
ited by our ability to annotate biochemical function from
primary sequence, with only a minority of genes receiving

any sort of annotation. Genome reconstruction (or “gen-
ome-resolved metagenomics”) has made immense contri-
butions to our understanding of microbial diversity and
evolution but is challenging to exhaustively characterize
environments like the human gut, which contain hun-
dreds or thousands of strains. In contrast, we took the
approach of quantifying each individual gene de novo
from a given metagenome. While this approach presented
considerable computational challenges, it is unconstrained
by the limitations of reference databases or annotation
systems and therefore presents the possibility of discover-
ing novel biological patterns in the human microbiome.
While the microbiome has been implicated in a num-

ber of human diseases, we chose to focus on colorectal
cancer (CRC) and inflammatory bowel disease (IBD)
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because of the availability of metagenomic data from
multiple independent cohorts [2–8]. Associative studies
characterizing differences in the microbiome as a func-
tion of disease status are complicated by the effect of
disease and treatment process on the microbiome [9–
12], but it is still possible that some of the differences in
the microbiome may play some causal role or implicate
a causal biological process.
The approach of gene-level metagenomics is not new

to this study and has been proposed previously as an al-
ternative to taxonomic or metabolic pathway analysis
[13]. Indeed even the popular HUMAnN2 tool [14] in-
cludes gene-family abundance estimation using the
UniRef database of proteins [15]. We took the previously
described approach of grouping together genes that are
consistently found at a similar level of abundance across
multiple samples [13]. Such co-abundant genes are likely
to be found on the same chromosome or piece of DNA
across multiple samples, such as in the core genome for a
bacterial species or consortium, on a plasmid that may
move between strains, or as part of an operon in the
accessory genome of a species that is only found in a sub-
set of strains. Biologically speaking, co-abundant genes are
not independent entities and can be grouped together for
purposes of inferring their relationship with human health
and disease. In addition, grouping genes by co-abundance
finds low-dimensional structure in high-dimensional
gene-level data, mitigating challenges with the statistical
analysis of high-dimensional metagenomics data.

Results and discussion
The primary analytical challenge that we encountered in
this project was that of efficiently clustering microbial
genes based on co-abundance. This general approach has
been proposed and implemented previously [13, 16], but
existing implementations do not perform exhaustive
searches for co-abundant genes because performing all
pairwise comparisons of millions of genes in large micro-
biome datasets [17] is computationally intractable. To
overcome this obstacle, we took advantage of the Approxi-
mate Nearest Neighbor (ANN) heuristic, which is able to
robustly identify candidate subsets of co-abundant genes
without having to perform all pairwise comparisons [18,
19]. We implemented a Python package (“ann_linkage_
clustering”) to perform exhaustive average linkage cluster-
ing using the cosine distance metric on any dataset
containing gene abundance data across a set of samples.
While this method is relatively computationally intensive,
we were able to execute it in a reasonable amount of time
using commodity “cloud” computational resources (e.g.,
17 h for a set of five million genes across 199 samples with
a 256GB RAM node). While this clustering procedure is
not expected to be deterministic, our experience has been
that clusters are generally reproduced across replicates and

we are actively studying the generalizability of gene cluster-
ing as a function of input data and clustering thresholds. In
the ideal case, this approach improves the precision of esti-
mating gene-level abundance by combining data from mul-
tiple correlated observations, as well as reducing the
number of hypotheses to test in an association study, while
maintaining the interpretation advantages of distinct gen-
etic elements (core genome, plasmid, virus, etc.).
We applied this novel approach to gene-level metage-

nomics to test for an association of the gut microbiome
across two distinct human diseases: IBD and CRC (Table
1). We selected these diseases because each has been stud-
ied by multiple groups who have collected stool samples
and performed metagenomic whole-genome “shotgun”
(WGS) sequencing (Table 1) [2–8]. Because each of these
previous studies used slightly different protocols for select-
ing patients, collecting samples, and performing sequen-
cing, an integrated analysis of these datasets should serve
to identify those signals in the microbiome which are most
robust to the methodological and experimental
confounders.
The Co-Abundant Gene groups (CAGs) identified in

