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Abstract

and VIII.

in chicken embryos occurs at around EGKVI to VIII.

Background: Acquisition of pluripotency by transcriptional regulatory factors is an initial developmental event that is
required for regulation of cell fate and lineage specification during early embryonic development. The evolutionarily
conserved core transcriptional factors regulating the pluripotency network in fishes, amphibians, and mammals have
been elucidated. There are also species-specific maternally inherited transcriptional factors and their intricate
transcriptional networks important in the acquisition of pluripotency. In avian species, however, the core transcriptional
network that governs the acquisition of pluripotency during early embryonic development is not well understood.

Results: We found that chicken NANOG (cNANOG) was expressed in the stages between the pre-ovulatory follicle and
oocyte and was continuously detected in Eyal-Giladi and Kochav stage | (EGKI) to X. However, cPOUV was not expressed
during folliculogenesis, but began to be detectable between EGKV and VI. Unexpectedly, cSOX2 could not be detected
during folliculogenesis and intrauterine embryonic development. Instead of cSOX2, cSOX3 was maternally inherited and
continuously expressed during chicken intrauterine development. In addition, we found that the pluripotency-related
genes such as cENS-1, cKIT, cLIN28A, cMYC, cPRDM 14, and cSALL4 began to be dramatically upregulated between EGKVI

Conclusion: These results suggest that chickens have a unique pluripotent circuitry since maternally inherited cNANOG
and ¢SOX3 may play an important role in the initial acquisition of pluripotency. Moreover, the acquisition of pluripotency

Keywords: Avian, Embryonic development, NANOG, Pluripotency, Transcriptional factor

Background

The acquisition of pluripotency plays a pivotal role in deter-
mining developmental fate during early vertebrate embryo-
genesis. In mammals, Oct4, Sox2, and Nanog, called core
pluripotency transcription factors, act as specific modula-
tors of pluripotency and can control the developmental fate
of cells by inhibiting cellular differentiation [1, 2]. In mice,
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Oct3/4 and Sox2 are maternally inherited transcription fac-
tors [3], while Nanog is initially expressed in the compacted
morulae [4]. These transcription factors collaborate to con-
stitute a regulatory network, and share many target genes
[5, 6]. They are expressed in every cell during the cleavage
period, but are gradually restricted to the inner cell mass.
Meanwhile, Oct25 (Pou5f3.2), Oct60 (Pou5f3.3), and Sox3
are maternally inherited to establish the pluripotency
network and initiate the maternal to zygotic transition in
Xenopus. Since there is no ortholog of Nanog in Xenopus,
Ventx plays an important role in pluripotency [7, 8]. In
addition, in zebrafish, Oct4 (Pou5f3), SoxB1, and Nanog are
maternally inherited to establish the pluripotency network
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for zygotic genome activation (ZGA) [9, 10]. Although ma-
ternally inherited core transcription factors for the initial
acquisition and organization of pluripotency are unique to
each vertebrate species, their network in vertebrates is well
conserved. However, the acquisition of pluripotency and
the core pluripotency circuitry during early embryonic de-
velopment has yet to be investigated in detail in birds. It
has been reported that the transition from totipotent state
to pluripotent state during early embryonic development
seem to be accompanied by the pluripotency regulatory
genes under core transcriptional network [11-14]. How-
ever, the intricate changes of transcriptional network under
regulation of core pluripotency circuitry during the acquisi-
tion of pluripotency in avian species are not clear.

After fertilization, chicken embryos undergo a series of
developmental events in utero for approximately 24 h,
including cellularization, the ZGA and layers increase
during the cleavage period, and lineage specification and
layer reduction during area pellucida formation [15].
During chicken intrauterine development, the expression
of core regulatory genes is spatiotemporally triggered or
suppressed under tight transcriptional regulation. Such
early developmental pathways, including ZGA, pluripo-
tency acquisition, and lineage segregation, are systematic
processes, governed by the concerted action of multiple
unknown transcriptional networks [16-18]. In this
regard, the core pluripotency transcription factors gov-
erning the acquisition of pluripotency with respect to
developmental processes during chicken intrauterine
development require further investigation. Here, for the
first time, we examined the detailed spatiotemporal
expression profiles of core pluripotency transcription
factors, including chicken NANOG (¢cNANOG), POUV
(cPOUYV) and SOXB1 members (cSOX2 and ¢SOX3), and
determined the developmental stage for the acquisition
of pluripotency during intrauterine embryonic develop-
ment in chicken.

