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Abstract

Background: It is becoming evident that certain features of human microbiota, encoded by distinct autochthonous
taxa, promote disease. As a result, borders between the so-called opportunistic pathogens, pathobionts, and
commensals are increasingly blurred, and specific targets for manipulating microbiota to improve host health are
becoming elusive.

Results: In this study, we focus on the functions of host bacterial communities that have the potential to cause
disease, proposing the term “pathogenic function (pathofunction)”. The concept is presented via three distinct
examples, namely, the formation of (i) trimethylamine, (ii) secondary bile acids, and (iii) hydrogen sulfide, which
represent metabolites of the gut microbiota linked to the development of non-communicable diseases. Using
publicly available metagenomic and metatranscriptomic data (n = 2975), we quantified those pathofunctions in
health and disease and exposed the key players. Pathofunctions were ubiquitously present with increased
abundances in patient groups. Overall, the three pathofunctions were detected at low mean concentrations
(< 1% of total bacteria carried respective genes) and encompassed various taxa, including uncultured members.

Conclusions: We outline how this function-centric approach, where all members of a community exhibiting a
particular pathofunction are redundant, can contribute to risk assessment and the development of precision
treatment directing gut microbiota to increase host health.

Keywords: Pathogen, Gut microbiota, Function, Ecology, Systems biology, Diagnostics, Risk assessment, TMA, Bile,
Hydrogen sulfide

Background
Pathogens are classified as bacteria capable of causing
host damage via specific virulence factors that encom-
pass production of toxins, features allowing attachment
to and invasion of epithelial cells and components essen-
tial for their viability [1]. Definitions of pathogens and
associated virulence factors have been continuously ad-
justed over the last decades proposing additional aspects
to be considered for pathogenicity such as host physi-
ology, where certain bacteria are only able to cause disease
in immunocompromised subjects [1]. Additionally, the
term pathobiont was introduced to describe commensal,
harmless bacteria that can turn hostile under specific
circumstances [2]. Methodological advancements in the
last decade enabled detailed insights into whole bacterial
assemblages and expanded investigations to the commu-
nity level introducing the prominent term “dysbiosis” that

describes altered community structures of host microbiota
associated with disease [3]. Recently, the “germ-organ
theory” was introduced suggesting oxygen to be the main
driver of dysbiosis that is accompanied by a bloom of
facultative anaerobic Proteobacteria [4]. As a result, gut
homeostasis is disrupted leading to disease due to dys-
function of the microbial organ. The “pathobiome” con-
cept represents another community-wide approach and
encompasses all pathogenic agents integrated within their
biotic environment [5]. It is organism-centric describing
the collection of potentially pathogenic microorganisms in
a given community. In hand with those broader concepts
and terms describing bacteria (and whole communities)
damaging the host, borders between the so-called com-
mensals, pathobionts, and opportunistic pathogens are
increasingly blurred, and specific community-wide tar-
gets for manipulating microbiota to improve host
health are becoming elusive.
In this study, we introduce the term “pathogenic func-

tion (pathofunction)” representing specific features of host
bacterial communities that have the potential to cause
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non-communicable disease. Pathofunctions comprise vari-
ous modes of action such as the production of harmful
metabolites, extracellular enzymes, or immunostimulatory
surface structures (Table 1). Host damage is a direct result
of pathofunction activity or due to the initiation of harm-
ful downstream processes like immune system dysba-
lances and usually requires longer-term exposure and/or
excessive concentrations for causing disease. Importantly,
the concept focuses on the functions that are shared by
various, taxonomically distinct organisms, which distin-
guish pathofunctions from traditional virulence factors
that have a functional perspective too, yet are restrictedly
used for characterizing particular bacteria/strains as path-
ogens. Furthermore, pathofunctions do not comprise in-
fection where the disease is caused by intruding bacteria
encoding functions that are not autochthonous to the host
environment. We do not consider viability features of
pathofunction-carrying bacteria such as components pro-
moting their growth or facilitating immune system eva-
sion as pathofunctions if they are not directly involved in
the disease development. In summary, the pathofunction
concept involves two key aspects: it is (i) function-centric
and (ii) encompasses whole commensal communities,
where all members exhibiting a particular pathofunction
are redundant. Its potential contribution to risk assess-
ment and the development of intervention strategies to
increase host health is discussed.

Results and discussion
In this study, we investigated three distinct pathofunc-
tions, namely, the microbial formation of (i) trimethyla-
mine (TMA), (ii) secondary bile acids deoxycholic and
lithocholic acid (DCA/LCA), and (iii) hydrogensulfide
(H2S), in order to expose various characteristics of
pathofunctions and to outline strategies/challenges for
diagnostics and treatment.

TMA is produced from dietary quaternary amines mainly
via three distinct enzymatic routes with betaine, choline,
and carnitine as substrates. Various distinct taxa are re-
ported to encode respective enzymes [6, 7] highlighting that
pathofunctions can exhibit both biochemical (different
pathways) and taxonomic redundancies. Host hepatic flavin
monooxygenases (FMO) subsequently oxidize absorbed
TMA to trimethylamine N-oxide (TMAO) that is associ-
ated with atherosclerosis and severe cardiovascular disease
[8] as well as kidney disease [9]. It is postulated that TMAO
promotes disease through the formation of foam cells
(lipid-laden macrophages), a diminishing of the re-
verse cholesterol transport from the atherosclerotic
plaque [10], and enhances platelet reactivity [11].
Recent gene-targeted studies ubiquitously detected
potential TMA-producing bacteria, primarily belong-
ing to Clostridiales and Enterobacteriaceae, in the gut
of human, where they constitute, however, only a
minor part of the total community (below 1% in most
samples) with key players yet to be isolated [7, 12].
The secondary bile acids DCA and LCA are formed by

gut bacteria via the multistep 7α-dehydroxylation from
cholic acid and chenodeoxycholic acid, respectively.
They promote cancer of the colon and the liver via vari-
ous cytotoxic effects and immune system modulations
[13, 14]. A few intestinal Clostridiales strains capable of
7α-dehydroxylation have been isolated, though data on
their abundance in situ and major taxa involved are scarce.
LCA and DCA are detected in most humans suggesting
that respective bacteria are ubiquitously present [15].
Anaerobic respiration with sulfate, sulfite, or organosul-

fonates as terminal electron acceptors is widespread in
various ecosystems. It is performed by the members of
many distinct taxa from both Eubacteria and Archaea
[16], where the dsrAB-type dissimilatory (bi)sulfite reduc-
tase forming sulfide from sulfite is the key enzyme. In the
gut, bacteria acting on sulfate or organic sulfur-containing