this project contained 2–23,856 genes, with the majority
of genes found in CAGs ranging between 10 and 2000
genes in size and containing the range of metabolic
functions expected from complete and partial microbial
genomes (Additional file 1: Figure S1). Visual inspection
of the genes making up these CAGs also demonstrated
the highly consistent patterns of abundance displayed by
the genes which were ultimately grouped into these
CAGs (Fig. 1). We also analyzed a published single-cell
sequencing dataset from the stool microbiome [20] and
found that genes from the same CAG were found in the
same physical cell at three to nine times the rate ex-
pected by chance (Additional file 2: Figure S2). The size,
functional content, and clear pattern of co-abundance
displayed by the genes in this analysis suggest that the
CAGs used for statistical analysis represent biological
units that are meaningful reflections of the composition
of the microbiome across multiple independent datasets.
Our approach to the bioinformatic and statistical ana-

lysis was to select a single study for each disease as the

Table 1 Published datasets analyzed in this study

Group Used for Name NCBI BioProject

IBD Discovery Schirmer et al. [2] PRJNA389280

IBD Validation Lewis et al. [3] SRP057027

IBD Validation Hall et al. [4] PRJNA385949

CRC Discovery Zeller et al. [5] PRJEB6070

CRC Validation Feng et al. [8] PRJEB7774

CRC Validation Yu et al. [7] PRJEB10878

CRC Validation Vogtmann et al. [6] PRJEB12449
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“discovery” cohort and to use that dataset to build a de
novo catalog of microbial genes and identify CAGs. That
gene catalog and CAG grouping generated from the dis-
covery cohort was subsequently used to analyze the add-
itional validation cohorts. Our statistical model was
relatively straightforward and used random effects mod-
eling to estimate the difference in the centered log-ratio
of the relative abundance of each CAG in the samples
from people with and without the disease state (account-
ing for multiple sampling of some individuals with ran-
dom effects models). We chose to group together all
participants with any form of the disease state, as the
criteria for disease classification was not consistent
across studies. In this discovery-validation approach,
those CAGs which had a q value of < 0.2 in the discovery
cohort were subsequently tested in an additional “valid-
ation” cohort, and those CAGs which also had a q value
< 0.2 in that second step and the same direction of effect
were considered to be associated with disease.
We found with this approach that the estimated coeffi-

cient of disease status in the set of CAGs associated with
disease in the discovery cohort was significantly associ-
ated with the estimated coefficient in the validation co-
hort (Fig. 2a, b; CRC—r = 0.36, p < 2E−16; IBD—r = 0.30,
p < 2E−16). Within the set of CAGs that were associated
with disease in the discovery dataset, 44.0% and 97.2%
were significantly associated in the validation dataset for
CRC and IBD, respectively. When performing the same

analysis with unclustered gene-level abundances (a single
gene randomly selected from each CAG), we found a
roughly 20–40% lower correlation between the estimated
coefficient of disease status (Fig. 2c, d) and a much lower
validation rate of 9.8% and 76.0%, respectively. We be-
lieve that this evidence supports the proposed utility of
CAGs for detecting reproducible biological associations
of the microbiome with host disease. Furthermore, 24,
502/36,871 CRC-associated CAGs had the same sign of
the estimated coefficient in the validation cohort as in
the discovery cohort (p < 1E−200, see the “Methods” sec-
tion), and 28,629/31,895 IBD-associated CAGs had the
same signed estimated coefficient (p < 1E−200). We fur-
ther demonstrated the extent of this association by dis-
playing the abundance of the most strongly associated
CAGs across a total of three (IBD) or four (CRC) co-
horts (Fig. 2e, f ), suggesting that this association is not
limited to the cohorts selected for discovery and valid-
ation. Over and above the claim that the microbiome is
associated with disease in both cohorts, we believe that
these results indicate that a substantial number of ele-
ments of the microbiome that are associated with dis-
ease in a given discovery cohort will also be associated
with disease in a corresponding validation cohort.
The pattern of association for the IBD datasets was

dominated by the 98.5% of CAGs which had a positive
coefficient, indicating that they were more abundant in
participants without IBD (Fig. 2b) Additional file 5:

A B

Fig. 1 Patterns of gene-level co-abundance across all microbiome samples from a subset of CAGs. Each row represents a single microbial gene,
each column represents a single biological sample, and pixel color reflects the gene’s relative abundance (sequencing depth) in the sample.
A subset of CAGs and genes was randomly selected for display from the CRC datasets (a) and the IBD datasets (b). Unsupervised hierarchical
clustering was used to group the rows and columns, and the left-hand color bar indicates the CAG assignment for each gene
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Fig. 2 Reproducible association of CAG abundance with disease status for CRC (a, e) and IBD (b, f). The estimated coefficient plotted in a–d
represents the log10 change in relative abundance associated with health (positive values) or disease (negative values), for each disease state.
The estimated coefficient for the discovery dataset is on the horizontal axis, and the estimated coefficient for the validation dataset is on the
vertical axis. The results from CAG-based analysis are shown in a and b, while the results calculated from unclustered gene-level abundances are
shown in c and d. The abundance of four representative CAGs are shown in e and f across all available datasets, with colors indicating the health
status associated with each sample
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Table S2. We therefore investigated the gene-level rich-
ness, finding a lower level of gene richness observed in
IBD samples compared to healthy controls (Add-
itional file 3: Figure S3) [21], corroborating previous ob-
servations of lower alpha diversity in IBD [22, 23].
Without our use of the centered log-ratio to adjust for
the compositional nature of these datasets, the decreased
abundance of a large fraction of the microbiome may
have resulted in a spurious finding that the remainder
had increased in abundance [24], but in fact, we found
that very few CAGs were consistently increased in abun-
dance in IBD relative to the geometric mean of each
sample. In addition to the decrease of overall gene rich-
ness, the lower number of CAGs found to be consist-
ently enriched in IBD may also be due to an overall
heterogeneity or ‘dispersion’ in the organisms which are
positively associated with IBD across different people at
a given point in time [14, 25]. However, there was a sub-
set of CAGs which were consistently found to be more
abundant in IBD, which may represent those bacteria
which are able to thrive in the environment of the in-
flamed gut. Indeed, the taxonomic annotation of the
genes in these CAGs is enriched for organisms which
have been implicated in some previous studies of IBD
and gut pathogens, including Enterobacteriaceae such as
Escherichia/Shigella and Salmonella [3, 22, 23] which
may exhibit some growth advantage in the context of ei-
ther the increased oxygen content of the inflamed intes-
tine or the antibiotics used in IBD treatment [9, 10].
Other organisms, such as Ruminococcus gnavus, were only
enriched in IBD for a subset of genes (n = 77), supporting
the previous hypothesis of a strain-specific association
with IBD [4]. There was also a set of KEGG annotations
that were weakly but consistently enriched in this set of
IBD-associated genes related to colonization and patho-
genesis, such as fimbriae genes fimA (K07345) and fimD
(K07347), iron transport (K02010), and putrescine trans-
port (K02052; K11072; K11076).
The pattern of association for the CRC datasets was

generally balanced between CAGs that were more abun-
dant in healthy participants and those that were more
abundant in disease (Fig. 2a) Additional file 4: Table S1.
Of the largest CAGs that were reproducibly associated
with disease, those which were more abundant in healthy
participants tended to be classified as Clostridia (via align-
ment to NCBI RefSeq), while those which were more
abundant in participants with CRC were more taxonomic-
ally diverse (Fig. 3a, b). Moreover, we found the functional
annotations of the genes in those CAGs to be particularly
interesting. There were four KEGG annotations that were
significantly enriched in the set of CAGs found to be more
abundant in CRC samples (Fisher’s exact test, Holm-Sidak
alpha = 0.01): (1) grdA (K10670) is involved in metabolism
of glycine/sarcosine/betaine, and higher levels of glycine is

