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Abstract

The Mid-Atlantic Microbiome Meet-up (M3) organization brings together academic, government, and industry groups
to share ideas and develop best practices for microbiome research. In January of 2018, M3 held its fourth meeting,
which focused on recent advances in biodefense, specifically those relating to infectious disease, and the use of
metagenomic methods for pathogen detection. Presentations highlighted the utility of next-generation sequencing
technologies for identifying and tracking microbial community members across space and time. However, they also
stressed the current limitations of genomic approaches for biodefense, including insufficient sensitivity to detect low-
abundance pathogens and the inability to quantify viable organisms. Participants discussed ways in which the
community can improve software usability and shared new computational tools for metagenomic processing,
assembly, annotation, and visualization. Looking to the future, they identified the need for better bioinformatics toolkits
for longitudinal analyses, improved sample processing approaches for characterizing viruses and fungi, and more
consistent maintenance of database resources. Finally, they addressed the necessity of improving data standards to
incentivize data sharing. Here, we summarize the presentations and discussions from the meeting, identifying the areas
where microbiome analyses have improved our ability to detect and manage biological threats and infectious disease,
as well as gaps of knowledge in the field that require future funding and focus.
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Introduction
Strong public health and biodefense research is essential
for the prevention, detection, and management of bio-
logical threats and infectious disease. Over the last cen-
tury, the focus of biodefense research has shifted in
response to modern advances in biotechnology. Specific-
ally, a biological revolution is underway, generating prom-
ising new gene editing and synthetic biology technologies
that may transform modern medicine, but also present a
threat to public health if misappropriated [1]. As biotech-
nology becomes increasingly globalized, it is important
that we establish new strategies and tools for infectious
disease detection and surveillance that will help us protect
against bioterrorism and manage disease outbreaks.
Rapid advances in next-generation sequencing (NGS)

technologies have helped advance biodefense research by
enabling the development of new methods for identifying
and characterizing pathogens. Amplification and sequen-
cing of the 16S rRNA gene allow for high-throughput de-
tection of prokaryotic communities, while shotgun
metagenomic sequencing approaches capture the com-
position and functional potential of multi-domain popula-
tions. Metagenomic analyses used for pathogen detection
and identification are often time sensitive. The results help
inform high-stakes decision-making, such as choosing an
appropriate medical treatment, deciding if a food product
should be recalled due to contamination, or determining if
an area should be shut down due to a suspected act of
bioterrorism. In addition, geospatial and temporal metage-
nomic analyses are essential for tracking the dynamic
responses of microbial populations to changes in environ-
mental or human health. However, improvements in pre-
cision, sensitivity, speed, cost, and accuracy of NGS and
downstream analyses are necessary for effective utilization
in biodefense research [2–6].
On January 10, 2018, the Mid-Atlantic Microbiome

Meet-up (M3) organization held a conference aimed at
understanding how the biodefense and pathogen detec-
tion fields are transformed by new biological and com-
putational technologies. While biodefense was broadly
discussed, the participants focused primarily on emer-
ging infectious disease applications. The meeting took
place in the STAMP Student Union at the University of
Maryland campus in College Park. The M3 consortium
brings together microbiome researchers from different
sectors to discuss challenges, develop standards and best
practices, and help connect data generators with data
analysts [7]. The M3 community is constantly growing
and, as of this publication, has 140 members from over
25 different institutions. The conference was attended
by 67 participants from academia, government, and in-
dustry (Fig. 1), with expertise in areas such as biode-
fense, computer science, genomics, microbiology, and
public health. There were two talks given by invited

speakers, 15 oral presentations selected from submitted
abstracts, and several posters displayed at the meeting
(Additional file 1: Table S1) [8]. Additionally, there were
three interactive breakout sessions to address the
challenges of the field and encourage networking
(Additional file 1: Table S2). The event was sponsored in
part by CosmosID, Inc., but they did not participate in
the organization of the event nor in the selection of
speakers and topics being discussed.
The tone for the meeting was set by the keynote ad-