Table 1 Selected (putative) pathofunctions of gut microbiota and associated diseases

Pathofunction Mode Associated disease References

TMA(O) Metabolite CVD, T2D, kidney disease [8, 9]

LCA/DCA Metabolite CRC, liver cancer [13]

Hydrogen sulfide Metabolite IBD, pouchitis, CRC [19, 20]

Indole/phenol/p-cresol Metabolite IBD, CVD, renal failure [54]

N-Nitrosamine Metabolite Stomach cancer [55]

Ammonia Metabolite Several conditions (e.g., hepatic encephalopathy) [56]

Branched-chain amino acids Metabolite Obesity-associated insulin resistance [37]

4-Ethylphenylsulfate Metabolite Neurodevelopmental disorders [57]

Uric acid Metabolite Gout [58]

Bacterial proteases Enzyme IBD [59]

For displayed metabolites, pathofunctions represent enzymes catalyzing their formation
CRC colorectal cancer, CVD cardiovascular disease, IBD inflammatory bowel disease, LCA/DCA lithocholic/deoxycholic acid, T2D type 2 diabetes, TMA(O)
trimethylamine (N-oxide)
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compounds including mucin, taurine, and amino acids are
ubiquitously detected at low abundances [17]. Desulfobac-
terales and Desulfovibrionales, particularly Desulfovibrio
and Bilophila (the latter does not reduce sulfate), are the
key players using fermentation end products (e.g.,
short-chain fatty acids) and H2 as electron donors [18]. At
excessive concentrations, H2S is a cytotoxic gas associated
with inflammatory conditions of the gut epithelium such
as ulcerative colitis and pouchitis [19] as well as colorectal
cancer [20].

Quantification and characterization of pathofunctions
For accurate diagnostics of any particular pathofunction,
its entire pathogenic potential including all biochemical
pathways and respective bacteria carrying the function
(“carriers”) should be resolved rendering metagenomics
as the method of choice. In this study, we screened pub-
licly available metagenomic and metatranscriptomic
datasets comprising conditions (and comorbidities) asso-
ciated with the three pathofunctions introduced above in
order to get detailed insights into their relation with
disease. Datasets originated from three continents (Asia,
Europe, North America) and encompassed cardiovascu-
lar disease (CVD: I [21], II [22]), type 1(2) diabetes
(T1(2)D: III [23], IV [24], V [25]), obesity (VI [26]), colo-
rectal cancer (CRC: VII [27], VIII [28], IX [29]), liver
cirrhosis (X [30]), and inflammatory bowel disease (IBD:
XI [31] and XII [32]), with respective healthy controls
(Table 2). Only a little information on the three pathofunc-
tions is available from original studies (Additional file 1).
The following databases were used for screening. For
TMA, sequences of choline-lyase (cutC), and its activator

cutD as well as carnitine oxygenase/reductase (cntA/B)
from Reference [7] were applied. Databases of genes en-
coding betaine reductase (grdH) forming TMA from
betaine as well as of genes of the bile acid inducible
(bai) operon (baiA-I) encoding enzymes catalyzing the
7α-dehydroxylation of cholic/chenodeoxycholic acid to
DCA/LCA were established in this study (see the
“Methods” section). For dsrA/B (H2S formation), the
comprehensive, manually curated database provided by
Müller et al. [16] was used. Enzymatic routes encom-
passing the conversion of sulfur-containing amino acids
as well as endogenic H2S generation from the host were
not considered here.
Pathofunctions were detected in most samples of all

datasets at similar mean abundances with ~ 0.1–1% of total
bacteria carrying respective functions; only a few
individuals displayed abundances > 1% (Fig. 1). The
TMA-formation potential from carnitine was an exception
with many samples lacking this function, while others dis-
played high abundances, especially those originating from
Chinese individuals (I, III, X). CVD patients were enriched
in genes encoding formation of TMA, where all three
pathways were elevated in both datasets compared
with healthy controls and displayed an area under the
receiver-operating characteristic curve (AUC) of 0.71
for combined TMA data in regression analysis based
on generalized linear mixed effect models (GLMM)
(Additional file 2). Subjects suffering from type 2 diabetes
(T2D) exhibited increased mean abundances of all three
pathofunctions (III, IV; in dataset V patients showed simi-
lar levels as controls) with TMA exhibiting highest AUCs
(Additional file 2). No significant alterations in type 1

Table 2 Overview of individual datasets included in this study

Study Reference Short description Continent

I Jie et al. [21] CVD (n = 218) vs. controls (n = 186) A

II Karlsson et al. [22] CVD (n = 13) vs. controls (n = 12) E

III Qin et al. [23] T2D (n = 182) vs. controls (n = 185) A

IV Forslund et al. [24] T2D (n = 75), T1D (n = 31) vs. samples from VI E

V Karlsson et al. [25] T2D (n = 43) vs. controls (n = 53) E

VI Le Chatelier et al. [26] Obese (n = 161) vs. controls (n = 109) E

VII Feng et al. [27] CRC (n = 46), LA (n = 47) vs. controls (n = 63) A/E

VIII Zeller et al. [28] CRC (n = 91), LA (n = 15), SA (n = 27) vs. controls (n = 66) E

IX Vogtmann et al. [29] CRC (n = 52) vs. controls (n = 52) NA

X Qin et al. [30] Cirrhosis (n = 123) vs. controls (n = 114) A

XI Qin et al. [31] UC (n = 21), CD (n = 4) vs. controls (n = 14) E

XII Schirmer et al. [32] MTG: UC (n = 78), CD (n = 175) vs. controls (n = 55) NA

MTX: UC (n = 46), CD (n = 121) vs. controls (n = 11)

