
A new intuitionistic fuzzy rule‑based
decision‑making system for an operating
system process scheduler
Muhammad Arif Butt1 and Muhammad Akram2*

Background
To tame the wild hardware inside every computer system we need a specialized software
called operating system (OS). As the name suggests an operating system is used to oper-
ate the hardware and provides services to different application programs. While doing
so the main task of an OS is providing an interface that is easy to use and at the same
time makes the best utilization of the underlying hardware. In todays world of comput-
ing there are multiple processes/threads executing concurrently and requesting for dif-
ferent services from the OS. The operating system has to deal efficiently with these finite
resources and competing demands. To achieve this goal the operating system has to allo-
cate and deallocate the hardware resources among various processes in an orderly, fair,
and secure manner. Some of these hardware resources are space multiplexed and some
are time multiplexed among the processes (Butt and Akram 2015). For example memory
is one of the important resources that is space multiplexed among the processes. Every
process along with its code, data and various control structures need to reside inside
the main memory to execute properly. Memory management unit, normally called the
MMU is the component of the operating system kernel which implements different
space management algorithms to efficiently utilize the main memory. Similarly another
important hardware resource that is time multiplexed among the processes residing in

Abstract

We present a new intuitionistic fuzzy rule-based decision-making system based on
intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our pro-
posed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time
of all available processes in the ready queue, intuitionistically fuzzify the input values,
triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calcu-
lates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of
every process is calculated the ready queue is sorted in decreasing order of dp of every
process. The process with maximum dp value is sent to the central processing unit for
execution. Finally, we show complete working of our algorithm on two different data
sets and give comparisons with some standard non-preemptive process schedulers.

Keywords: Operating system, CPU scheduler, Scheduling algorithms, Fuzzy sets,
Intuitionistic fuzzy logic, Intuitionistic fuzzy logic controller, Defuzzification

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Butt and Akram SpringerPlus (2016) 5:1547
DOI 10.1186/s40064‑016‑3216‑z

*Correspondence:
m.akram@pucit.edu.pk;
makrammath@yahoo.com
2 Department
of Mathematics, University
of the Punjab, New Campus,
Lahore, Pakistan
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3216-z&domain=pdf

Page 2 of 17Butt and Akram SpringerPlus (2016) 5:1547

memory is the central processing unit (CPU). The responsibility of efficiently utilizing
this important hardware resource and time multiplexing it among various processes lies
on a kernel component called CPU scheduler. The CPU scheduler also called the pro-
cess scheduler gets activated on every process switch. Once activated, the CPU sched-
uler selects a process from ready queue based on multiple attributes and also decides the
duration for which this process will execute on the central processing unit.

The scheduling algorithm of UNIX operating system uses a simple formula to assign a
priority value to every ready to run process. This per process attribute is calculated after
every second and thus causes process priorities to change dynamically. When it is time
for scheduling, the CPU is given to the process with the smallest priority number (Ker-
risk 2010).

In the above formula, base priority is an integer usually having value of 60, while the
default value of nice for a normal process is 0 and its range can be from −20 to 19. A
user can change the priority of a process by changing its nice value using the UNIX
nice(1) and renice(1) commands as shown below:

$ nice -val command [args]
$ renice val pid

By increasing the nice value (Butt and Akram 2015) of a process the overall priority of
a process decreases and vice versa. When a system tries to run too many high priority
jobs at the same time, computer response time deteriorates. The UNIX renice(1) com-
mand is used to adjust scheduling priorities to avoid this problem. Scheduler in Linux
kernel 2.6 onwards, is the piece of kernel code that inputs a list of runnable threads and
decides which thread will be executed by the CPU next based on per process parameters
like, scheduling policy, nice value, dynamic priority and CPU affinity (Kerrisk 2010).

Shortest job first (SJF), first-come-first-served (FCFS) are non-preemptive, while
Round-robin (RR), shortest remaining time first (SRTF), and multi-level feed back queue
are some of the preemptive versions of CPU scheudling algorithms (Galvin et al. 2013).
CPU scheduling is a multiple-object decision making process with multiple factors like
response, waiting and turn-around times, CPU utilization, and throughput (Butt and
Akram 2015; Lin et al. 2007; Xu and Cai 2012).