dress presented by Dr. Tara O’Toole, Executive Vice
President of the non-profit strategic investor In-Q-Tel,
Inc. Pointing to the problems in detection, containment,
and treatment during the recent H1N9 pandemic and
Ebola epidemic, Dr. O’Toole shared that current pro-
gress in the field is disappointing because biodefense is
not a priority for any single government agency, funding
support is irregular, and epidemics are becoming more
common. Increasing international competition for bio-
technology advancements and leadership make it even
more important to stimulate progress.
Dr. O’Toole outlined several keys to innovation and pol-

icy, which were echoed by the presentations and discus-
sions throughout the remainder of the meeting, including
(1) the willingness to think anew, (2) development of new
tools and instruments, (3) implementation of a
technology-focused biodefense strategy, (4) delivery of
near real-time situational awareness for existing epidemics
by leveraging modern data analytics and networked com-
munications, and (5) establishment of rich human net-
works and cross-sector partnerships between government
agencies, the private sector, and academia.

Key conclusions
We start by highlighting the key conclusions and recom-
mendations identified by the participants in the meeting:

1. Sequencing-based assays frequently face challenges
related to limits of detection and technical biases,
and culturing or other enrichment strategies remain
necessary in many applications. The accurate
quantification of viable organisms or metabolic
activity within complex metagenomic samples
remains an open challenge that is unlikely to be
solved through sequencing alone.

2. Current sample processing approaches tend to
exclude viral and fungal/eukaryotic components of
microbial communities. In the case of viruses, this
problem is compounded by poor taxonomies and
database resources.

3. Analytical approaches, community standards, and
software for temporal data analysis have lagged
behind the rapidly increased generation of such
data.
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4. Robust bioinformatics tools are critical for future
progress. These tools must be developed to better
match the needs of end users and must be subject
to critical validation.

5. Data standards are essential for ensuring the quality
and usefulness of shared datasets, but overly
onerous reporting requirements discourage sharing.
In cases where privacy is a concern, we must also
develop solutions that allow for secure storage and
processing of sensitive data.

These key recommendations are summarized in
Table 1 and more extensively discussed below.

Sequencing-based assays frequently lack sensitivity
While the biodefense community has benefited from
high-throughput sequencing strategies, these methods are
not always as sensitive as required. In some cases, cultur-
ing is still the most reliable method for detecting

pathogens because standard sequencing pipelines are not
always available, and achieving required sequencing
depths may be cost-prohibitive. Dr. Sarah Allard (UMD
SPH) shared her work from CONSERVE (Center of Excel-
lence at the Nexus of Sustainable Water Reuse, Food, and
Health), whose mission is to enable the safe use of
non-traditional irrigation water sources on food crops [9].
Dr. Allard used both culture-based and sequence-based
methods to detect foodborne pathogens in water samples.
She concluded that culture-based techniques are currently
the most sensitive pathogen detection strategies and that
sequencing analysis sensitivity and stringency vary
strongly by method.
From a public health perspective, quantification of vi-

able organisms contributing to disease is essential but
cannot be achieved with metagenomic analysis alone.
Culturing and other approaches are important for gain-
ing insight into the metabolic activity of the microbes in
a community [10]. Additionally, researchers must often

Fig. 1 Different sectors and institutions represented at the January 2018 M3 Meet-up
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make a trade-off between the sensitivity of their detec-
tion methods and the computational costs of analyzing
increasingly deep sequencing datasets. Even partial cul-
turing of select organisms or samples can help shift this
trade-off. As commented during a breakout session,
“you can’t always sequence your way out of it.”