XIII Mehta et al. [53] MTG and MTX of 78 subjects (4 time points) NA

A/E—fecal matter derived from European subjects, whereas sample processing was performed in China
CD Crohn’s disease, CRC colorectal cancer, CVD cardiovascular disease, LA large adenoma, SA small adenoma, T1(2)D type 1(2) diabetes, UC ulcerative colitis, MTG
metagenome, MTX metatranscriptome, A Asia, E Europe, NA North America
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Fig. 1 (See legend on next page.)
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diabetic (T1D) individuals from healthy controls were de-
tected (IV) suggesting that a glycemic phenotype was not
responsible for the observed increases in T2D patients.
Obese subjects were unaffected, whereas abundances of all
pathofunctions (grdH, baiA-I, and dsrAB) were significantly
elevated in colorectal cancer (CRC) patients compared with
controls (Fig. 1). Cirrhotic individuals had increased levels
of TMA producers (cutCD and cntAB), yet other patho-
functions were even decreased compared with healthy con-
trols. No differences in abundance of any pathofunction
were detected in patients suffering from IBD in dataset XI,
and dsrAB as well as baiA-I showed even decreased abun-
dances based on metagenomic data derived from dataset
XII. However, results based on gene expression indicated
no significant differences between the groups. In conclu-
sion, pathofunction abundances were increased in diseases
where an etiological role has been previously proposed such
as increased TMA-producing potentials in CVD patients
and elevated levels of both bai and dsr genes in individuals
suffering from CRC. Unexpectedly, the H2S formation po-
tential was not increased in IBD (Fig. 1). Higher concentra-
tions were additionally detected in distinct patient groups,
most prominently the increased abundances of genes en-
coding for TMA formation in T2D subjects. Those findings
are consistent with analytical measurements that revealed
increased TMAO levels in such patients [33], yet its role in
the development of disease is not clear.
Several genera were detected carrying individual patho-

functions, demonstrating functional redundancy of taxo-
nomically distinct bacteria, particularly in the case of
cutCD where members belonging to two distinct phyla
Proteobacteria and Firmicutes were revealed as key mem-
bers, as observed earlier [7, 34]. In line with previous work
on genes encoding enzymes for TMA formation [7], indi-
vidual samples contained taxonomically distinct bacteria
carrying pathofunctions, though insights into their rich-
ness per subject remained rudimentary due to low se-
quencing depth. Resolutions gained from gene-targeted
approaches such as investigations on cutC-exhibiting
communities [7] are able to provide more detailed insights
in carrier diversity, though enumeration can be difficult if

many different pathways are involved and target se-
quences display high heterogeneity. Overall, reads from
metagenomes were closely matching references displaying
median protein similarities of 100% (Fig. 2) suggesting that
most important taxa in situ are represented in our da-
tabases. However, many cutCD-linked reads showed
lower values where 25% of reads displayed similarities
≤ 83%, and a majority of reads matching genes encoding
7α-dehydroxylation of bile acid (baiA-I) was associated
with two metagenomic species (Additional file 3) indicat-
ing that key members carrying those pathofunctions are
yet to be isolated.
CutCD genes previously found in various taxa were

concurrently driving the abundance increase of the
total pathway in patient groups (Fig. 2). Occasionally,
disparate abundance alterations of taxa during disease
were detected, such as Clostridium sensu stricto that,
against the common trend, decreased in T2D (III) and
cirrhotic (X) patients, underlining distinct ecology of
individual cutCD-carrying bacteria. Main members of
cntAB and grdH carriers, i.e., Escherichia/Shigella,
Klebsiella, and Clostridium XIVa, respectively, were
governing elevation of other TMA-forming pathways.
Potential 7α-dehydroxylating taxa containing baiA-I,
particularly the metagenomic species Firmicutes bacter-
ium CAG:103, that recruited > 60% of bai-associated
reads trended increased in CRC patients (Fig. 2, Add-
itional file 3). Bai genes previously described in Clostrid-
ium XIVa displayed higher levels in CVD and T2D
patients compared with healthy control groups. The
main dsrAB-containing taxa, Desulfovibirio and Bilo-
phila, showed similar behavior and governed total
pathway alterations in patient groups.
Abundances of individual pathofunctions were not

associated with each other (Fig. 3a). For pathways en-
coding TMA formation, cutCD and grdH correlated in
ten datasets, whereas cntAB and cutCD did only correlate
in the four Asian-derived datasets (Fig. 3a). Finer scale
analysis based on individual genera demonstrated high
co-occurrence between cntAB- and cutCD-containing
genera of the Enterobacteriaceae that were all located in

(See figure on previous page.)
Fig. 1 Association between pathofunction abundance and disease. Abundances of genes encoding three pathofunctions, namely, the formation
of (i) trimethylamine (cutCD (a), cntAB (b), grdH (c)), (ii) the secondary bile acids lithocholic/deoxycholic acid (baiA-I (d)), and (iii) hydrogen sulfide
(dsrAB (e)), were quantified in metagenomic data encompassing patients (red violin plots) suffering from cardiovascular disease (CVD: I, II), type 2
diabetes (T2 diabetes: III–V), obesity (Obese: VI), colorectal cancer (CRC: VII-IX), liver cirrhosis (Cirr: X), and inflammatory bowel disease (IBD:
ulcerative colitis (UC) and Crohn’s disease (CD), XI, XII) and compared with healthy controls (white violin plots). In dataset XII results of CD
patients are displayed following those from UC patients (on the right), whereas CD patients of dataset XI are not shown due to the low sample
size (n = 4). For the key of colors of additional violin plots, see legend at the bottom of the figure. Pathofunction abundance refers to the
percentage of total bacteria of a sample carrying respective genes, i.e., relative to the mean abundance of three single-copy housekeeping genes
(HKG). Gene expression results (MTX) are displayed relative to the mean expression of those HKG. Black bars in violin plots represent median
values. Significant differences (*p < 0.05) and trends (+p < 0.1 and #p = 0.1) between patients and healthy controls are indicated (Student’s t test
on log-transformed (log(x + 1)) data, whereas each disease results of generalized linear mixed-effects models using sample origin (dataset) as a
random effect are indicated at the bottom of each plot within dashed arrows
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one network module (Fig. 3b). Members harboring
cutCD as well as baiA-I were scattered across the en-
tire network demonstrating their distinct ecological
behavior, whereas all main grdH-encoding taxa were
connected and abundances of the two H2S producers
did closely correlate.
Specific taxa-function analyses (see in Additional file 4)