a recognized hallmark of cancer cells [26, 27]; (2) oxyR
(K04761) is a transcriptional regulator which regulates
genes protecting from the biochemical damage induced
by reactive oxygen species, of which markedly higher
levels are associated with progressive tumors [28, 29]; (3)
abgT (K12942) is a transporter responsible for uptake of
p-aminobenzoyl-glutamate and may also import other di-
peptides [30]; and (4) afuA/fbpA (K02012) are trans-
porters responsible for importing iron [31], which is likely
to be more abundant in the gastrointestinal lumen of indi-
viduals with CRC due to bleeding. Three of these four an-
notated functions have clear links to the altered
environment of the gut microbiome expected during CRC
and likely promote the growth of these organisms in that
setting. It remains to be seen whether those organisms
which are able to thrive in the CRC gut microbiome also
contribute to the progression of disease (Additional file 4).
One advantage of a gene-based approach to metage-

nomic analysis is that any CAG of interest can be directly
compared with the genomes of bacterial isolates in order
to identify strains containing each gene. Of the set of
genes that we identified as consistently associated with
CRC and IBD, we found a number of strains containing
large fractions of these genes (Fig. 3c, d). We furthermore
propose that this approach of aligning disease-associated
genes to whole microbial genomes may be used to identify
the members of any culture collection which are likely to
have the largest effect in an experimental model of these
human diseases (Additional file 5).

Conclusions
Having identified microbial protein-coding genes that
are associated with CRC and IBD, we anticipate that
other researchers may build on these findings in mul-
tiple ways. Researchers may compare this list of disease-
associated genes to any genomes of interest in order to
identify specific isolates and/or genes which may be per-
turbed in a controlled experimental setting to test the ef-
fect of microbes on host disease. Additionally,
researchers may apply this general approach (quantifica-
tion of CAGs from a de novo gene catalog) to their own
metagenomic datasets in order to identify additional
genes associated with any outcome of interest. While lat-
ter use-case may be implemented using the computa-
tional tools and associated Docker images described in
the “Methods” section, we are hoping to further support
this methodological approach by developing reprodu-
cible analytical workflows that are more easily executed
by the general microbiome research community.
By proposing an approach to the analysis of metage-

nomic data that produces consistent results across mul-
tiple heterogeneous datasets, we are addressing one of
the most important challenges in metagenomics, namely,
reproducibility. Our findings suggest that indeed, co-
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abundant gene groups are a reproducible and biologic-
ally meaningful unit of analysis. In addition, microbial
genes are a meaningful and useful unit of analysis

because they can be linked to individual microbial ge-
nomes, taxonomic annotations, and predicted metabolic
functionality. Using this approach, we identify a list of

Fig. 3 Association of individual microbes with CRC (a, c) and IBD (b, d). a and b show the estimated coefficient of abundance for individual CAGs
with disease status (log10 mean and 90% confidence intervals, left panel), the taxonomic assignment (middle panel), and functional assignment
(right panel) of genes within each of those CAGs. c and d show the number of genes from disease-associated CAGs that are found within bacterial
genomes from NCBI RefSeq, showing both the total number of genes for each genome, as well as a heatmap showing which disease-associated
genes are found in which genomes

Minot and Willis Microbiome           (2019) 7:110 Page 6 of 10



gene groups that are associated with human diseases in
multiple cohorts, and we identify specific microbial iso-
lates that contain these genes. The development of diag-
nostics or therapeutics based on this list of genes and
genomes is left to future work.