Few studies look beyond bacterial pathogens
Shotgun metagenomics and a decrease in the cost of
DNA sequencing have enabled researchers to analyze
the genetic potential of microorganisms directly from an
environmental sample. However, the majority of micro-
biome and metagenome studies focus only on the pro-
karyotic component of the community, while few have
explored the roles of fungi or viruses in these microbial
communities. This is due, in large part, to limitations in
resources, laboratory procedures, and in the case of vi-
ruses, the lack of a universally distributed marker gene.
Additional barriers to mycobiome and virome studies

include the ability to obtain sufficient material from low
biomass environments, high levels of host contamin-
ation, incomplete databases, and a lack of available wet
lab protocols and computational analysis pipelines. At
the meeting, it was noted that central repositories for
shared protocols do exist (e.g., protocols.io [11]), and a
concerted effort in viral protocol sharing has been made
by the Gordon and Betty Moore Foundation, which
funds VERVE Net [12]. Proposed goals to address other
barriers included providing financial and/or publication
incentives for database curation and maintenance and
focusing work on gene function identification. Since the
NCBI SRA already contains many metagenomic sequen-
cing datasets, it may be worthwhile to identify novel fun-
gal and viral genomes from existing datasets to optimize
data usage, as this approach has been employed in previ-
ous studies of environmental viruses [13].
Despite the aforementioned barriers to fungal and viral

metagenomics, additional research in this area can

Table 1 Outline of current research gaps and future goals discussed at the January 2018 M3 Meeting

Research gaps Current limitations Community goals

Tracking microbial communities across time and
topography (Key Conclusions 1 and 3)
Importance: studies incorporating temporal
and/or spatial sampling allow us to detect
important shifts in community dynamics
Application example: detecting the spread
of infection in a hospital or of a pathogen
contaminating crops and spreading
food-borne illness

• Sequencing strategies are not able to quantify
viable organisms (which is essential for
biodefense applications)

• Lack of well-established statistical approaches
for exploring longitudinal microbiome data

• Increased sample size makes these studies
more expensive and harder to obtain sufficient
statistical power for all subjects/time
points/regions

• Collection, sequencing, and sharing
of more time series datasets

• Development of statistical methods and
tools to help analyze longitudinal and/or
geospatial microbiome datasets

Looking beyond bacterial pathogens
(Key Conclusion 2)
Importance: viral and fungal components of the
microbiome are often under-explored,
despite their potential implications in biodefense
Application example: better understanding the
transmission of infectious viruses, like influenza

• Lack of a universally distributed marker
gene (viruses)

• Difficult to obtain sufficient material
from low biomass environments

• High levels of host contamination
• Incomplete databases

• More consistent database curation and
maintenance (potentially incentivized
financially or with publications)

• Improved gene function identification

Development and application of metagenomic
analysis tools (Key Conclusion 4)
Importance: computational tools need to be
developed to help improve the utility of
high-throughput sequencing strategies
for biodefense problems
Application example: improved metagenome
assembly methods could better delineate
between different strains of a pathogen in
samples

• Tools for metagenome pre-processing,
assembly, and binning are not always
sensitive or fast enough for detection
of pathogens in a sample

• As sequencing technologies advance,
we need new tools to handle output
from long- and short-read technologies,
as well as single-cell metagenomics
approaches

• Easy to install, open-access software with
comprehensive documentation detailing
best and worst use cases

• Defined metrics for critical assessment
and validation of existing tools

• Software and database versions should be
more consistently reported in the literature
and preserved for future replication of
analyses

Navigating the trade-off between speed and
accuracy (Key Conclusion 4)
Importance: metagenomic analysis used for
pathogen detection and identification are
time-sensitive
Application example: deciding if a food product
should be recalled due to contamination

• Current algorithms vary in speed and
accuracy (often sacrificing one for the other)

• Large datasets, error-prone heuristics,
and coarse resolution of k-mer-based
methods present challenges

• Better documentation of available tools to
help users optimize their software choice
based on their available resources

• Improvements in sequencing technologies
and tools/algorithms to improve both
speed and accuracy

Storing and sharing data (Key Conclusion 5)
Importance: access to publicly available datasets
will help in verification of results and advance
of scientific knowledge. Scientists need to be
encouraged to move their data out of private
silos and into shared databases