Methods

Experimental animals and animal care

The care and experimental use of chickens was approved
by the Institute of Laboratory Animal Resources, Seoul
National University (SNU-150827-1). Chickens were main-
tained according to a standard management program at the
University Animal Farm, Seoul National University, Korea.
The procedures for animal management, reproduction, and
embryo manipulation were in adherence with the standard
operating protocols of our laboratory.

Alignment and conservation of protein sequences

In order to identify the percent identities of chicken
NANOG, POUYV, SOX2, and SOX3 proteins/functional
domains with candidate vertebrate species, the NANOG,
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POUV, SOX2, and SOX3 amino acid sequences from
Gallus gallus, Homo sapiens, Mus musculus, Danio rerio,
and Xenopus laevis were aligned with Geneious software
version 6.0 (Biomatters, Auckland, New Zealand). Se-
quence information was obtained from the National
Center for Biotechnology Information (NCBI) database
(Table 1). All protein sequences were aligned using the
Blosum62 scoring matrix, with the gap open penalty set
at 12 and the gap extension penalty set at 3.

Collection of intrauterine eggs, follicles, and oocytes from
hens

The intrauterine embryonic developmental period in the
chicken is divided into 10 stages, described and named
by Eyal-Giladi and Kochav, and designated EGK.
through to EGK.X [19]. Intrauterine eggs were retrieved
from White Leghorn (WL) hens by an abdominal mas-
sage technique from our earlier study [17]. Briefly, the
abdomen was pushed gently until the shell gland was
exposed. The surface of the shell gland expanded when
an egg was located there for eggshell formation. After
this expansion of the shell gland, the intrauterine egg
was gently moved toward the cloaca via massage until it
was released. Intrauterine blastoderms were classified ac-
cording to the criteria of Eyal-Giladi and Kochav [19, 20].
The harvested blastoderms were fixed in 4% paraformal-
dehyde in phosphate-buffered saline (PBS) for subsequent
experiments. Fertility and abnormalities in the collected
blastoderms were determined according to morphology.
For the collection of follicles and oocytes, WL hens were
sacrificed and ovaries were collected. Follicles were
categorized into F1 (30-35 mm), F3 (20-25 mm), F5 (10—
15 mm), small yellow follicle (5-8 mm), and large white
follicle (WF, 2—4 mm) [21, 22]. Follicles were dissected to
separate theca and granulosa layers and were subsequently
homogenized for isolation of RNA after washing with PBS.

Reverse transcription-polymerase chain reaction (RT-PCR)

and quantitative real-time PCR (qRT-PCR)

The total RNA of samples was extracted from pre-
ovulatory follicles and intrauterine chicken embryos using
TRIzol reagent (Invitrogen, Thermo Fisher Scientific,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions. The oviposited chicken embryos were classified
according to the staging by Hamburger and Hamilton
(HH) [23]. From the HH 26-28 embryos, RNA was
extracted from chicken embryonic fibroblasts (CEFs) and
intact primordial germ cells (PGCs) [24]. The complemen-
tary DNA (cDNA) of the sample was synthesized using the
Superscript III First-strand Synthesis System (Invitrogen)
according to the manufacturer’s protocol. The RT-PCR
reaction mixture contained 2 pL of PCR buffer, 0.5 pL of
10 mmol/L. ANTP mixture (Solgent, Daejeon, Korea), 10
pmoles each of forward and reverse primers (Table 2), 1 uL
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Table 1 Protein sequence alignment of chicken NANOG, POUV, SOX2, and SOX3 with candidate vertebrate species