Methods
Datasets
Gene-level metagenomic analysis pipeline
All microbiome WGS data were analyzed using a
Docker-based workflow, with each individual step exe-
cuted inside a Docker image. The workflow outlined
below was executed independently for the set of samples
from Schirmer et al., as well as for the set of samples
from Zeller et al.
The sequence of analyses is as follows:

1. Each sample was individually downloaded from
NCBI SRA with Entrez Direct

(a) Docker image: quay.io/fhcrc-microbiome/
get_sra:v0.4

(b) Code: https://github.com/FredHutch/docker-sra
(c) Wrapper script: get_sra.py
(d) Software version(s):

I. sratoolkit.2.8.2-ubuntu64
II. CMake3.11
III. fastq-pair 4ae91b0d9074410753d376e5adfb2dd

d090f7d85

2. Each sample was individually assembled with
metaSPAdes

(a) Docker image: quay.io/fhcrc-microbiome/
metaspades:v3.11.1--10

(b) Code: https://github.com/FredHutch/docker-
metaspades

(c) Wrapper script: run_metaspades.py
(d) Software version(s): SPAdes-3.11.1-Linux

3. Each sample’s metagenomic assembly was
annotated using Prokka

(a) Docker image: quay.io/fhcrc-microbiome/
metaspades:v3.11.1--8

(b) Code: https://github.com/FredHutch/docker-
metaspades

(c) Software version(s): Prokka v1.12; barrnap v0.9
(d) Wrapper script: run_prokka.py

4. The protein-coding sequences from all of the metage-
nomic assemblies for a given dataset were clustered

at 90% amino acid identity using mmSeqs2 to create
a set of non-redundant protein sequences

(a) Docker image: quay.io/fhcrc-microbiome/integrate-
metagenomic-assemblies:v0.4

(b) Code: https://github.com/FredHutch/integrate-
metagenomic-assemblies

(c) Software version(s): biopython==1.70; MMseqs2
v2-23394

(d) Wrapper script: integrate_assemblies.py

5. Each sample was aligned against the non-redundant
protein sequences using DIAMOND, with
post-alignment filtering using FAMLI. The Docker
image associated with this step includes both the
DIAMOND aligner and the FAMLI filtering code

(a) Docker image: quay.io/fhcrc-microbiome/famli:v1.1
(b) Code: https://github.com/FredHutch/famli
(c) Software version(s): DIAMOND v0.9.10; famli==1.0
(d) Wrapper script: famli
(e) Parameters:

I. min_qual = 30
II. min_score = 20
III. query_gencode = 11

6. The non-redundant protein sequences were func-
tionally annotated via eggNOG-mapper

(a) Docker image: quay.io/fhcrc-microbiome/eggnog-
mapper:v0.1

(b) Code: https://github.com/FredHutch/docker-
eggnog-mapper

(c) Software version(s): eggNOG-mapper = 1.0.3--py27_0
(d) Wrapper script: run_eggnog_mapper.py

7. The non-redundant protein sequences were ana-
lyzed via the taxonomic assignment functionality of
DIAMOND (using NCBI’s RefSeq as the reference
database)

(a) Docker image: quay.io/fhcrc-microbiome/famli:v1.3
(b) Code: https://github.com/FredHutch/famli
(c) Software version(s): DIAMOND v0.9.22
(d) Wrapper script: diamond-tax.py
(e) Parameters: top_pct = 1

8. The non-redundant protein sequences were
grouped into CAGs based on their abundance pro-
file across the dataset

Minot and Willis Microbiome           (2019) 7:110 Page 7 of 10

https://github.com/FredHutch/docker-sra
https://github.com/FredHutch/docker-metaspades
https://github.com/FredHutch/docker-metaspades
https://github.com/FredHutch/docker-metaspades
https://github.com/FredHutch/docker-metaspades
https://github.com/FredHutch/integrate-metagenomic-assemblies
https://github.com/FredHutch/integrate-metagenomic-assemblies
https://github.com/FredHutch/famli
https://github.com/FredHutch/docker-eggnog-mapper
https://github.com/FredHutch/docker-eggnog-mapper
https://github.com/FredHutch/famli