• Not all data can be shared because it is
important to protect personally identifiable
information or intellectual property rights

• Lack of sufficient infrastructure or manpower
to upload or store datasets at scale

• Defined quality standard to maintain
usable, open repositories

• Improved ways for secure interrogation
of genomic datasets that cannot be openly
shared due to privacy regulations
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significantly contribute to biodefense. One such import-
ant topic is the spread of viral pathogens. Invited sem-
inar speaker Dr. Don Milton (UMD SPH) presented his
work on the transmission of the influenza virus in col-
lege dormitories [14]. The Centers for Disease Control
and Prevention (CDC) suggests that human influenza
transmission mainly occurs by droplets made when
people with flu cough, sneeze, or talk. However, Dr. Mil-
ton explained that dueling reviews have disputed the im-
portance of airborne transmission [15–20]. He presented
NGS data showing that exhaled breath of symptomatic
influenza cases contains infectious virus in fine particles,
suggesting that aerosol exposures are likely an important
mode of transmission.

Tracking microbial communities across time and topography
Temporal and biogeographic sequencing studies provide
increased resolution of microbial community shifts. In
the context of biodefense, this is important for detecting
and containing outbreaks. Additionally, these studies
provide insight into environmental changes, which may
contribute to epidemics by causing shifts in disease vec-
tors and/or spurring human migration to new regions or
densely populated urban areas. Several presentations at
the meeting shared spatiotemporal microbiome analyses
of different environments. Dr. Sean Conlan (NIH,
NHGRI) presented his work using metagenomics to
study outbreaks of nosocomial infections and identified
the transfer of plasmids from patients to the hospital en-
vironment [21, 22]. Gherman Uritskiy (JHU) and Dr. Sa-
rah Preheim (JHU) used a combination of marker gene
and metagenomics approaches to characterize the
changes in environmental microbiomes in response to
perturbations. Uritskiy studied halite endoliths from the
Atacama Desert in Chile over several years and showed
how they were significantly impacted by rainstorms. Dr.
Preheim compared a biogeochemical model to microbial
communities’ changes in a lake over the spring and sum-
mer to reveal the influence of energy availability on mi-
crobial population dynamics.
While time series datasets provide valuable informa-

tion, they are much more difficult to analyze with
current statistical methods and models than
cross-sectional sampling strategies [23, 24]. Among
other reasons, this is because it is difficult to identify the
optimal sampling frequency, the compositional nature of
microbiome data frequently violates assumptions of stat-
istical methods, and the commonly available software
tools are often insufficient for required complex compar-
isons. Addressing this, Dr. J Gregory Caporaso (NAU)
presented QIIME 2 (https://qiime2.org) and shared his
team’s QIIME 2 plugin, q2-longitudinal, which incorpo-
rates multiple methods for characterizing longitudinal
and paired-sample marker gene datasets [25].

Development and application of metagenomic analysis
tools is critical for progress
Computational methods required for metagenomic ana-
lyses include taxonomic abundance profiling, taxonomic
sequence classification and annotation, functional
characterization, and metagenomic assembly. Many of
the presentations at the meeting shared new and/or im-
proved tools for different aspects of microbiome studies.
Victoria Cepeda (UMD) described how her tool, Meta-
Compass, uses reference genomes to guide metagenome
assembly [26], and Gherman Uritskiy (JHU) presented his
pipeline, metaWRAP, for the pre-processing and binning
of metagenomes [27]. Furthermore, Brian Ondov (UMD,
NIH, NHGRI) shared his implementation of the MinHash
containment estimation algorithm to screen metagenomes
for the presence of genomes and plasmids [28]. Data
visualization is important for accurately interpreting
microbiome data analyses, and Dr. Héctor Corrada-Bravo
(UMD) demonstrated how to use his lab’s tool, Metaviz
[29], for interactive statistical analysis of metagenomes.
Conventional metagenomic analyses often reflect the

most abundant elements from a complex sample and can-
not detect rare elements with confidence. Dr. Nicholas
Bergman (NBACC) shared a more sensitive single-cell
metagenomics approach that allows for increased detec-
tion of all elements of a community sample. Dr. Bergman’s
talk also emphasized the necessity of improving sensitivity,
preventing contamination, eliminating biases, and increas-
ing efficiency for sequencing-based techniques.