Protein Species Accession no. Protein length Percent identities of proteins® Percent identities of functional domains®
cNANOG Gallus gallus NP_001139614 309 NA Homeodomain
Homo sapiens NP_079141 305 26.0% 64.8%
Mus musculus NP_082292 305 27.5% 66.7%
Danio rerio AEZ64150 384 20.1% 61.1%
cPOUV Gallus gallus NP_001296301 389 NA Homeodomain
Homo sapiens NP_002692 360 36.1% 66.7%
Mus musculus NP_038661 352 35.7% 66.7%
Danio rerio NP_571187 472 39.5% 64.8%
Xenopus laevis NP_001081342 445 37.1% 74.1%
cSOX2 Gallus gallus AAB09662 315 NA HMG domain
Homo sapiens NP_003097 317 93.4% 98.6%
Mus musculus NP_035573 319 92.2% 98.6%
Danio rerio NP_998283 315 90.2% 97.2%
Xenopus laevis NP_001081691 311 91.1% 100%
cSOX3 Gallus gallus NP_989526 316 NA HMG domain
Homo sapiens NP_005625 446 69.0% 97.2%
Mus musculus NP_033263 450 69.3% 97.2%
Danio rerio NP_001001811 300 79.0% 95.8%
Xenopus laevis NP_001007502 307 82.2% 98.6%

?Percent identities of chicken proteins or domains with other vertebrate species

Table 2 Primer sequences used for RT-PCR, in situ hybridization, and gRT-PCR

Gene Accession no.

Forward (5'— 3"

Reverse (5'— 3")

Amplicon size, bp

RT-PCR or in situ hybridization

CNANOG NM_001146142
cPOUV NM_001309372
cSOX2 NM_205188
SOX3 NM_204195
cGAPDH NM_204305

QRT-PCR
CGAPDH NM_204305
CNANOG NM_001146142
cPOUV NM_001309372
CSOX3 NM_204195
CENS-1 NM_001080873
CTFCPLT XM_422087
TBX3 NM_001270878
CcPRDM 14 XM_015282907
cKIT NM_204361
CLIN28A NM_001031774
cMYC NM_001030952

cSALL4 NM_001080872

CAGCAGACCTCTCCTTGACC
GCCAAGGACCTCAAGCACAA
CACAACTCGGAGATCAGCAA
CGGCACCGTACCACTAACTC
CACAGCCACACAGAAGACGG

ACACAGAAGACGGTGGATGG
CAGCAGACCTCTCCTTGACC
TGAAGGGAACGCTGGAGAGC
CGGCACCGTACCACTAACTC
TGCTCGGCCTTCTGTATCAG
TCAGCACATTAAAAGCTGAAAGCA
GTGGAAGACGACCCGAAAGT
AAATTCCCCTGCCACCTCTG
AGCGAACTTCACCTTACCCG
CCGAGAATGAGTCCCAACCC
GAGGAGAACGACAAGAGGCG
AATTCTGCCAGACGGGGAAG

AAGCCCTCATCCTCCACAGC
ATGTCACTGGGATGGGCAGA
GTAGGTAGGCGATCCGTTCA
GACTCGGAAGCGAACAAAAC
CCATCAAGTCCACAACACGG

GGCAGGTCAGGTCAACAACA
AAAAGTGGGGCGGTGAGATG
ATGTCACTGGGATGGGCAGAC
GACTCGGAAGCGAACAAAAC
TTCCTCTCGGAACTCCACAG
AGCAATCTCAGTGAGGCACTA
CACCATCTCCGTGCCTCTTT
CCCGCATGTGTTTGTTCAGG
CTGGGAATCCAGTTGCCACA
GGTGAATTCAACGGCTTCGC
CACGCAGGGCAAAGAAACTC
GCTATGCCATTGCTGAGCAC