(a) Docker image: quay.io/fhcrc-microbiome/find-
cags:v0.11.1

(b) Code: https://github.com/FredHutch/find-cags
(c) Software version(s): nmslib = 1.7.3.5
(d) Wrapper script: find-cags.py
(e) Parameters:

I. min_samples = 10
II. max_dist = 0.3
III. normalization = sum

9. Group the outputs of all previous steps into a single
HDF file

(a) Docker image: quay.io/fhcrc-microbiome/
experiment-collection:latest

(b) Code: https://github.com/FredHutch/minot-
experiment-collection

(c) Wrapper script: make-experiment-collection.py

The validation datasets were analyzed by aligning the
raw WGS reads against the non-redundant protein se-
quences generated from the relevant discovery dataset as
described in step 5 described above. The final HDF file cre-
ation step (9) includes the results of that quantification step
for the validation datasets as well as the discovery datasets.
Given the difficulty of providing a workflow execution

system that can be used effectively by a broad range of
users, we have elected to provide all of the individual tools
needed to run a complete analytical workflow, with public
Docker images making up each individual step, instead of
providing a complete workflow system that each user
would need to customize for their own execution engine
(Slurm, PBS, Kubernetes, AWS, GCP, Azure, etc.). This ap-
proach enables execution of the exact code that we used in
this analysis in a platform-independent manner using the
highest standard of reproducibility (Docker containers).
Our implementation of the analytical workflow de-

scribed above relied upon the Amazon Web Service and
its Batch API, which allows users to submit individual
jobs for analysis using utilities from the boto3 library in
Python. While this implementation does not represent a
complete workflow management system, the code used
for this execution is available at https://github.com/Fred-
Hutch/aws-batch-helpers/ in the batch_helpers/batch_
task_manager.py module.

Grouping genes by co-abundance
We did not find any public tools for grouping genes by
co-abundance that were appropriate to the scale of our
datasets. To implement our own approach for finding
CAGs, we utilized the Non-Metric Space Library
(“nmslib,” https://pypi.org/project/nmslib/) which imple-
ments the Approximate Nearest Neighbor (ANN)

algorithm [18, 19] and obviates the need for calculating
the all-by-all distance matrix typically used by clustering
algorithms. The abundance matrix used for clustering was
created by calculating the depth of sequencing for each in-
dividual gene within each sample and normalizing for
total sequencing depth. The distance metric used to quan-
tify the dissimilarity of individual genes was the cosine dis-
tance. Gene clusters were identified iteratively by average
linkage clustering and a fixed cophenetic distance thresh-
old. The ANN algorithm was used to identify subsets of
genes which were likely to be highly co-abundant and
which could be clustered independently of the whole. The
code executed for this analysis, as well as a Docker image
containing all required dependencies, can be found in the
summary of the complete analysis workflow (step 8).

Correlating CAGs with health status
CAG discovery
For every CAG in the validation dataset, we tested the null
hypothesis that the mean difference in centered log-ratio
(CLR) abundance between patients with and without dis-
ease was zero using the general linear model framework.
Datasets with repeated measurements on subjects were
modeled using a linear mixed effects model with subject
as a random effect. We employed the centered log-ratio to
address the compositionality and range constraint of the
gene relative abundances, and it is consistent with the
choice to group genes based on cosine distance. Using the
“qvalue” R package (v2.8.0), we calculate the q values for
each CAG. Our set of “discovered CAGs” for validation is
the set of CAGs with calculated q value of 0.2 or less.
These are the CAGs that would be considered statistically
significant while controlling the FDR at 20%.

CAG validation
For only the discovered CAGs, we tested the null hypoth-
esis that the mean difference in CLR abundance between
patients with and without disease was zero in the valid-
ation datasets. Our “validated CAGs” are the CAGs in
this set with calculated q values of 0.2 or less and that
have an estimated difference in abundance between dis-
ease status groups of the same sign as the estimated dif-
ference in the discovery dataset.