Bioinformatics tools should better match the needs of end users
Many discussions at the meetings focused on how the
field can optimize tool utility. It was agreed that scien-
tists should always carefully evaluate the strengths and
weakness of available methods, either via existing
“bake-off” studies or through the available documenta-
tion, to ensure they are using the best tools to address
their specific problem. Tool developers should disclose
the limits of their methods and advise on the types of
data their software is best suited to analyze. Developers
should also work towards producing software that is
easy to download and install, providing comprehensive
documentation for their tools, and ensuring open access
for the academic community. As a community, we
should encourage that publications list not only cases
and data types where methods perform best, but also
where they underperform or even fail. Additional
studies, like the Critical Assessment of Metagenome
Interpretation (CAMI) [30, 31], Microbiome Quality
Control project [32], or challenges run under the aegis
of PrecisionFDA [33], should be conducted to help
characterize the strengths and weaknesses of different
approaches and evaluate their impact on data analysis
and interpretation.
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Some meeting attendees are currently contributing to
these goals. Dr. Nathan Olson (UMD, NIST) presented
his evaluation of different 16S rRNA marker gene survey
bioinformatic pipelines using mixture samples. Addition-
ally, Dr. Daniel Nasko (UMD) characterized how genomic
database growth affects study findings, showing that dif-
ferent versions of the RefSeq database strongly influenced
species-level taxonomic classifications from metagenomic
samples [34]. Because the version of software and data-
bases used can significantly affect the findings, this infor-
mation should be reported more consistently in the
literature. Furthermore, we should consider strategies to
preserve previous software and database versions to en-
able future replication of analyses.

Bioinformatics tools must better navigate the trade-off
between speed and accuracy
Metagenomic analysis methods vary in the central pro-
cessing unit (CPU) time, memory, and disk resource
usage, and this is not always clearly reported in software
publications. Additionally, method scalability relative to
size or type of input data also varies considerably. Opti-
mizing speed and accuracy is especially important for
biodefense applications. For instance, improvements in
NGS analysis allowing for collection and analysis of sam-
ples in a clinically relevant time frame can help effect-
ively track hospital outbreaks and prevent the spread of
infection [35]. Furthermore, confidence in the accuracy
of these analyses is required to execute appropriate plans
of action and prevent panic. Recently, findings of Bacil-
lus strains on the International Space Station that were
genomically similar to pathogenic Bacillus anthracis re-
quired more detailed characterization to ensure that
their presence was not a concern for the health of the
crew [36–38]. B. anthracis was also initially reported to
be found in the NYC subway system, along with Yersina
pestis, the pathogen responsible for the plague [39].
After public attention prompted further analysis, the au-
thors found no evidence that these organisms were
present and found no evidence of pathogenicity [40, 41],
again highlighting the importance of careful evaluation
and interpretation of results, especially those with severe
public health consequences.
Many different strategies for speeding up analyses

were discussed at the meeting, including hardware, soft-
ware, and algorithm choice. Some hardware consider-
ations for the speed of analyses include balancing CPUs
with co-processors such as graphics processing units
(GPUs) or field-programmable gate arrays (FPGAs), ser-
ver configuration in terms of the amount of random ac-
cess memory (RAM), or disk storage type and speed.
Programs and algorithms vary in accuracy as well as ease
of parallelization. Often a slower yet parallelizable algo-
rithm is preferred to one that is not parallelizable. If a