suggest that taxonomy-based diagnostic approaches
can be useful to estimate the abundances of certain
pathofunction-carrying groups such as the two major

dsrAB-containing taxa Desulfovibrio and Bilophila and
the cntAB-exhibiting Enterobacteriacea Escherichia/
Shigella and Klebsiella, where abundances of patho-
function genes linked to those genera correlated with
the overall, cumulative abundances of all members of
the respective taxa. This was not the case for genera
containing cutCD- or baiA-I.
DNA-based diagnostics can reveal the full pathofunc-

tional potential, whereas expression-based techniques,
metatranscriptomics and metaproteomics, as well as direct

Fig. 2 Abundance of individual bacteria carrying pathofunctions. Taxonomic affiliations of genes encoding three pathofunctions, namely, the
formation of (i) trimethylamine (cutCD (a), cntAB (b), grdH (c)), (ii) the secondary bile acids lithocholic/deoxycholic acid (baiA-I (d)), and (iii)
hydrogen sulfide (dsrAB (e)) were quantified in metagenomic data encompassing patients suffering from cardiovascular disease (CVD: I, II), type 2
diabetes (T2 diabetes: III–V), obesity (Obese: VI), colorectal cancer (CRC: VII-IX), liver cirrhosis (Cirr: X), and inflammatory bowel disease (IBD:
ulcerative colitis (UC) and Crohn’s disease (CD), XI and XII) and compared with healthy controls. In dataset XII results of CD patients are displayed
following those from UC patients, whereas CD patients of dataset XI are not shown due to the low sample size (n = 4). Taxa abundance refers to
the percentage of total bacteria of a sample carrying respective genes, i.e., relative to the mean abundance of three single-copy housekeeping
genes (HKG). For expression data (MTX) results are expressed relative to the mean expression of those HKG. Significant differences (*p < 0.05) and
trends (+p < 0.1) between patients and healthy controls are shown (FDR-corrected Mann-Whitney U test). For CRC, “*” in healthy controls indicates
significant difference (p < 0.05) from cancer patients, whereas in IBD datasets “u” and “c” refer to significantly different results (p < 0.05) in healthy
controls compared with UC and CD, respectively, whereas “b” indicates the differences of both diseases from controls. The most abundant taxa
that cumulatively represent 67% (a), 94% (b), 86% (c), 93% (d), and 81% (e) of total abundances of individual pathofunctions are displayed. Read
similarities (S:%,) are indicated as median/first quartile protein similarities to top-hitting reference on top of each panel. §: affiliated with
Enterobacteriaceae; &: affiliated with metagenomic species; Clostridium sens. str.: Clostridium sensu stricto; Clostridiales bact.: SAMEA3545284
(unclassified Clostridiales); Clost. UBA Human: Clostridiales bacteria UBA6412, UBA4701, and UBA5888; Firmicutes CAG:103: Firmicutes bacterium
CAG:103; unclass Lachnosp.: unclassified Lachnospiraceae
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measurement of activity (e.g., measurement of metabo-
lites), are crucial for assessing actual damage potential for
the host. Metatranscriptomic results from datasets XII and
XIII demonstrate frequent expression of pathofunctions,
however, in fewer samples compared with metagenomes,
except for dsrAB that was increasingly detected at the
RNA level (Table 3). It should be noted that demonstrating
the true absence of both genes and their expression is not
possible. Given a total bacterial load of 1012 g−1 feces, the
sequencing depth of metagenomics/metatranscriptomics

data only provides insights into features encoded by
abundant bacteria that are represented in the top orders of
magnitude, and it remains elusive whether the absence of
counts indicates abundance/expression below the limit of
detection or true absence. Median relative expression
ratios (i.e., RNA/DNA) were roughly 1 for all patho-
functions, whereas baiA-I (only in XII) and particularly
dsrAB showed much higher expression as compared
with DNA-based results. Expression of the Rieske-type
oxygenase CntA was not detected in any sample indi-
cating inactivity under strictly anaerobic conditions of
the colon and suggests upper intestinal sites with oxy-
gen availability as its main activity sites. CntAB results
exemplify that high turnover rates of mRNA make
expression-based diagnostics very sensitive, yet results
based on fecal samples probably strongly bias the con-
clusions on activity in the upper intestinal locations.
Proteins are more stable than mRNA; however, proteo-
mics data cannot provide the same depth of information,
and the detection of lowly expressed pathofunctions is
hampered. For baiA-I and dsrAB, positive correlations be-
tween abundance and expression were observed, whereas
for cutCD and grdH, correlations were only observed in
one of the two datasets. In both datasets, the same taxa
that prevailed in metagenomes displayed highest tran-
script levels (Fig. 2, Additional file 5). Longitudinal ana-
lyses revealed higher temporal variation in pathofunction
expression than in gene abundance data, and only at the
latter level stability was higher during the short time inter-
val (1 to 3 days) compared with the results derived from
the 6-month span (Additional file 5).
Targeted metabolite measurement provides another

diagnostic level and has proven very useful in the discov-
ery of pathofunctions [35] as it circumvents the need to
detect the total gene pool of a given pathofunction,
which can be challenging for the sequence-based omics
techniques, particularly if bacterial carriers or enzymatic
pathways have not yet been comprehensively identified.
Metabolite measurements will remain indispensable for
diagnostics and monitoring processes in the future. In
conclusion, it is desirable to apply a combination of
techniques targeting distinct levels to fully grasp both
the pathofunctional potential and its actual activity to-
gether with resolving all individual taxa involved in
order to perform accurate diagnostics.