The probability of validating discovered CAGs
To calculate the probability of validating C2 or more out
of C1 CAGs under the global null hypothesis of no associ-
ation between disease status and any CAG’s abundance,
we bounded the p value for validating discovered CAGs in
the following way. Let X be the number of CAGs with q
values less than 0.2 for the validation data and with an es-
timated difference in CLR abundance across disease
groups of the same sign in the validation and discovery
datasets, and Y be the number of CAGs with an estimated
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difference in CLR abundance across disease groups of the
same sign in the validation and discovery datasets. Since
under the null, the test statistics are approximately Nor-
mal(0,1)-distributed,

PrH0 X ≥C2ð Þ≤ PrH0 Y ≥C2ð Þ

¼ Pr Binomial C1;0:5
� �

≥C2
� �

≈ Pr Normal 0; 1ð Þ≥ C2−C1=2ffiffiffiffiffiffiffiffiffiffiffi
C1=2

p

 !

giving us a conservative p value for the global null of no
association.

Aligning protein-coding genes against RefSeq genomes
The alignment of individual protein-coding genes against
the RefSeq collection of genomes in NCBI was executed
using the Docker image hosted at quay.io/fhcrc-micro
biome/docker-diamond:v0.9.23—0 and built using the
Dockerfile hosted at https://github.com/FredHutch/docker
-diamond, running DIAMOND v0.9.23. The complete list
of Prokaryotic RefSeq genomes was downloaded from
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/
and the query proteins were aligned via DIAMOND
against the annotated protein-coding sequences from each
genome individually. We implemented this analysis on the
Amazon Web Service using the Batch API for execution
and resource management.

Quantification of co-abundant genes in uncultured
single cells
Datasets from published single-cell sequencing micro-
biome experiments [20] were downloaded and split by
10 × barcode (each corresponding to a single cell). The
WGS data for each single cell was aligned against each ref-
erence gene catalog (for the CRC and IBD datasets) and fil-
tered with FAMLI as described in workflow step 5 above.
The result of this analysis was a count of the number of
genes that were found in the same cell as another gene that
is also part of the same CAG. As a comparison, we calcu-
lated the number of such genes that would be found with a
randomly permuted set of CAG assignments.

Additional files

Additional file 1: Figure S1. The distribution of CAG size (genes per
CAG; A and B) and the functional annotation of genes in CAGs is shown
by CAG size (C and D). Each gene can be annotated with a range of
biological functions, and the proportion of CAGs of a given size containing
at least one functional annotation is shown (C and D). The CAGs generated
from the CRC datasets are shown in A and C, while the CAGs generated
from the IBD datasets are shown in B and D. The horizontal axis is shared
between panels A and C, as well as B and D. (PDF 857 kb)

Additional file 2: Figure S2. Single-cell microbiome datasets were
analyzed using the gene catalogs and CAG groupings from the CRC and
IBD datasets. Co-occurrence was measured as the number of genes that
were found in the same cell with another gene from the same CAG.
Simulations were performed by random permutation, with 1000 replicates.
Orange bars show mean and standard deviation. (PDF 288 kb)

Additional file 3: Figure S3. Alpha diversity by diagnosis across
cohorts. The number of total genes in each sample was estimated with
breakaway for both the CRC (A) and IBD (B) cohorts. (PDF 249 kb)

Additional file 4: Table S1. Description of genes associated with
CRC, including the CAG grouping, correlation coefficient, taxonomic
annotation, and functional annotation. Public repository URL:
https://www.synapse.org/#!Synapse:syn17104367. (CSV 100,000 kb)

Additional file 5: Table S2. Description of genes associated with IBD,
including the CAG grouping, correlation coefficient, taxonomic
annotation, and functional annotation. Public repository URL:
https://www.synapse.org/#!Synapse:syn17104250. (CSV 219,000 kb)
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