program supports parallelism, consideration should be
given to the type of hardware required. For example, some
available options include large multicore servers for multi-
threaded applications, cluster nodes for distribution of
compute jobs, or cloud computing solutions. Other strat-
egies might involve analyzing only a subset of the data or
using a smaller, application-specific reference database.
Finally, strategies discussed for speeding up time-critical

analyses included employing a multi-tiered approach (e.g.,
a quick first pass followed by more detailed analyses [42])
and considering the suitability of various sequencing plat-
forms for certain applications. Interventions or optimiza-
tions were discussed with regard to their impact on
analysis accuracy and interpretation of results. Preferred
solutions are the ones that provide both the desired speed
and accuracy, though more often than not there is a
trade-off between the two. The optimal balance also
depends on the use case. Assessment and validation
methods are required to characterize a method’s speed
and accuracy. It will be up to the subject matter experts to
determine the desired accuracy level for each case and the
extent to which they can sacrifice accuracy for speed.

Data needs to be moved out of private silos and into
public repositories
Data sharing is continually a challenge that gets raised
within the biological community, especially as DNA/
RNA sequencing becomes more ubiquitous and tangible
outside of core facilities [43]. This challenge is prevalent
across multiple scientific disciplines and was recently
highlighted by the National Research Council as a prior-
ity for microbial forensics [44]. There are numerous rea-
sons data are not being shared, including the need to
protect personally identifiable information or intellectual
property rights prior to publication and the lack of suffi-
cient infrastructure or manpower to upload at scale. How-
ever, leveraging this diversity and breadth of data will be
important for an effective biodefense capacity, as well as
other bioscience applications like healthcare, pharmaceuti-
cals, agriculture, and industry. In order to incentivize data
sharing, we need to evaluate and improve publicly avail-
able resources for storing and processing data.
Inherent altruism or obligation to share data should be

met with as little friction as possible, and we need to
incentivize openness. One incentive is academic credit
through authorship on publications, though this will re-
quire combined efforts of researchers, journal editors,
and funding agencies to better define what contributions
constitute data authorship and what responsibilities data
authors have [45, 46]. Another potential incentive is the
availability of free software for data analysis and meeting
participants debated the desirability and sustainability of
service-based options (e.g., MG-RAST [47]) compared
to user-installable software options (e.g., QIIME [48],
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mothur [49]). At the meeting, Dr. Nur A. Hasan
(CosmosID, Inc.) highlighted the cloud-based metagen-
ome tools and databases his company has to offer. There
are also strong movements towards software sharing,
such as the Astrophysics Source Code Library [50] and
the Materials Resource Registry at NIST [51].
It is expected that some quality standard is needed to

maintain usable, open repositories. Where that standard
is set can affect how much data is shared. For example, a
high bar may ensure high-quality sequences and com-
prehensive metadata but minimize sharing, while a lower
quality bar will more likely move data out of silos. The
solution may be a combination of repositories with vary-
ing standards or a single repository which allows for
varying degrees of annotation completeness and allows
the user to modify searches based on that feature. It is
important to note that a single repository may be diffi-
cult to reliably curate and manage at scale. Another op-
tion is distributed but federated systems, like used by
the US Virtual Astronomical Observatory [52]. Groups
like the Genomic Standards Consortium [53, 54] are
working towards improving data quality by supporting
projects such as Minimum Information about any Se-
quence (MIxS) [55], which establishes standards for de-
scribing genomic data and provides checklists to help
with annotation. We need to build a community consen-
sus on how much metadata is required to make report-
ing less onerous for data providers but ensure data
usability by others in the field.
Incentivizing open data sharing should not be the only

solution, as some sensitive data cannot be openly shared
due to privacy regulations (e.g., human genomes and
Health Insurance Portability and Accountability Act regu-
lations). Other sectors, such as the financial industry, have
long been working on solutions to enable storage, transit,
and operations of protected data. These solutions include
software-based approaches (e.g., homomorphic encryp-
tion, Yao’s protocol, secure fault-tolerant protocols, oblivi-
ous transfer) and hardware-based approaches (e.g., AES
full disk encryption for data storage, Intel® Software Guard
Extension for secure operations). Dr. Stephanie Rogers
presented the GEMStone 2.0 project from B. Next, an
IQT Lab, called SIG-DB, which explores homomorphic
encryption and Intel Software Guard Extension (SGX) to
securely search genomic databases [56]. Early results of
applying these solutions to biological data are promising
and should be explored more fully.