586
511
471
302
443

193
187
231
302
181
110
78

154
181
197
85

170
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of cDNA and 1 IU of Taq DNA polymerase in a 20 pL final
volume. RT-PCR was performed with an initial incubation
at 95 °C for 10 min, followed by 30 cycles of 95 °C for 30 s,
60 °C for 30 s, and 72 °C for 30 s. PCR was terminated by a
final incubation at 72 °C for 5 min. qRT-PCR was
performed using the CFX96 Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA). The PCR reaction
mixture contained 2 pL of PCR buffer, 0.5 pL of 10 mmol/
L ANTP mixture (Solgent), 10 pmoles each of the forward
and reverse primers (Table 2), 1 uL of cDNA, 1 pL of
EvaGreen (Biotium, Fremont, CA, USA), and 1 IU of Taq
DNA polymerase in a 20-pL final volume. qRT-PCR was
performed with an initial incubation at 95 °C for 10 min,
followed by 40 cycles of 95 °C for 30 s, 60 °C for 30 s, and
72 °C for 30 s. The reaction was terminated by a final incu-
bation at the dissociation temperature. The relative gene
expression was calculated after normalization with GAPDH
and values at stage EGK.X using the formula 244" [25].

In situ hybridization

To prepare hybridization probes, total RNA from each
blastodermal stage was reverse transcribed, and the cDNA
was amplified using the primers shown in Table 2. The
PCR products of the correct size were cloned with the
pGEM-T Easy Vector System (Promega, Madison, WI,
USA). After sequence verification, the recombinant
plasmids containing the genes of interest were amplified
with T7 (T7: 5'-TGTAATACGACTCACTATAGGG-3")
and SP6-specific primers (SP6: 5'-CTATTTAGGTGA
CACTATAGAAT-3’) to prepare the templates for labeling
with hybridization probes. Digoxigenin (DIG)-labeled
sense and antisense hybridization probes of each gene
were transcribed in vitro using the DIG RNA Labeling Kit
(Roche Diagnostics, Basel, Switzerland). Whole mount in
situ hybridization was performed following the standard
protocol for chickens [26, 27]. In addition, intrauterine
blastoderms were embedded in paraffin and sectioned at
10 pm on a HM 355S automatic microtome (Thermo
Fisher Scientific). After deparaffinization, rehydration, and
antigen retrieval, each slide was mounted with Vectashield
Antifade Mounting Medium with DAPI (Vector Labora-
tories, Burlingame, CA, USA). The embryonic nuclei were
evaluated under a Ti-U fluorescence microscope (Nikon,
Tokyo, Japan).

Statistical analysis

All data of qRT-PCR are expressed as mean + stand-
ard error of mean from three independent experiments.
GraphPad Prism software (GraphPad Software, La Jolla,
CA, USA) was used to evaluate the data. Significant differ-
ences were evaluated by one-way ANOVA with Bonferro-
ni’s multiple comparison test between developmental
stages. P < 0.05 was considered statistically significant.
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Results

Expression profiling of core pluripotent transcriptional
factors during chicken intrauterine development

To investigate the conservation of transcriptional regula-
tory networks of pluripotency among vertebrates, initially,
we compared protein identities and the conservation of
core pluripotent transcription factors, including cPOUYV,
¢SOX2, and cNANOG with human, mouse, zebrafish, and
frog. As shown in Table 1, the identities of cNANOG and
its homeodomain with the candidate vertebrate species
was about 20-26% and 61-66%, respectively. The identities
of cPOUV and its homeodomain with the candidate verte-
brate species was about 35-39% and 64—74%, respectively.
Interestingly, the identities of cSOX2 and its high mobility
group (HMG) domain with the candidate vertebrate
species was about 90—93% and 97—-100%, respectively.

To examine which of the core pluripotent transcrip-
tion factors are maternally inherited in chicken, cPOUYV;
¢cNANOG, and c¢SOX2 genes were evaluated on the
stages between WFs and oocytes together with PGC,
EGK.X, and CEF samples using RT-PCR. As shown in
Fig. 1a, cNANOG was only expressed during folliculo-
genesis, indicating that cNANOG is maternally derived.
cPOUV expression was only detected in PGCs and
EGK.X embryo, and ¢SOX2 expression was not detected
in any of these samples. To understand the temporal
regulation of pluripotency networks during chicken
intrauterine development, we examined the expression
profiles of core pluripotency transcription factors across
developmental stages from the oocyte to the EGK.X
embryo (Fig. 1b and c). The results of RT-PCR showed
that cNANOG was detected continuously from the oo-
cyte to stage EGK.X but cPOUV was first detectable at
EGK.V and its expression was upregulated thereafter.
Unexpectedly, c¢SOX2 was not expressed during chicken
intrauterine stages despite its important function in the
pluripotency circuitry (Fig. 1b). The results of qRT-PCR
showed highly correlative manner of cPOUV and ¢NA-
NOG expressions in the samples examined (Fig. 1c).
Taken together, these results suggest that cNANOG and
c¢POUYV, but not ¢SOX2, are involved in the acquisition
of pluripotency during early development in the chicken.