Implications of the pathofunction concept for risk
assessment and development of intervention strategies
to improve host health
Subject-specific risk assessment and development of
appropriate intervention strategies requires a basic un-
derstanding of pathofunctions and respective bacterial
carriers including their interaction with the surrounding
microbiota and the host. In Fig. 4, we defined four broad
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levels that can provide a guideline for exposing individ-
uals at high risk and for designing interventions to re-
strain pathofunction activity. In brief, the first level
describes environmental conditions for potential patho-
function activity, primarily availability of (dietary) pre-
cursor substrates, whereas the second level represents
abundances of pathofunctions and assemblages of carrier
communities. Only the interplay of both levels leads to
pathofunction activity that potentially causes damage to
the host, which is denoted by the third level. Finally,
host physiology can also be crucial for assessing actual
damage risk and has to be considered as well (level 4).
The schema provides a basic guideline for risk assessment

that requires adjustments for each pathofunction consider-
ing individual features. For instance, presence of TMA and

LCA/DCA producers (level 2) does not imply availability of
precursor substrates (level 1), because alternative energy/
carbon sources are usually available for their growth. In
other words, the detection of specific pathofunctions repre-
sents a minor risk for host damage unless respective
substrates are available as well. This is supported by the
metatranscriptomic data where transcripts were detected in
fewer samples compared with gene abundance results, and
only baiA-I showed a positive correlation between gene
abundance and expression (Table 3). In contrast, reduction
of sulfur compounds is the main energy conservation
process for sulfate-reducing bacteria, and increased abun-
dances are most probably directly coupled to the elevated
production of H2S as indicated by gene expression results
that correlated with gene abundance data (Table 3). Per def-
inition, enzymes that catalyze the formation of precursors
of harmful metabolites such as choline from phosphatidyl-
choline or sulfate from host mucus are not pathofunctions
as their products do not harm the host; however, they can
play an important role and may be considered for risk as-
sessment. In case of TMA and secondary bile acids, sub-
strates are usually available at low amounts, yet scenarios
providing high precursor supplies such as choline/carnitine
rich diets or high fat intake (promoting secretion of bile)
are frequently occurring. Thus, diet is a key element, and
comprehensive measures on both dietary components and
community functions are needed to establish specific links
between intake of precursing substrates, abundances, and
expression of particular pathofunctions and risk for host
damage. However, in practice, considering general nutri-
tional habits for risk assessment might often be more use-
ful. For instance, diets high in protein can promote the
formation of various detrimental putrefaction products (if
bacteria carrying respective functions are present) [36], and
it makes little sense trying to single out each amino acid
(with respective pathofunction(s)) as separate risk factors,
because interventions focusing on the reduction of specific
amino acids are impracticable. Rather, the overall protein
intake could be lowered in individuals that harbor bacteria
carrying pathofunctional-specific putrefaction pathways at

Fig. 4 Schematic representation of the four main levels governing
pathofunction activity and potential host damage (red)—details on
the three examples, i.e., the formation of trimethylamine (TMA, via
CutCD, CntAB, and GrdH), the secondary bile acids lithocholic/
deoxycholic acid (LCA/DCA, via enzymes encoded in the bai
operon), and hydrogen sulfide (H2S, via DsrAB) are given. Possibilities
for intervention are shown in blue. For more information see text

Table 3 Comparison of metagenomic and metatranscriptomic data (datasets XII and XIII)

Dataset XII Dataset XIII

MTG% MTX% Rho p Ratio MTG% MTX% Rho p Ratio

CutCD 95.68* 83.33 0.09 0.42 0.72 99.67* 68.09 0.11 0.06 0.95

CntAB 33.45* 0.00 nd nd nd 14.79* 0.00 nd nd nd

GrdH 80.58* 48.72 0.27 0.02 0.80 94.06* 31.35 0.09 0.14 0.75

BaiA-I 65.11* 28.21 0.22 0.05 3.15 97.69* 62.38 0.22 < 0.01 1.20

DsrAB 55.40 70.52* 0.50 < 0.01 3.92 87.78 92.76* 0.31 < 0.01 20.7

The percentage of samples harboring individual pathofunctions in metagenomes (MTG%, n = 278 (XII); n = 311 (XIII)) and metatranscriptomes (MTX%, n = 78 (XII);
n = 305 (XIII)) as well as correlations between abundance and expression levels (Spearman’s rho and p value) based on matched MTG/MTX samples (n = 78 (XII); n = 304
(XIII)) are shown. Ratio refers to the median RNA/DNA results of matched samples where only pairs that showed values > 0 at both levels were considered. nd: not
determined. Seven metatranscriptomic samples and one metagenome from dataset XIII were omitted due to low sequencing depth (< 105 reads). Significant differences
(*p < 0.05) between abundance and expression based on generalized linear models are indicated

Rath et al. Microbiome  (2018) 6:174 Page 8 of 13



elevated concentrations in order to attenuate the risk of
host damage.
Host physiology can play a crucial role as well where,

similar to opportunistic pathogens, certain pathofunc-
tions are only harmful in susceptible hosts, which is ex-
emplified by the formation of branched-chain amino
acids that are proposed to contribute to insulin
resistance only in obese subjects [37]. Also for
TMAO-specific risk assessment, host physiology might
be included. Both genetic defects, namely, trimethylami-
nuria, where FMO activities are absent, and genotypic
(gender) differences in the potential to form TMAO,
with higher enzyme activities in women compared to
men, were described [38, 39].
Treatment can act on any of the outlined levels, yet

broad, multilevel interventions such as limiting intake of
precursors together with the reduction of nutritional
niches of carriers, accompanied by boosting detoxifica-
tion mechanisms, are probably most successful. Target-
ing nutrition (level 1) is attractive as it interferes at the
initial stages reducing pathofunction activity. Further-
more, dietary precursors provide a common therapeutic
target independent of the composition of bacterial car-
riers. Precision interventions become more difficult if (i)
multiple, universal precursors are involved (e.g., forma-
tion of ammonia); (ii) substrates are essential for host
health (e.g., choline); are (iii) of endogenous origin (pri-
mary bile acids); or (iv) do not involve any precursors
(e.g., bacterial proteases). As discussed above, broader
dietary interventions might often be more realistic. An
example provides patients suffering from trimethylami-
nuria (accumulation of TMA in body fluids), who are
advised to avoid specific foods like red meat and eggs in
order to limit the intake of dietary precursors for the
formation of TMA [38].
Restraining abundances of pathofunctions and growth