Conclusions
Overall, this meeting successfully brought together sci-
entists from academia, government, and industry to
present their research and discuss how high-throughput
genomics methods have stimulated interest and progress
in biodefense and pathogen detection. Notably, meeting

participants used NGS tools to identify the transfer of
microbes from patients to their hospital environments,
track the transmission of influenza in a community liv-
ing space, study environmental shifts over time, and
evaluate the safety of using non-traditional water sources
on food crops. These studies, and others, have been
partly driven by cheaper, more reliable sequencing tech-
nologies and improvements in computational analysis
tools. Open-source software for sequence processing and
quality control, taxonomic annotation, metagenomic as-
sembly, and binning, and data visualization have been
essential for growth. Continued development of these re-
sources will result in significant scientific advances.
Despite this progress, there are several limitations to

using NGS approaches for biodefense problems. First
and foremost, sequencing methods are unable to accur-
ately quantify viable organisms from metagenomic sam-
ples, which is essential for identifying potential threats
to public health. Beyond that, applications for which
NGS approaches are well-suited still present many chal-
lenges. Although sequencing costs are steadily declining,
it remains expensive to process, computationally analyze,
and store the increasingly large datasets that are gener-
ated. Confident detection of infectious, but potentially
rare pathogens in a community often requires very deep
sequencing, and scientists must make the appropriate
speed, cost, and accuracy trade-offs to best answer their
research questions. In many cases, sequencing experi-
ments may need to be complemented with culturing, en-
richment, or other targeted approaches. Because of these
limitations, and others, researchers must be extremely
careful when interpreting data to identify biothreats;
reporting false positives without critical validation can
have significant fiscal and public health consequences.
Developing the capacity to identify not only when a po-
tential pathogen is present but also at what levels it is
actively contributing to an infectious disease will greatly
improve our response to biothreats. Another area that
requires further investigation is the detection of anti-
microbial resistance. While only briefly highlighted in
the meeting talks about influenza and nosocomial tra-
cing, antimicrobial resistance poses a significant threat
to public health and biodefense. Current metagenomic
sequencing methods allow us to identify antimicrobial
resistance genes from different environments; however,
these techniques cannot determine whether these genes
are actively being expressed and are currently not prac-
tical for wide-spread adoption in clinical settings [57].
To date, few microbiome studies have focused on viral

and fungal/eukaryotic organisms, despite their poten-
tially important community interactions and roles in
pathogenesis. In order to generate relevant virome and
mycobiome datasets, we must improve sample process-
ing techniques and dedicate resources to effectively
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curate and maintain publicly available databases. We
also need to develop advanced statistical toolkits for ana-
lyzing longitudinal studies. In general, tool developers
should focus on creating user-friendly, adaptable re-
sources, with comprehensive documentation and clear
descriptions of default settings and optional parameters.
These tools must be critically evaluated for their appro-
priate use cases; however, when looking for emerging
threats, it will be necessary to develop validation ap-
proaches that do not require the use of gold standards.
In order to encourage additional growth, the greater

scientific community should invest in expanding and en-
forcing clear standards for genomic datasets. If set ap-
propriately, these standards will help incentivize data
sharing and improve the quality and usability of public
repositories. Additional focus should be on strengthen-
ing best practices and solutions for handling sensitive
datasets that are subject to privacy regulations. Moving
forward, active conversations between researchers and
policymakers will be essential to expand and implement
these ideas in biodefense.
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