Cellular localization of cNANOG and cPOUV from the
oocyte to stage EGK.X

To determine the cellular localization and temporal ex-
pression of cNANOG and cPOUV, we conducted whole-
mount in situ hybridization and longitudinal sections
over the course of development from EGK.I to EGK.X.
As shown in Fig. 2, cNANOG transcripts were rarely de-
tected between EGK.I and EGK.III (Fig. 2a—c and a'—¢’)
and began to be detectable at EGK.IV (Fig. 2d and d’),
where they were localized in a heterogeneous manner in
the central region of the blastoderm (Fig. 2e and ¢€’), and
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Fig. 1 Core pluripotent transcription factors expression during folliculogenesis and intrauterine embryonic development in chicken. a RT-PCR was
conducted to examine the maternally inherited pluripotent transcriptional factors, including cPOUV, cNANOG, and ¢SOX2 during chick ovarian
follicle development. Follicles in the ovary are indicated by hierarchical follicle (F1 to F5) and a representative white follicle is indicated by an
asterisk. b RT-PCR was conducted to examine expression profiling of cPOUV, cNANOG, and cSOX2 from the oocyte to EGKX. CEF was used as a
negative control for both A and B. ¢ The cPOUV and cNANOG gene expression in oocyte and intrauterine chicken embryos relative to EGKX was
analyzed using gRT-PCR. cGAPDH was used as a reference gene. Results are shown as mean + standard error of mean (n = 3). Significant differences of
the relative gene expression between consecutive developmental stages (Oocyte vs. EGKI, EGKI vs. EGKIII, EGKIII vs. EGKVI, EGKVI vs. EGKVII|, and EGK-
VIl vs. EGK.X) were represented as *** P < 0.001 and **** P <0.0001. Scale bar=1cm

cNANOG

Fig. 2 Cellular localization of cNANOG during intrauterine development of the chicken embryo. In situ hybridization was performed on the
whole-mount (a-j) and longitudinal sections (a’-j’) of intrauterine chicken embryos to detect cellular localization of cNANOG. Scale bars=1 mm
(@—j) and 200 um @"-j’)
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the intensity remarkably increased at stage EGK.VI
(Fig. 2f and f’). During the period of area pellucida
formation (EGK.VII-EGK.X), the cNANOG transcripts
increased, and were localized to the upper layer of the
blastoderm (Fig. 2g—j and g'—j’). At EGKX, ¢cNANOG
transcripts were exclusively expressed in the epiblast re-
gion (Fig. 2j and j’). Meanwhile, cPOUV transcripts were
not detected during the EGK.I-VI stages, at which point
there is a period of cell layer increase (Fig. 3a—f and a™—f’).
¢POUYV transcripts started to be detected at EGK.VII and
were clearly expressed in a salt-and-pepper manner in the
blastoderm before EGK.X (Fig. 3g—j and g'j’). At EGK.X,
¢POUYV transcripts were evenly expressed in the upper
layer, called the epiblast, or expressed in a heterogeneous
manner in the lower layer, called the hypoblast (Fig. 3j).