Real world problems are often complex where information obtained are not always
complete. In many decision making scenarios we have more than two options available
and many a times complete information about those options are not available. These
cases cannot be modeled using simple set theory and Boolean Logic. To handle such sit-
uations we cnormally use fuzzy set theory (Zadeh 1965) and fuzzy logic (Zadeh 1975). In
spite of its vast applications, fuzzy sets suffer with the limitation of uncertainity element
due to non-availability of complete information. Among extensions of fuzzy sets, Atan-
assovs intuitionistic fuzzy sets (IFSs; Atanassov 1986) provide an intuitive framework
to deal vagueness from imprecise information by taking into account non-membership
values in addition to membership values. More recently, fuzzy logic and its derivatives
like Intuitionistic fuzzy logic have find its place in the areas of expert systems, robotics,

Priority value = Base priority+ Nice value + (Recent CPU usage)/2

Page 3 of 17Butt and Akram SpringerPlus (2016) 5:1547

computer networks, social sciences, management sciences, life sciences, and image pro-
cessing. Early work in fuzzy decision making was motivated by the desire to mimic the
control actions of an experienced human operator and to obtain smooth interpolation
between discrete outputs that would normally be obtained (Atanassov 2015; Akram
et al. 2014a, b; Ashraf et al. 2014a). A fuzzy controller is normally comprised of a fuzzi-
fication module, a rule base, an inference engine and a defuzzification system. Several
fuzzy controller have been developed using fuzzy logic and fuzzy set theory (Liu et al.
2013; Shen et al. 2013; Boldbaatar and Lin 2015).

Applying different fuzzy models for decision-making problems inside an operating
system is a hot area of research these days. CPU scheduler is one of the important kernel
component that is responsible for selection of a process, the time quantum the selected
process should execute on CPU and last but not the least, how frequently the OS should
invoke the scheduler. Varshney and Akhtar (2012) gave the idea of achieving an ideal
CPU time slice using fuzzy logic. The achieved time slice value is neither too large mak-
ing it behave like FCFS nor too small and increasing the context switch overhead mani-
fold. For multiprocessor systems, a fuzzy CPU scheduling system has been proposed by
Hamzeh et al. (2007). Lim and Cho (2007) after differentiating bach, interactive and real-
time processes have also proposed an intelligent fuzzy CPU scheduling system. They
have used the CPU ticks a process executes and the sequence of system calls a process
makes to differentiate between the three flavors of processes. A lot of research has been
carried out in designing of fuzzy decision-making systems which takes input parameters
like processes’s response ratio, priority values, waiting and remaining burst time. The
fuzzification of these input parameters and designing of inference engines that mimic
behavior of human experts, their results have shown improved average waiting and turn
around times (Ajmani and Sethi 2013; Alam et al. 2011; Behera et al. 2012).

The authors already proposed a novel fuzzy decision-making system for a multi-task-
ing CPU scheduler (Butt and Akram 2015) and have compared their improved results
with Behra’s IFCS (Behera et al. 2012) and Ajmain’s PFCS (Ajmani and Sethi 2013). This
is an extension of the same algorithm but using intuitionistic fuzzification techniques
for a batch operating system. By applying intuitionistic fuzzy (IF) logic in the decision-
making process for the selection of next runnable thread, we have incoorporated the fea-
tures of shortest job first as well as priority based CPU scheduler. The nice value and
the burst time are the two per process parameters, which are fuzzified intuitionistically.
These intuitionistically fuzzified input parameters are given to the IF inference engine
composed of nine rules. The IF inference engine fire the rules in the rule base and com-
putes dynamic priority (dp). This dynamic priority (dp) is then defuzzified using TSK
formula (Leekwijck and Kerre 1999). This procedure is repeated for every process in
the run-queue and later the queue is sorted by the priority attribute of each process in
decreasing order. When the scheduling decision is to be made, process at the head of the
run-queue is selected for execution on the CPU.

Our paper has following sections. Main components of our proposed system and
its algorithm are discussed in “Basic structure and algorithm” section. The intuition-
istic fuzzifier, rule base and defuzzification techniques are discussed in “Components
of IFS” section. The results generated using our proposed system are shown, discussed

Page 4 of 17Butt and Akram SpringerPlus (2016) 5:1547

and compared in “Results and discussion” section. Finally we have concluded and given
future research directions. We have used standard definitions and terminologies in this
paper. For other notations, terminologies and applications not mentioned in the paper,
the readers are referred to Akram et al. (2013), Ashraf et al. (2014b), Hsu (2015), Par-
vathi et al. (2013) and Xu and Liao (2015).

Basic structure and algorithm
Figure 1 describes the basic structure of our proposed intuitionistic fuzzy decision-mak-
ing system (IFDMS). The two inputs of our decision-making system are the per process
attributes, namely, burst time and nice value. These two attributes of all the processes
in the run-queue are intuitionistically fuzzified. These two input values of each process
then triggers the rules in the rule base and finally we get the defuzzified dynamic prior-
ity (dp) for each process. The run-queue is sorted according to the decreasing value of
dynamic priority and when there is a scheduling decision is to be made the process at
the head of the run-queue is selected and given to the CPU for execution.