of carriers (level 2) can be another intervention goal. Use
of antibiotics is only advisable in severe cases, and rather
gentle, more focused interventions are desirable, where
overall community compositions are not fundamentally
altered. Targeting broader groups like Enterobacteriaceae
that are associated with several pathofunctions by redu-
cing oxygen influx and electron acceptors for anaerobic
respiration could be effective [4], whereas precision treat-
ment specifically targeting individual carriers represents
an attractive, more focused approach. However, the latter
becomes particularly challenging if taxonomically di-
verse communities that occupy various niches in the
gut ecosystem are involved. For instance, TMA-producers
encompass a myriad of diverse taxa encoding distinct
metabolic pathways, where carrier community assemblages
can greatly differ between subjects [7]. Individualized inter-
ventions adjusted for each community type might be
appropriate to narrow the spectrum of targets.

Furthermore, stimulating commensals that compete for
growth substrates with pathofunction carriers could be ef-
fective to restrain carriers, especially if closely related bac-
teria that lack pathofunctions and display large niche
overlaps with carriers are involved. For several key mem-
bers exhibiting choline lyase (TMA) and genes for DCA/
LCA formation, phylogenetically closely related, patho-
functionally inactive strains have been isolated [7]. Ad-
ministration of an array of such strains along with
appropriate substrates for providing a competitive
advantage over pathofunction-carrying bacteria might
be applied for precision outcompeting of carriers.
Blocking activity of pathofunctions represents an-

other target to avoid host damage (level 3). An ele-
gant, successful therapeutic example is the application
of 3,3-dimethyl-1-butanol, a structural analog of choline,
which inhibits TMA lyases of gut microbiota [40].
Detoxification mechanisms by autochthonous communi-
ties provide additional, appealing targets for treatment.
A prominent approach represents “Archaebiotics” that
refers to the use of TMA-depleting methanogens con-
verting TMA to DMA [41]. The recently identified
iso-bile acid pathway in certain Ruminococci that de-
grades secondary bile acids LCA/DCA serves as an-
other example demonstrating autochthonous bacteria
as potential detoxifiers [42]. However, interventions at
this level represent the last resort, where detoxification
of harmful metabolites is directly competing with host
absorption, and detailed information on detoxification
kinetics will be crucial to assess applicability for treat-
ment. Finally, altering host physiology to attenuate
pathofunction virulence (e.g., reducing TMAO forma-
tion in the liver) or to promote detoxification mecha-
nisms such as increasing the capacity of colonic
epithelial cells to oxidize H2S [18] might represent add-
itional intervention targets.

Conclusions
The opportunity of modulating gut microbiota to promote
host health is increasingly recognized, yet mechanisms
underlying host-microbiota interactions are still poorly
understood and targets for treatment remain largely elusive.
Here, we focused on the concept of pathogenic functions
of gut microbiota that play a role in non-communicable
disorders and provide a guideline that can assist their diag-
nostics, risk assessment, and the development of treatment
strategies. Insights into features of human microbiota dam-
aging the host are in its infancy and the pathofunctional
spectrum is largely unexplored. The discovery of new
pathofunctions can pose major challenges as a manifest-
ation of the disease often requires long-term exposure,
which complicates appropriate experiments using model
systems. Nevertheless, Koch’s postulates can be applied to
establish a particular function as pathogenic, when
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initiating or increasing its activity in a suitable host causes
disease as convincingly demonstrated for TMA(O) in a
mouse model [8]. However, even the three metabolites in-
vestigated in this study are not exclusively regarded as be-
ing harmful. For instance, DCA plays a role in colonization
resistance against Clostridioides difficile [43], and moderate
levels of H2S were ascribed beneficial effects [18] exempli-
fying the need for establishing dose-dependent information
for accurate risk assessment where host damage might not
correlate with pathofunction activity in a linear fashion. Co-
hort studies applying longitudinal sampling together with
technological advancements including multiomics tech-
nologies provide encouraging environments for reveal-
ing additional pathofunction candidates.
For diagnostics, comprehensive databases encompass-

ing the full taxonomic and biochemical diversity play a
central role, and adjusted workflows to capture low
abundant features might be required, which explains the
limited results related to the three pathofunctions ob-
tained in original studies (Additional file 1). Often, key
pathofunction carriers are unknown, even for those pre-
sented in this study. Metagenomic species identified
based on genome reconstructions from metagenomic
data circumvent the need for cultivation and proved use-
ful in this study where they served as key references
(Fig. 2, Additional file 3). It is possible to estimate their
intestinal niches based on genomic features; however,
the ecological understanding of such bacteria will be
limited due to inability to perform defined experiments.
The need to isolate and cultivate key pathofunction car-
riers remains eminent.
Complete eradication or blocking of all pathofunctions

in a given community is difficult, and rather restraining
pathofunction abundance and activity will be in focus in
the future. Major tasks will involve quantitative monitor-
ing of long-term exposure dynamics to establish concen-
tration thresholds for risk assessment and for defining
successful treatment. Although the so-called “healthy
microbiota”, derived from symptom-free subjects, pro-
vides a first reference, it is an imperfect benchmark that
is vaguely defined and contains a myriad of pathofunc-
tions. In our opinion, reducing pathofunctions will im-
prove host well-being, even in the healthy population,
and particularly bears great potential when it comes
to increase our lifespan and to promote healthy aging
where chronic disorders play a central role.