Expression profiling of cSOX2 and cSOX3 during
intrauterine development

Since ¢SOX2 was not detected in any of the samples
tested by RT-PCR (Fig. 1), we further examined whether
¢SOX2 is expressed during early embryonic development
in chicken using whole-mount in situ hybridization. As
shown in Fig. 4, ¢SOX2 was not detected at the pre-
ovipositional stages of the chicken embryo (Fig. 4a).
Meanwhile, we confirmed that ¢SOX2 was strongly
expressed in the primitive streak at HH stages 6 and 8
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(Fig. 4b and c). In addition, we examined the expression
profiling of ¢SOX3 (another member of SOXB1 family)
during selective intrauterine development using RT-PCR
and qRT-PCR. As shown in Fig. 4d, cSOX3 was mater-
nally inherited and continuously detected from the oo-
cyte to the EGK.X embryo. As determined by qRT-PCR,
¢SOX3 expression was sharply elevated after EGK.III
(Fig. 4e). When we examine the identities of cSOX3 and
its HMG domain with the candidate vertebrate species,
it shows about 69-82% and 95-98% identities, respect-
ively (Table 1). Moreover, similar to c¢SOX2, ¢SOX1
expression was not detected in any stages during
intrauterine development (data not shown). Collectively,
these results imply that the process of pluripotency ac-
quisition in chickens may be initiated by cNANOG and
¢SOX3 ahead of cPOUV without ¢SOX2.

Pluripotency-related marker expression during chicken
intrauterine development

To further investigate the developmental stage in the
acquisition of pluripotency and identify the factors in-
volved in the chicken pluripotency network, we exam-
ined the comprehensive pluripotency-related marker
expression by qRT-PCR across developmental stages
from the oocyte to the EGK.X embryo. First, we exam-
ined the expression profile of cENS-1I, which is a

cPOUV

200 um @-j")

Fig. 3 Cellular localization of cPOUV during intrauterine development of the chicken embryo. In situ hybridization was performed on the whole-
mount (a—j) and longitudinal sections (a’—j’) of intrauterine chicken embryos to detect cellular localization of cPOUV. Scale bars =1 mm (a-j) and
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Fig. 4 Expression profiling of cSOX2 and ¢SOX3 during chicken embryonic development. a In situ hybridization was performed on the whole-mount
and longitudinal sections in pre-oviposition stages of chick blastoderm (EGKIII, EGKVII and EGKX) to detect cSOX2 transcripts. b cSOX2 transcripts are
clearly detected at neural induction stages between HH 6 and 8 by whole-mount in situ hybridization. ¢ RT-PCR was conducted to confirm ¢SOX2
expression in EGKX, HH8, PGC, and CEF. d RT-PCR was conducted to examine cSOX3 expression from the oocyte to the EGKX embryo. CEF was used
as a negative control. @ The cSOX3 gene expression in oocyte and intrauterine chicken embryos relative to EGKX was analyzed using gRT-PCR. cGAPDH
was used as a reference gene. Results are shown as mean + standard error of mean (n = 3). Significant differences of the relative gene
expression between consecutive developmental stages (Oocyte vs. EGKI, EGKI vs. EGKIII, EGKIII vs. EGKVI, EGKVI vs. EGKVIII, and EGKVIII
vs. EGK.X) were represented as *P < 0.05 and *** P < 0.001. Scale bars =1 mm (whole-mount of embryo) and 200 um (longitudinal sections of embryo)

restrictive chicken endogenous retrovirus-like sequence
and embryonic stem cell marker [28]. We found that
¢ENS-1 is significantly upregulated between EGK.VI and
VIII but its expression is significantly downregulated
between EGK.VIII and X, which is similar to the expression
of c(NANOG during developmental stages (Fig. 5a). Next,
we investigated the expression of naive pluripotency-related
markers, including ¢TFCP2L1, cTBX3, and cPRDM14, and
also general pluripotency-related markers, including ¢KIT,
cLIN28A, cMYC, and ¢SALL4 [2, 29, 30]. These genes have
been mainly defined in the mammalian species, however
their role on the pluripotency acquisition during chicken
intrauterine development is not clear. In our results, the
naive pluripotency markers ¢TFCP2LI1 and c¢TBX3 were
found to be maternally inherited genes, and expression of
the ¢PRDMI4 gene was gradually upregulated from
EGK.\VI until EGKX (Fig. 5b). The general pluripotency
markers, including cLIN28A, cMYC, and ¢SALL4 were sig-
nificantly upregulated between EGK.VI and VIII, and the
expression of ¢cKIT was upregulated between EGK.VIII and
X (Fig. 5¢). Taken together, these results suggest that the

acquisition of pluripotency during chick embryonic devel-
opment occurs at around stage EGK.VI to EGK.VIIL