Algorithm

 1. Begin
 2. IFIS := Create intuitionistic fuzzy inference system
 3. Define linguistic values of input variables; nice value and burst time
 4. Define linguistic values of output variable dynamic priority (dp)
 5. Initialize Process Control Block of each process
 6. nice_value := Read nice value from PCB of process
 7. burst_time := Read burst time value from PCB of process
 8. [Low Medium High] := Find degree of MF for nice_value
 9. [NLow NMedium NHigh] := Find degree of NMF for nice_value
 10. [Low Medium High] := Find degree of MF for burst_time
 11. [NLow NMedium NHigh] := Find degree of NMF for burst_time
 12. Trigger appropriate rules in the intuitionistic fuzzy (IF) rule base to get degree of

truth for dynamic priority of process
 13. Apply defuzzification formulas to get crisp value of dynamic priority
 14. On arrival of every new process go to step step 6
 15. Sort the queue of processes
 16. Do the selection from head of run-queue
 17. On termination of an executing process, go to step 16
 18. End

Nice Value

Burst Time

Intuitionistic Fuzzy
Inference System dpi

Input(s)
Intuitionistic

Fuzzifiers
Intuitionistic
Defuzzifier Output

Fig. 1 IFDMS for process scheduler

Page 5 of 17Butt and Akram SpringerPlus (2016) 5:1547

Components of IFS
Our proposed IFIS uses the Mamdani-Larsen inference method (Mamdani 1974). The
three major components are the intuitionistic fuzzifier, intuitionistic fuzzy inference
engine (IFIE) and the defuzzifier.

Intuitionistic fuzzifier

The two per process attributes, namely the nice value and the burst time are intuition-
istically fuzzified by this component. Figures 2 and 3 shows the membership funciton
(MF) and non-membership function (NMF) for burst time of a process respectively.
Similarly, Figs. 4 and 5 shows the MF and NMF for nice value of a process respectively.
The output variable of our intuitionistic decision making system is the dynamic priority
(dp) of a process. Figures 6 and 7 shows the MF and NMF for dynamic priority (dp) of a
process respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Burst Time of a Process (x)

M
em

b
er

sh
ip

 V
al

u
es

 (
u

)

muideMwoL High

Fig. 2 MF for burst time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Burst Time of a Process (x)

N
o

n
 M

em
b

er
sh

ip
 V

al
u

es
 (

v)

Low Medium High

Fig. 3 NMF for burst time

Page 6 of 17Butt and Akram SpringerPlus (2016) 5:1547

µlow(x) =

�

8−x

8−0 if x ∈ [0, 8],

0 else,
νlow(x) =

�

x−0
10−0 if x ∈ [0, 10],

1 else,

µmedium(x) =















x−5
13−5 if x ∈ [5, 13],

21−x

21−13 if x ∈ [13, 21],

0 else,

νmedium(x) =















13−x

13−3 if x ∈ [3, 13],

x−13
23−13 if x ∈ [13, 23],

1 else,

µhigh(x) =

�

x−18
26−18 if x ∈ [16, 26],

1 else.
νhigh(x) =

�

26−x

26−16 if x ∈ [16, 26],

0 else.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nice Value of a Process (x)

M
em

b
er

sh
ip

 V
al

u
es

 (
u

)

Low Medium High

Fig. 4 MF for nice value

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nice Value of a Process (x)

N
o

n
 M

em
b

er
sh

ip
 V

al
u

es
 (

v)

Low Medium High

Fig. 5 NMF for nice value

Page 7 of 17Butt and Akram SpringerPlus (2016) 5:1547

µlow(x) =

�

14−x

14−0 if x ∈ [0, 14],

0 else,
νlow(x) =

�

x−0
17−0 if x ∈ [0, 17],

1 else,

µmedium(x) =















x−6
20−6 if x ∈ [6, 20],

34−x

34−20 if x ∈ [20, 34],

0 else,

νmedium(x) =















20−x

20−3 if x ∈ [3, 20],

x−20
37−20 if x ∈ [20, 37],

1 else,

µhigh(x) =

�

x−26
40−26 if x ∈ [26, 40],

1 else.
νhigh(x) =

�

40−x

40−23 if x ∈ [23, 40],

0 else.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dynamic Priority of a Process (x)

M
em

b
er

sh
ip

 V
al

u
es

 (
u

)

Very Low Low Average High Very High

Fig. 6 MF for dynamic priority

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dynamic Priority of a Process (x)

N
o

n
 M

em
b

er
sh

ip
 V

al
u

es
 (

u
)

Very Low Low Average High Very High

Fig. 7 NMF for dynamic priority

Page 8 of 17Butt and Akram SpringerPlus (2016) 5:1547

Fuzzy inference engine

This component is the actual brain as the logic of our algorithm resides here. The rea-
soning is applied using IF-THEN type fuzzy rules. These IF-THEN rules formulate the
conditional statements that comprise fuzzy logic. The inference engine triggers the
appropriate IF-THEN rules in the knowledge base using Mamdani-Larsen inference
method (Mamdani 1974). There are nine rules that are used for fuzzy inference:

R1: if 〈b_time is low〉 and 〈nice is low〉 then 〈dp is veryhi〉

R2: if 〈b_time is low〉 and 〈nice is medium〉 then 〈dp is hi〉

R3: if 〈b_time is low〉 and 〈nice is hi〉 then 〈dp is hi〉

R4: if 〈b_time is medium〉 and 〈nice is low〉 then 〈dp is avg〉

R5: if 〈b_time is medium〉 and 〈nice is medium〉 then 〈dp is avg〉

R6: if 〈b_time is medium〉 and 〈nice is hi〉 then 〈dp is low〉

R7: if 〈b_time is hi〉 and 〈nice is low〉 then 〈dp is low〉

R8: if 〈b_time is hi〉 and 〈nice is medium〉 then 〈dp is verylow〉

R9: if 〈b_time is hi〉 and 〈nice is hi〉 then 〈dp is verylow〉

Defuzzifier

The defuzzifier component takes fuzzy dynamic priority (dp) of each process and
defuzzify it to crisp dp. There are several techniques in the literature through which
we can perform defuzzification. We apply Takagi Sugani formula (Leekwijck and Kerre
1999) for defuzzification. Takagi Sugani’s formula is:

µv.low(x) =

�

5−x

5−0 if x ∈ [0, 5],

0 else,
νv.low(x) =

�

x−0
6−0 if x ∈ [0, 6],

1 else,

µlow(x) =















x−2
7−2 if x ∈ [2, 7],

12−x

12−7 if x ∈ [7, 12],

0 else,

νlow(x) =















7−x

7−1 if x ∈ [1, 7],

x−7
13−7 if x ∈ [7, 13],

1 else,

µavg(x) =















x−9
14−9 if x ∈ [9, 14],

19−x

19−14 if x ∈ [14, 19],

0 else,

νavg(x) =















14−x

14−8 if x ∈ [8, 14],

x−14
20−14 if x ∈ [14, 20],

1 else,

µhigh(x) =















x−16
21−16 if x ∈ [16, 21],

26−x

26−21 if x ∈ [21, 26],

0 else,

νhigh(x) =















21−x

21−15 if x ∈ [15, 21],

x−21
27−21 if x ∈ [21, 27],

1 else,

µv.high(x) =

�

x−23
28−23 if x ∈ [23, 28],

0 else.
νv.high(x) =

�

28−x

28−22 if x ∈ [22, 28],

1 else.

x =

∑M
j=1 x

j((1− πAj)µAj + µAjπAj)
∑M

j=1((1− πAj)µAj + µAjπAj)
,

Page 9 of 17Butt and Akram SpringerPlus (2016) 5:1547

where

Results and discussion
To generate the results we have used Process Scheduling Simulation, Analyzer and Vis-
ualization (PSSAV) tool for simulation of shortest job first (SJF) and non-preemptive
priority based algorithm. PSSAV is publically available under code license GNU GPL
v2. To generate the results of our own algorithm, a simulation is written using Matlab
R2014a(8.3.0.532). The working to generate the results for our intuitionistic fuzzy deci-
sion-making system (IFDMS) for non-preemptive CPU scheduling algorithm is shown
below. We have generated and compared the results using two different case studies.

The results of our two case studies are shown in Tables 7 and 8. The results of our intu-
itionitic fuzzy process scheduler are almost the same as the best known non-preemptive
scheduling algorithm, i.e., shortest job first (SJF). The added advantange of using our
algorithm is that we can further increase/decrease the priority of a process by decreas-
ing/increasing its nice value respectively. The same cannot be done using SJF algorithm.
So our proposed algorithm not only combines the plus points of conventional shortest
job first (SJF) and priority based algorithm, but further gives reduced waiting times by
adding the intuitionistic fuzzy modeling technique.

Data set 1

The input for data set-1 is given in Table 1. These per process values are taken from
author’s previous paper (Butt and Akram 2015). The recent cpu usage of each process is
not computed here, as this input is not required for scheduling algorithms of batch oper-
ating systems. The first column shows the five processes under consideration, with their
burst times (BT) and nice values (NV) shown against them.

Table 1 shows that there are five processes with different burst times and nice values.
We need to compute the dynamic priority of all the five processes. The detailed working
for computing the dynamic priority of these processes is shown below.