Methods
Databases
CutCD, cntAB, and grdH (TMA formation)
References for cutCD and cntAB provided in [7] were
updated (PATRIC genomes, n = 107,042, June 2017). To
identify genes encoding the β-subunit of betaine reductases
(grdH), the same genomes were screened (hmmsearch,

HMMER 3.1b1, hmmer.org) using a hidden Markov model
(HMM) constructed from the following protein references
based on [12]: 742765.5.peg.3571, 1133568.3.peg.2056,
1125712.3.peg.1676, 999407.4.peg.5417, 1531.8.peg.5368,
712357.3.peg.735, 552395.3.peg.1966, 411465.10.peg.881,
457415.3.peg.2639; sequences were trimmed from the
3-prime end till selenocystein as this part was often lacking
in PATRIC sequences. A phylogenetic tree was constructed
(FastTree (v. 2.1.8) [44] using the JTT+CAT model) from
all sequences that displayed HMM scores > 100 and ≥ 80%
coverage to the model, and distances between the branch
tips and the top-scoring sequence were determined
using cophenetic.phylo function in R (v. 3.1.2) (package:
ape, v. 3.4). A steep HMM score drop was obvious at
around 550 that correlated with the increases in phylogen-
etic distances, and all sequences displaying a score > 500
were considered as true grdH yielding 346 candidates
(Additional file 6A). Selected sequences form a clade in
the tree separated from sequences encoding distinct func-
tionality (Additional file 6B) in the selenoproteins of the
glycine/betaine/sarcosine/D-proline reductase family.

BaiA-I (LCA/DCA formation)
Full-length HMM models were constructed for bai A-I
genes using sequences based on Reference [15] and manual
BLAST searches (PATRIC genome IDs: 1505.29, 1505.7,
1232454.3, 500633.7, 553973.6, 411468.9, 658665.3, 65808
5.3, 1123009.3). All PATRIC genomes were screened, and
cutoffs were set after obvious HMM score drops for each
gene. Subsequently, all genomes exhibiting ≥ 4 genes in
synteny (defined as being separated by ≤ 10 genes based on
locus tag) were selected as candidates. Additional manual
inspections on NCBI yielded baiA,E,F for genomes
165185.6 and 165186.4 that exhibited only three genes in
initial searches. For verification, phylogenetic trees were
constructed for all genes (baiA-I) where sequences con-
sidered as true bai formed a clade separate from
lower-scoring genes that were not considered encoding
the functions of interest. Finally, 60 bacteria exhibiting
the bai operon were revealed (46 were Clostridium
sordellii strains).

DsrAB (H2S formation)
In the database provided by Müller et al. [16], subunits A
and B were split and all sequences displaying > 70% length
to the references from Desulfovibrio vulgaris (NC_002937)
were subjected to FrameBot analysis (v. 1.2, in default
mode [45], with HMMs derived from FunGene [46]); all
protein sequences were subsequently used in BLAST
searches (see below).
CutCD (n = 1) and bai (n = 6) genes derived from

metagenomic species available in PATRIC and from ref-
erence [47] were added to the databases (only those
found in feces and displaying protein sequence
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similarities > 70% and < 95% to references were consid-
ered). Taxonomic affiliations were based on the RDP
taxonomy where 16S rRNA gene sequences of genomes
were retrieved and subjected to classification using the
RDP classifier [48] as described previously [7].

Screening for pathofunctions in metagenomic/
transcriptomic datasets
Raw reads of all samples were downloaded from the
European Nucleotide Archive (http://www.ebi.ac.uk/ena)
and the Sequence Read Archive (https://www.ncbi.nlm.-
nih.gov/sra), quality filtered for an average Q score ≥ 20
and length ≥ 70 using Trimmomatic [49]. Filtered reads
were BLASTED (blastx using DIAMOND [50]) against
databases described above, and the top-hitting reference
was recorded if the query alignment was ≥ 20 amino
acids showing ≥ 70% similarity to references. Three
single-copy housekeeping genes encoding 50S riboso-
mal protein L2 (rplB), recombinase A (recA), and
CTP-synthase (pyrG) from all PATRIC genomes were
included in BLAST searches [51]. For cutCD, cntAB,
grdH, and baiA-I, sequences below the set HMM
threshold were included at this stage (as done in [7]) to
avoid the possibility of false-positive counts derived
from those related genes. Matching read counts were
gene length corrected using the median length of re-
spective reference sequences. For each sample, median
counts associated with individual pathofunctions were
used to calculate pathofunction abundances relative to
mean counts linked to the three housekeeping genes of
all PATRIC genomes (representing total genomes in a
sample) as performed previously [51]. All genes of a
pathway had to be detected for considering a pathway
being present (for baiA-I, the cutoff was set at four
genes). For TMA, calculations were performed for each
pathway separately. Thus, throughout the manuscript,
pathofunction “abundance” refers to the percentage of
bacteria carrying that function. Metatranscriptomic data
are presented relative to the mean expression of the three
housekeeping genes. Taxa abundance (and expression
levels, respectively) comprising individual pathofunctions
are shown on the genus level calculated from the cumula-
tive count data of all genes derived from the same genus
in pathofunction reference databases relative to mean
counts of the three housekeeping genes of all PATRIC ge-
nomes. For taxa not affiliated with a genus such as unclassi-
fied Clostridiales bacterium SAMEA3545284 or Firmicutes
bacterium CAG:103, strain names are given.
Statistical analyses were performed in R: Spearman

correlation (package Hmisc), q values (package fdrtool),
Student’s t test (function t.test), logistic regression
(function glm) (family = binomial), and area under the
receiver-operating characteristic curve (package pROC).
Generalized linear mixed-effects models were constructed

for each disease (function glmer (family = binomial) from
package lme4) using dataset as a random effect. Differ-
ences in abundance and expression of pathofunctions
were assessed based on generalized linear models
(function glm (family = binomial)) using presence/absence
data and total counts as offset in order to adjust for lower
sequencing depth in metatranscriptomic data (3.97 × 106

± 1.44 × 105 vs. 2.62 × 106 ± 2.47 × 105 (XII) and 3.74 × 106

± 8.40 × 104 vs. 2.99 × 106 ± 1.39 × 105 (XIII) (mean ± SE)).
FDR-corrected Mann-Whitney U tests were done in
QIIME (v. 1.9.1, [52]). Violin plots and heatmaps (based
on log-transformed, abundance data (log(x + 1)) were
constructed in R using the packages gplots (v. 2.17.0) and
ggplot2 (v. 2.2.1). Networks were visualized in cytoscape
(v. 2.3.1, http://cytoscape.org, preferred layout with some
modifications) considering correlations (p and q < 0.05,
Spearman’s rho ≥ 0.35) that were detected in at least
three datasets (n = 12).