Discussion

The transition to the pluripotent state from the toti-
potent state in embryonic development is necessary for
ZGA, cell cleavage, and regulation of cell fate [31-33].
In early embryogenesis, several transcription factors play
a pivotal role in pluripotent acquisition and maintenance
during embryogenesis. To date, the mechanisms of ac-
quisition of pluripotency have been intensively studied
in mammals and several vertebrates in vivo and in vitro.
Regulation of Nanog is important for early development
and the acquisition of pluripotency in the epiblast in
mammals [34]. Pou5f1 is expressed as early as the pre-
implantation embryo in the mouse [34], and also the
mouse pluripotent embryonic stem cells (ESCs) are con-
trolled by Pou5fl. Another core transcription factor,
Sox2, which belongs to the SoxBI subfamily of genes
[35], is also essential for the maintenance of the undiffer-
entiated state in ESCs [36, 37].
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Fig. 5 Pluripotency-related genes expression during the chicken developmental stage of pluripotency acquisition. a Chicken embryonic stem cell-
related gene cENS-1, b naive pluripotency-related genes cTFCP2L1, cTBX3, and cPRDM 14, and c general pluripotency-related genes cKIT, cLIN28A, cMYC,
and cSALL4 expression in oocyte and intrauterine chicken embryos were analyzed using gRT-PCR. cGAPDH was used as a reference gene. Results are
shown as mean + standard error of mean (n = 3). Significant differences of the relative gene expression between consecutive developmental stages

xee P <0.0001

(Oocyte vs. EGKI, EGKI vs. EGKIIL, EGKIIN vs. EGKVI, EGKMI vs. EGKVIIl, and EGKVIII vs. EGKX) were represented as ** P < 0.01, *** P < 0.001 and

In this regards, transcriptional factors, including Nanog,
Pou5f1 and Sox2 play pivotal role in core regulatory net-
work of pluripotency. Our results showed that the protein
alignment of these core pluripotent transcription factors
in chicken with other vertebrates revealed that they are
fairly well conserved in the protein sequence among verte-
brates. In particular, SOX2 has a sequence similarity of
more than 90% in human, mouse, chicken, zebrafish, and
African clawed frog. This may imply that these core tran-
scriptional factors share the similar role in the pluripo-
tency network among vertebrates. Although there are only
a few studies, it has been recently reported that pluripo-
tency seems to be evolutionarily conserved among amni-
otes, and mammalian core transcriptional factors could
reprogram non-mammalian somatic cells into pluripotent
stem cells [30, 38, 39].

However, the core pluripotent transcription factors
that govern the acquisition of pluripotency during pre-
ovipositional development have yet to be investigated in
birds. Although both Pou5fl and Sox2 are maternally
inherited transcripts in mouse and they induce Nanog
expression before ZGA [40], according to our results,
the chicken seems to have a distinctive process for the
acquisition of pluripotency. In this report, cSOX2 is not
expressed during folliculogenesis and intrauterine em-
bryonic development, but detected in the embryo after
oviposition, indicating that it is not involved in the initial
acquisition of pluripotency. This is consistent with a

previous report that ¢SOX2 in the oviposited chicken em-
bryo is first detected from HH stage 4 as the earliest pan-
neural marker in the specified neuroectoderm [41, 42].
Thus, unlike in mammals, ¢SOX2 in chicken seems to
only be involved in early neural specification without a
role in pluripotency networks. In the case of lower verte-
brates, Sox19b is maternally inherited in Danio rerio
among the SoxB1 family and plays an important role in
the acquisition of pluripotency, whereas Sox3 carries out
such a maternal contribution in Xenopus laevis [10, 43].
In avian species, it was recently reported that both finch
and chick blastoderms at oviposition remarkably
expressed SOX3 [30], which is also known to be expressed
in epiblast precursors [42]. Since the SOXB1 factors share
more than 90% amino acid identity in the DNA binding
HMG box region for transcriptional activation [35], acqui-
sition of pluripotency in avian species may be regulated by
another chicken SOXBI family member instead of ¢SOX2.
Our results show that ¢<SOX3 may play important role in
pluripotency network instead of ¢SOX2 in avian species. It
has been reported that mammalian SOX3 can replace the
function of SOX2 during the reprogramming process, and
SOX3 can compensate the absence of SOX2 to maintain
the pluripotency and self-renew of ESC [44—47]. Similar
to the pattern of ¢cNANOG expression, intriguingly,
maternally inherited c¢SOX3 is upregulated between
EGKIII and EGK.V], indicating that ¢SOX3 may involve
in the initial establishment of pluripotency network in
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chicken embryos. Accordingly, further detailed investiga-
tion is required to determine how SOX3 is involved and
regulated in the pluripotency network in avian species.