Calculating dynamic priority of process P1

The first step is to intuitionistically fuzzify the crisp inputs, which can be obtained from
the membership function (MF) and non-membership function (NMF) of burst time and

µAj =

n
∧

i=1

µ
A
j

i

(x)

νAj =

n
∨

i=1

ν
A
j

i

(x)

πAj =1− µAj − νAj

Table 1 Data set-1

PID BT NV

P1 3 2

P2 6 7

P3 4 5

P4 5 6

P5 2 1

Page 10 of 17Butt and Akram SpringerPlus (2016) 5:1547

nice value from Figs. 2, 3, 4 and 5 respectively. The fuzzified membership and non-mem-
bership values of burst time (3) and nice value (2) for process P1 are shown below:

After intuitionistically fuzzifying the two input parameters the rules of infer-
ence engine are triggered. In case of membership rule1 is triggered:
low ∧ low = 0.625 ∧ 0.857 = 0.625. In case of non-membership rule1 is triggered:
low ∨ low = 0.3 ∨ 0.118 = 0.3. Finally, the membership and non-membership values of
the output variable dynamic priority for process P1 are shown below:

Now we move towards defuzzification process. According to rule 1 dynamic priority will
be very high.

Now we calculate the crisp value of dynamic priority for process P1 using TS formula.
The working of calculating the defuzzified value of very high dp using TS formula is
shown in Table 2. The final dynamic priority value for process P1 is 64.7752.45 = 26.44

Calculating dynamic priority of process P2

The same procedure is followed for process P2 as well. The fuzzified membership and
non-membership values of burst time (6) and nice value (7) for process P2 are shown
below:

µB.T = {0.625, 0, 0}; νB.T = {0.3, 1, 1}

µN.V = {0.857, 0, 0}; νN.V = {0.118, 1, 1}

µdp = {0, 0, 0, 0, 0.625}; νdp = {1, 1, 1, 1, 0.3}

µv.high(x) =
x − 23

28− 23
νv.high(x) =

28− x

28− 22

0.625 =
x − 23

5
0.3 =

28− x

6

x = 26.13 x = 26.2

µB.T = {0.25, 0.125, 0}; νB.T = {0.6, 0.7, 1}

µN.V = {0.5, 0.07, 0}; νN.V = {0.412, 0.764, 1}

Table 2 P1: Defuzzification of very high dp using TS formula (data set 1)

x µx νx πx X = (1− πx)µx Y = πxµx X + Y x ∗ (X + Y)

22 0 0.3 0.7 0 0 0 0

23 0 0.3 0.7 0 0 0 0

24 0.2 0.3 0.5 0.1 0.1 0.2 4.8

25 0.4 0.3 0.3 0.28 0.12 0.4 10

26 0.6 0.3 0.1 0.54 0.06 0.6 15.6

27 0.625 0.166 0.208 0.495 0.130 0.625 16.87

28 0.625 0 0.375 0.391 0.234 0.625 17.5

2.45 64.775

Page 11 of 17Butt and Akram SpringerPlus (2016) 5:1547

After intuitionistically fuzzifying the two input parameters the rules of inference engine
are triggered. In case of membership rules 1, 2, 4, and 5 are triggered with dynamic pri-
ority very high, high, average and average respectively with truth values shown below:

In case of non-membership also rule 1, 2, 4, and 5 are triggered with dynamic priority
very high, high, average and averge respectively with truth values shown below:

Finally, the membership and non-membership values of the output variable dynamic
priority for process P2 are shown below:

Now we move towards defuzzification process. According to rule 1 dynamic priority will
be very high.

The working of calculating the defuzzified value of very high dp using TS forumla is
shown in Table 3.

low
∧

low = 0.25
∧

0.5 = 0.25

low
∧

med = 0.25
∧

0.07 = 0.07

med
∧

low = 0.125
∧

0.5 = 0.125

med
∧

med = 0.125
∧

0.07 = 0.07

low
∨

low = 0.6
∨

0.412 = 0.6

low
∨

med = 0.6
∨

0.764 = 0.764

med
∨

low = 0.7
∨

0.412 = 0.7

med
∨

med = 0.7
∨

0.764 = 0.764

µdp = {0, 0, 0.125/.07, 0.07, 0.25}; νdp = {1, 1, 0.7/0.764, 0.764, 0.6}

µv.high(x) =
x − 23

28− 23
νv.high(x) =

28− x

28− 22

0.25 =
x − 23

5
0.6 =

28− x

6

x = 24.25 x = 24.4

Table 3 P2: Defuzzification of very high dp using TS formula (data set 1)

x µx νx πx X = (1− πx)µx Y = πxµx X + Y x ∗ (X + Y)

22 0 0.6 0.4 0 0 0 0

23 0 0.6 0.4 0 0 0 0

24 0.2 0.6 0.2 0.16 0.04 0.2 4.8

25 0.25 0.5 0.25 0.187 0.0625 0.25 6.25

26 0.25 0.333 0.416 0.415 0.104 0.25 6.5

27 0.25 0.166 0.583 0.104 0.146 0.25 6.75

28 0.25 0 0.75 0.062 0.187 0.25 7

1.2 31.3

Page 12 of 17Butt and Akram SpringerPlus (2016) 5:1547

According to rule 2 dynamic priority will be high.