Additional files

Additional file 1: Indications in original studies for differential
abundance of the three pathofunctions, namely, the formation of
trimethylamine (TMA), secondary bile acids lithocholic/deoxycholic acid
(LCA/DCA) and hydrogen sulfide (H2S) between patients and respective
controls based on functional and taxonomy-based analyses. Data was
queried for functions based on function names and KEGG Orthologies
(provided for most studies. CutC/D: K20038/K20038, cntA/B: K22443/
K22444, grdH: K21579, baiCD/E: K15870/K15872, dsrA/B: K11180/ K11180).
Taxonomic data was screened for key taxa that correlated with function
based on information given in Additional file 4 (TMA (cntAB): Escherichia/
Klebsiella, TMA (grdH): Dorea, H2S: Bilophila/Desulfovibrio). Clostridium
scindens (DCA/LCA) was included as well. Jie et al. [21] (dataset I)
additionally analyzed datasets III, VI and X for TMA associated genes
based on selected reference sequences and results are also displayed.
Forslund et al. [24] included studies III-V into their analysis and reported a
trended increase (p = 0.07) for MF0100 (dissimilatory sulfate reduction) in
T2D patients across studies. ?: no information on that function/taxa was
retrieved, =: no difference between patients and control group, CD: Crohn’s
disease, CRC: colorectal cancer, CVD: cardiovascular disease, HGC: high gene
count group, MLG: metagenomic linkage group, T2D: type 2 diabetes, UC:
ulcerative colitis. (PDF 56 kb)

Additional file 2: Area under the receiver-operating characteristic curve
(AUC) applying generalized linear mixed-effects models for each disease
based on abundances of genes encoding three pathofunctions, namely,
the formation of (i) trimethylamine (TMA: cutCD, cntAB and grdH), (ii) the
secondary bile acids lithocholic/deoxycholic acid (bai operon) and (iii)
hydrogen sulfide (dsr genes) are displayed as well as results from
combined data (All). AUCs of individual datasets and of diseases
represented by only one dataset based on logistic regression are
indicated after arrows on the right and at the bottom, respectively.
Data encompassed patients suffering from cardiovascular disease
(CVD: I, II), type 2 diabetes (T2D: III-V), obesity (Obese: VI), colorectal cancer
(CRC: VII, VIII, IX), liver cirrhosis (Cirr: X) and inflammatory bowel disease (IBD:
ulcerative colitis (UC) and Crohn’s disease (CD), XI and XII). Samples from
type 1 diabetes (dataset IV), adenomas (datasets VII and VIII) and CD of
dataset XI were not considered. For details on individual datasets see Table 2.
(PDF 2400 kb)

Additional file 3: Neighbor joining tree of baiCD sequences. Sequences
from C. sordellii were merged. On the right, taxonomic affiliations (on genus
level) are given with amount of reads (as % of total bai associated reads)
from omics data (n = 2975) linked to individual taxa. &: Sequences derive
from metagenomic species (including information on isolation source
(host)). (PDF 58 kb)
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Additional file 4: The number of genomes of major genera exhibiting
individual pathofunctions is displayed, where the percentage of bacteria
exhibiting the pathofunction of all members of that genus is given in
brackets (Number Genomes (% of genus)). Correlations between
pathofunction abundances affiliated with a genus and abundances of all
members of respective genera (based on three house-keeping genes) are
shown as well (CorrelationTaxonomy). The number of datasets displaying
a correlation (p and q < 0.05 and Spearman’s rho > 0.35, n = 12) is given
and Spearman’s rho (average ± standard deviation) is displayed in
brackets. Datasets IV and VI were merged as they derived from one
source and have overlapping samples in the healthy control groups. ND:
not determined. (PDF 48 kb)

Additional file 5: Metagenomic and metatranscriptomic analyses of
genes encoding three pathofunctions, namely, the formation of (i)
trimethylamine (cutCD, cntAB, grdH), (ii) the secondary bile acids
lithocholic/deoxycholic acid (baiA-I) and (iii) hydrogen sulfide (dsrAB) in
78 healthy male adults sampled at four time points [53]. Top panels
display pathofunction abundance (A) and expression (B) considering all
samples. Results of individual taxa are shown in the panels below (C, D),
where relative abundances, i.e., percentage of each taxon from total
pathofunction abundance/expression data, are shown. Panels E and F
display temporal variability of both levels where $ indicates significant
higher variability (p < 0.05) in gene expression compared with gene-
abundance results and *,+ indicate increased (p < 0.05, p < 0.1) variability
in the six months interval compared with the short time intervals (1 to
3 days; Student’s t test). Temporal variability was calculated as abundance/
expression differences between two time-points relative to the higher value
ranging from 0% (no change) to 100% (absent at one time-point). §:
Affiliated with Enterobacteriaceae, &: affiliated with metagenomic species,
Clostridium sens. str.: Clostridium sensu stricto, Clostridiales bact.:
SAMEA3545284 (unclassified Clostridiales), unclass Lachnosp.: unclassified
Lachnospiraceae. Seven metatranscriptomic samples and one metagenome
were omitted due to low sequencing depth (< 105). (PDF 1185 kb)

Additional file 6: Results of screening procedures for grdH sequences.
In Panel A obtained unique proteins are depicted along the x-axis, sorted
according to their similarity to the constructed hidden Markov chain
model (HMM) represented by the primary y-axis. The secondary y-axis
shows phylogenetic distances to the top-scoring sequence (triangles).
Sequences considered as true grdH are shown in blue. Below (B) a tree of
all sequences from Panel A is displayed with the clade containing true
grdH sequences highlighted in blue. Sequences encoding glycine
reductase (grdB: Q9R4G8-1) and sarcosine reductase (grdF: O86186-1)
are shown in pink (UniProt IDs are given). (PDF 127 kb)
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