Furthermore, cNANOG transcripts were detected from
between the white follicle and oocyte stages, indicating
that among the core transcriptional factors, cNANOG is
maternally inherited in embryos. ¢cNANOG transcripts
were weakly expressed compared with the EGK.X embryo,
but its expression was dramatically increased between
EGK.V and VI and localized in a heterogeneous manner
in the central region of chick embryos. cPOUV was not
detected until EGK. VI, however, its expression was
dramatically increased between EGK VI and VIII in this
study. Therefore, cNANOG and ¢SOX3 seem to be regu-
lated independently from ¢POUYV and play an important
role in the initial pluripotency network prior to ¢cPOUV
during early embryonic development in chicken.

To understand a comprehensive pluripotency network
during chick early embryonic development, we compared
the relative expression of pluripotency-related genes in
embryos from oocyte to EGK.X. Among the naive pluripo-
tency markers, including ¢cTFCP2L1, cPRDM14, and cTBX3
[13, 48, 49], both ¢TFCP2L1 and ¢TBX3 seem to be mater-
nally supplied while expression of cPRDMI14 was signifi-
cantly increased between EGKIII and VI. It is known that
TFCP2L upregulates NANOG via LIF-independent path-
ways and TBX3 is directly bound at NANOG and functions
in upregulation of NANOG in mammals [50, 51]. In this
regard, maternally inherited ¢TFCP2LI and ¢TBX3 may
regulate the initial upregulation of ¢ctNANOG or may be
involved in the initial acquisition of pluripotency in chicken.
Meanwhile, chicken ESC marker cENS-1 and the general
pluripotency markers ¢KIT and cLIN28A were gradually up-
regulated from EGK.VI until EGK.X, whereas ¢cMYC and
¢SALL4 seem to be maternally inherited but also dramatic-
ally upregulated between EGK.VI and VIIIL Taken together,
most of the pluripotency-associated genes were remarkably
upregulated between EGK.VI and VIII, indicating that
acquisition of the pluripotency network in the chicken
embryo may be established between EGK.VI and VIIL

Meanwhile, it has been reported that the ZGA may
be accompanied by acquisition of pluripotency via
transcriptional factors in vertebrates [9, 52, 53]. Espe-
cially, in the frogs and zebrafish, acquisition of pluri-
potency is associated with ZGA, whereas acquisition
of pluripotency occurred after ZGA in mice [39].
Although ZGA in avian species has not been identi-
fied yet, it was reported that the RNA polymerase II
started to be activated during the late EGK.I to early
EGKUIII in chicken [16]. Accordingly, the understand-
ing of the acquisition of pluripotency association with
ZGA and the intricate molecular mechanisms of pluripo-
tency regulating chicken embryo development requires
further investigation.
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Conclusion

In conclusion, we found that among the core pluripotent
transcription factors, cNANOG was maternally inherited
and continuously expressed, but ¢POUV was signifi-
cantly upregulated between EGK.VI and VIII, and ¢SOX3
instead of ¢SOX2 was maternally inherited and continu-
ously detected during intrauterine embryonic develop-
ment in the chicken. Furthermore, we showed that the
acquisition of pluripotency in the chick embryo may
actively occurs at around stage EGK.VI to EGK.VIIL, and
birds seem to have a distinct regulatory mechanism of
pluripotency compared with other vertebrates. Further
studies should focus on the detailed mechanism of the
pluripotency network via functional validation of tran-
scriptional factors during early development in avian
species from an evo-devo perspective.
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