The working of calculating the defuzzified value of high dp using TS forumla is shown in
Table 4.

According to rule 4 dynamic priority will be average.

The working of calculating the defuzzified value of average dp using TS forumla is shown
in Table 5.

According to rule 5 dynamic priority will again be average.

µhigh(x) =
x − 16

21− 16
νhigh(x) =

21− x

21− 15

0.07 =
x − 16

5
0.764 =

21− x

6

x = 16.35 x = 16.4

µhigh(x) =
26− x

26− 21
νhigh(x) =

x − 21

27− 21

0.07 =
26− x

5
0.764 =

x − 21

6

x = 25.65 x = 25.584

µavg(x) =
x − 9

14 − 9
νavg(x) =

14 − x

14 − 8

0.125 =
x − 9

5
0.7 =

14 − x

6

x = 9.63 x = 9.8

µavg(x) =
19− x

19− 14
νavg(x) =

x − 14

20− 14

0.125 =
19− x

5
0.7 =

x − 14

6

x = 18.4 x = 18.2

Table 4 P2: Defuzzification of high dp using TS formula (data set 1)

x µx νx πx X = (1− πx)µx Y = πxµx X + Y x ∗ (X + Y)

22 0 0.6 0.4 0 0 0 0

23 0 0.6 0.4 0 0 0 0

24 0.2 0.6 0.2 0.16 0.04 0.2 4.8

25 0.25 0.5 0.25 0.187 0.0625 0.25 6.25

26 0.25 0.333 0.416 0.415 0.104 0.25 6.5

27 0.25 0.166 0.583 0.104 0.146 0.25 6.75

28 0.25 0 0.75 0.062 0.187 0.25 7

1.2 31.3

Page 13 of 17Butt and Akram SpringerPlus (2016) 5:1547

The working of calculating the defuzzified value of average dp using TS forumla is shown
in Table 6.

The final dynamic priority value for process P2 is obtained by averaging out all the four
dynamic priorities computed above, i.e., 26.08+20.5+14+14

4 = 18.65.
The same procedure is followed for computing the dynamic priorities for the rest of

the processes in the data set. Finally, the dynamic priority for processes P1, P2, P3, P4
and P5 comes out to be 26.44, 18.65, 26.33, 26.2, and 26.53 respectively.

µavg(x) =
x − 9

14 − 9
νavg(x) =

14 − x

14 − 8

0.07 =
x − 9

5
0.764 =

14 − x

6

x = 9.35 x = 9.42

µavg(x) =
19− x

19− 14
νavg(x) =

x − 14

20− 14

0.07 =
19− x

5
0.764 =

x − 14

6

x = 18.65 x = 18.58

Table 5 P2: Defuzzification of average dp using TS formula (data set 1)

x µx νx πx X = (1− πx)µx Y = πxµx X + Y x ∗ (X + Y)

22 0 0.6 0.4 0 0 0 0

23 0 0.6 0.4 0 0 0 0

24 0.2 0.6 0.2 0.16 0.04 0.2 4.8

25 0.25 0.5 0.25 0.187 0.0625 0.25 6.25

26 0.25 0.333 0.416 0.415 0.104 0.25 6.5

27 0.25 0.166 0.583 0.104 0.146 0.25 6.75

28 0.25 0 0.75 0.062 0.187 0.25 7

1.2 31.3

Table 6 P2: Defuzzification of average dp using TS formula (data set 1)

x µx νx πx X = (1− πx)µx Y = πxµx X + Y x ∗ (X + Y)

22 0 0.6 0.4 0 0 0 0

23 0 0.6 0.4 0 0 0 0

24 0.2 0.6 0.2 0.16 0.04 0.2 4.8

25 0.25 0.5 0.25 0.187 0.0625 0.25 6.25

26 0.25 0.333 0.416 0.415 0.104 0.25 6.5

27 0.25 0.166 0.583 0.104 0.146 0.25 6.75

28 0.25 0 0.75 0.062 0.187 0.25 7

1.2 31.3

Page 14 of 17Butt and Akram SpringerPlus (2016) 5:1547

Comparison

If we sort the processes according to the calculated dynamic priorities, the sequence of
execution of the processes is 〈P5,P1,P3,P4,P2〉. The average waiting time for this data
set comes out to be 6 time units. The same results are obtained if we follow the process
with the smallest burst time, i.e., shortest job first algorithm or if we simply execute the
processes according to their nice value. The process with smaller nice value is selected
for execution. Table 7 shows the results of data set-1. If these results are compared with
author’s previous paper (Butt and Akram 2015), it can be observed that with a time slice
of 6 units the results are the same as Shortest Job First, which is a scheduling algorithm
for batch operating systems. Intuitively, the given data set is such that the same results
are produced as both the parameters are not conflicting. However, it is quite intuitive to
observe that if the burst time and nice value of processes in the data set are conflicting
to each other our algorithm will give better results than the SJF and the priority based
algorithm. This is shown in the second data set.

Sensitivity analysis

According to Rezaei and Ortt (2013), sensitivity analysis is used to determine how sensi-
tive the output of a system is on a particular input. Sensitivity analysis is useful as it can
be used to determine how dependent the output is on a specific input. The formula to
compute the contribution of an input on the output as given in Rezaei and Ortt (2013) is
shown below:

In the above formula dp(j) is the dynamic priority of a process that is computed consid-
ering all available inputs. dp′(j) is the dynamic priority of a particular process by remov-
ing all information of the ith input from the rule base. �i shows the average absolute
change after removing ith input. In our proposed intuitionistic fuzzy system, there are
only two inputs, nice value (NV) and burst time (BT). For process P1 (BT:3, NV:2) and
P2 (BT:6, NV: 7) the defuzzified dynamic priorities (dp) co-latexmputed above are 26.44
and 18.65 respectively. If we drop all the information regarding nice value (NV) for both
processes, the new dynamic priorities (dp′) are 26.438 and 19.792 respectively. Applying

�i =

∑m
j=1 |dp

′
(j)− dp(j)|

m

Table 7 Results: data set-1

Algorithm Average waiting time

Shortest job first 6

Priority based 6

IF scheduler 6

Page 15 of 17Butt and Akram SpringerPlus (2016) 5:1547

sensitive analysis formula �NV =
|(26.438−26.44)|+|(19.792−18.65)|

2 , which comes out to be
0.572. Similarly, �BT =

|(26.1428−26.44)|+|(20.1665−18.65)|
2 is computed as 0.9068. This shows

that in data set 1, shown in Table 1, burst time (BT) has more important contribution in
the final output of the system, while nice value (NV) has lesser contribution.

Data set 2

The input for data set-2 is given in Table 8. These per process values are taken from
author’s previous paper (Butt and Akram 2015). The recent cpu usage of each process is
not computed here, as this input is not required for scheduling algorithms of batch oper-
ating systems. The first column shows the five processes under consideration, with their
burst times (BT) and nice values (NV) shown against them.

Table 8 shows that there are four processes with different burst times and nice values.
We need to compute the dynamic priority of all the four processes. The detailed working
for computing the dynamic priority of these processes is not shown as the same is shown
in the previous case study. The same procedure is followed for computing the dynamic
priorities of processes in data set 2. Finally, the dynamic priority for processes P1, P2, P3,
and P4 comes out to be 10.5, 20.9, 14, and 17.5 respectively.

Comparison

If we sort the processes according to the calculated dynamic priorities, the sequence of
execution of the processes is 〈P2,P4,P3,P1〉. The average waiting time for this data set
comes out to be 10.5 time units. The same results are obtained if we follow the process
with the smallest burst time, i.e., shortest job first algorithm. If we simply execute the
processes according to their nice value i.e., the process with smaller nice value is selected
for execution, the waiting time comes out to be 25.5 time units. Table 9 shows the results
for data set-2.

Table 8 Data set-2

PID BT NV

P1 20 5

P2 4 31

P3 18 7

P4 6 25

Table 9 Results: data set-2

Algorithm Average waiting time

Shortest job first 10.5

Priority based 25.5

IF scheduler 10.5

Page 16 of 17Butt and Akram SpringerPlus (2016) 5:1547

Conclusion and future work
We have extended our previous algorithm, fuzzy decision making system for CPU
scheduler of a multi-tasking OS (Butt and Akram 2015), to intuitionistic fuzzy (IF) mod-
eling techniques. Our proposed algorithm has shown results that are comparable to the
best-known non-preemptive scheduler, i.e., shortest job first (SJF). We have presented
a novel decision-making system based on intuitionistic fuzzy sets for CPU scheduling
algorithm of a batch operating system. The main limitation of this algorithm is its com-
plexity which is not a major concern in case of a batch operating system. The same can
be extended for multi-tasking operating systems where complexity of scheduling algo-
rithm is not a concern. Improving the selection criteria of a CPU scheduling algorithm
is a hot area of research. Our proposed algorithm can give even better results if it can
identify between batch and interactive processes, and intelligently increase/decrease the
niceness of batch/interactive processes respectively. To identify between a batch and
interactive process, one can compute and keep record of the average sleep time spent by
every process in its lifetime. This will improve the overall inter-activeness of a computer
system to manifold.
Authors’ contributions
The authors have presented a new intuitionistic fuzzy rule-based decision-making system for a process scheduler of a
batch operating system. Both authors read and approved the final manuscript.

Author details
1 Punjab University College of Information Technology, University of the Punjab, Old Campus, Lahore 54000, Pakistan.
2 Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan.

Competing interests
The authors declare that they have no competing interests.

Received: 8 June 2016 Accepted: 5 September 2016

References
Ajmani P, Sethi M (2013) Proposed fuzzy CPU scheduling algorithm (PFCS) for real time operating systems. Int J Inf Tech-

nol 2231–2307(5):583–588
Akram M, Shahzad S, Butt A, Khaliq A (2013) Intuitionistic fuzzy logic control for heater fans. Math Comput Sci

7(3):367–378
Akram M, Habib S, Javed I (2014a) Intuitionistic fuzzy logic control for washing machines. Indian J Sci Technol

7(5):654–661
Akram M, Ashraf A, Sarwar M (2014b) Novel applications of intuitionistic fuzzy digraphs in decision support systems. Sci

World J 2014:904606. doi:10.1155/2014/904606
Alam B, Doja M, Biswas R, Alam M (2011) Fuzzy priority CPU scheduling algorithm. IJCSI 8(6):386–390
Ashraf A, Akram M, Sarwar M (2014a) Fuzzy decision support system for fertilizer. Neural Comput Appl 25(6):1495–1505
Ashraf A, Akram M, Sarwar M (2014b) Type-II fuzzy decision support system for fertilizer. Sci World J 2014:695815.

doi:10.1155/2014/695815
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
Atanassov K (2015) Intuitionistic fuzzy logics as tools for evaluation of data mining processes. Knowl-Based Syst

80:122–130
Behera H, Pattanayak R, Mallick P (2012) An improved fuzzy-based CPU scheduling (IFCS) algorithm for real time systems.

Int J Soft Comput Eng 2:2231–2307
Boldbaatar E-A, Lin C-M (2015) Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int

J Fuzzy Syst 17(1):31–38
Butt MA, Akram M (2015) A novel fuzzy decision-making system for CPU scheduling algorithm. Neural Comput Appl

27(7):1927–1939
Galvin PB, Gagne G, Silberschatz A (2013) Operating system concepts. Wiley, New York
Hamzeh M, Fakhraie SM, Lucas C (2007) Soft real-time fuzzy task scheduling for multi-processor systems. Int J Intell

Technol 2(4):211–216
Hsu W (2015) A fuzzy multiple-criteria decision-making system for analyzing gaps of service quality. Int J Fuzzy Syst

17(2):256–267
Kerrisk M (2010) The Linux programming interface. No Starch Press, San Francisco

http://dx.doi.org/10.1155/2014/904606
http://dx.doi.org/10.1155/2014/695815

Page 17 of 17Butt and Akram SpringerPlus (2016) 5:1547

Lim S, Cho S-B (2007) Intelligent os process scheduling using fuzzy inference with user models. In: Okuno HG, Ali M
(eds) New trends in applied artificial intelligence. Lecture notes in computer science, vol 4570. Springer, Berlin, pp
725–734

Lin L, Yuan X-H, Xia Z-Q (2007) Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets. J Comput
Syst Sci 73(1):84–88

Liu Y-J, Tong S, Chen CP (2013) Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmod-
eled dynamics. IEEE Trans Fuzzy Syst 21(2):275–288

Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Electr Eng
121(12):1585–1588

Parvathi R, Malathi C, Akram M, Atanassov KT (2013) Intuitionistic fuzzy linear regression analysis. Fuzzy Optim Decis Mak
12(2):215–229

Rezaei J, Ortt R (2013) Supplier segmentation using fuzzy logic. Ind Mark Manag 42(4):507–517
Shen Q, Jiang B, Cocquempot V (2013) Fuzzy logic system-based adaptive fault-tolerant control for near-space vehicle

attitude dynamics with actuator faults. IEEE Trans Fuzzy Syst 21(2):289–300
Van Leekwijck W, Kerre EE (1999) Defuzzification: criteria and classification. Fuzzy Sets Syst 108(2):159–178
Varshney S, Akhtar N (2012) Efficient CPU scheduling algorithm using fuzzy logic. In: International conference on com-

puter technology science, vol 47. IEEE, pp 13–18
Xu Z, Cai X (2012) Dynamic intuitionistic fuzzy multi-attribute decision making. In: Intuitionistic fuzzy information aggre-

gation. Springer, Berlin, pp 259–283
Xu Z, Liao H (2015) A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowl-Based

Syst 80:131–142
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199–249

	A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler
	Abstract
	Background
	Basic structure and algorithm
	Algorithm

	Components of IFS
	Intuitionistic fuzzifier
	Fuzzy inference engine
	Defuzzifier

	Results and discussion
	Data set 1
	Calculating dynamic priority of process P1
	Calculating dynamic priority of process P2
	Comparison
	Sensitivity analysis

	Data set 2
	Comparison

	Conclusion and future work
	Authors’ contributions
	References

