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Background
The subject of fractional calculus is one of the branches of applied mathematics which 
deals with derivatives and integrals of any arbitrary order (Hilfer 2000; Kilbas and Tru-
jillo 2002; Kilbas et al. 2006). Fractional partial differential equations are describing the 
phenomena in many various areas such as fluid mechanics, physics, engineering, biology 
(Miller and Ross 1993; Giona and Roman 1992; Rossikhin and Shitikova 1997; Podlubny 
1999; West 2007). The concept of variable-order fractional allows the power of the frac-
tional operator to be a function of the independent variable (Coimbra 2003; Chechkin 
et  al. 2005; Evans and Jacob 2007; Sun et  al. 2009; Coimbra et  al. 2005; Coimbra and 
Ramirez 2007). Few numerical methods have been introduced and discussed to solve the 
variable-order fractional problems (Sun et al. 2012; Ma et al. 2012; Zeng et al. 2015; Fu 
et al. 2015; Abdelkawy et al. 2015). Bhrawy and Zaky (2015a) proposed a new algorithm 
for solving one-and two-dimensional variable-order cable equations based on Jacobi 
spectral collocation approximation together with the Jacobi operational matrix for varia-
ble-order fractional derivative. Chen et al. (2014) proposed an implicit alternating direct 
method for the two-dimensional variable-order fractional percolation equation also dis-
cussed the stability and convergence of the implicit alternating direct method.

Abstract 

The variable order wave equation plays a major role in acoustics, electromagnetics, 
and fluid dynamics. In this paper, we consider the space–time variable order fractional 
wave equation with variable coefficients. We propose an effective numerical method 
for solving the aforementioned problem in a bounded domain. The shifted Jacobi 
polynomials are used as basis functions, and the variable-order fractional derivative 
is described in the Caputo sense. The proposed method is a combination of shifted 
Jacobi–Gauss–Lobatto collocation scheme for the spatial discretization and the shifted 
Jacobi–Gauss–Radau collocation scheme for temporal discretization. The aforemen-
tioned problem is then reduced to a problem consists of a system of easily solvable 
algebraic equations. Finally, numerical examples are presented to show the effective-
ness of the proposed numerical method.
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Spectral methods (Canuto et  al. 2006; Saadatmandi and Dehghan 2011; Doha and 
Bhrawy 2012; Bhrawy and Zaky 2015b, c; Bhrawy et al. 2016a) have been widely used 
in many fields in the last four decades. In the early times, the spectral method based on 
Fourier expansion has been used in few fields such as a simple geometric field and peri-
odic boundary conditions. Recently, they have been developed theoretically and used 
as powerful techniques to solve various kinds of problems. Based on the accuracy and 
exponential rates of convergence, spectral methods have an excellent reputation when 
compared with others numerical methods. The expression of the problem solution as a 
finite series of polynomials/functions is the major step of all types of spectral methods. 
Then, the coefficients of this expansion will be chosen such that the absolute error is 
diminished as well as possible.

The spectral collocation method (Canuto et al. 2006; Bhrawy and Alofi 2013; Gu and 
Chen 2014; Bhrawy and Abdelkawy 2015; Bhrawy 2016a) is a specific type of spec-
tral methods, that is more applicable and widely used to solve almost types of differ-
ential (Bhrawy et  al. 2016b; Tatari and Haghighi 2014), integral (Bhrawy et  al. 2016c; 
Rahmoune 2013), integro-differential (Jiang and Ma 2013; Ma and Huang 2014) and 
delay differential (Bhrawy et al. 2015a; Reutskiy 2015) equations. While, the numerical 
solution will be enforced to almost satisfy the partial differential equations (PDEs) in 
spectral collocation method. In other words, the residuals may be permitting to be zero 
at chosen points. Wei and Chen (2012) proposed Legendre spectral collocation methods 
for pantograph Volterra delay-integro-differential equations. Bhrawy and Alofi (2012) 
introduced the spectral shifted Jacobi–Gauss collocation method for solving the Lane–
Emden type equation. Bhrawy et al. (2015b) proposed the spectral collocation algorithm 
to solve numerically some wave equations subject to initial-boundary nonlocal conser-
vation conditions in one and two space dimensions. Bhrawy (2016b) proposed Jacobi 
spectral collocation method for solving multi-dimensional nonlinear fractional sub-dif-
fusion equations.

The aim of this paper is to find the numerical solution of the space–time variable order 
fractional wave equation subject to initial-boundary conditions. The wave equation is 
an important second-order partial differential equation for the description of waves as 
they occur in physics such as sound waves, light waves and water waves. Variable order 
wave equation appears in areas such as acoustics, electromagnetics, and fluid dynamics. 
This paper extends the SJ–GL-C and SJ–GR-C schemes in order to solve the space-time 
variable order fractional wave equation. The proposed collocation scheme is investigated 
for both temporal and spatial discretizations. The SJ–GL-C and SJ–GR-C are proposed, 
with a suitable modification for treating the boundary and initial conditions, for spatial 
and temporal discretizations. This treatment, for the conditions, improves the accuracy 
of the scheme greatly. Therefore, the space–time variable order fractional wave equa-
tion with its conditions is reduced to system of algebraic equations which is far easier to 
be solved. Finally, numerical examples with comparisons lighting the high accuracy and 
effectiveness of the proposed algorithm are presented.

The present paper is presented as follows. The definitions of the fractional calculus and 
some properties of Jacobi polynomials are introduced in “Preliminaries” section. The 
spectral collocation methods for the space–time variable order fractional wave prob-
lem subject to initial-boundary conditions are presented in “Jacobi collocation method” 
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section and then illustrated with two examples in “Numerical examples” section. The 
“Conclusion” is included in the last section.

Preliminaries
We first recall some definitions and preliminaries of the variable-order fractional differ-
ential and integral operators and some knowledge of orthogonal shifted Jacobi polyno-
mials that are most relevant to spectral approximations.

Definition 1  The Riemann–Liouville and Caputo differential operators of constant 
order γ , when n− 1 ≤ γ < n, of f(t) are given respectively by,

where Ŵ(.) represents the Euler gamma function.

Definition 2  The left Riemann–Liouville variable-order fractional differential operator 
of order γ (t) is given by

where n− 1 < γmin < γ (t) < γmax < n, n ∈ N for all t ∈ [0, τ ].

Definition 3  The Caputo variable-order fractional differential operator is given by

where 0 < γ (t) ≤ 1 for all t ∈ [0, τ ].
It is important to note here that the constant-order fractional derivative can be seen 

as a special case of the variable-order fractional derivative. These two definitions are 
related by the following relation:

The Jacobi polynomials, denoted by P
(θ ,ϑ)
j (x)(j = 0, 1 . . .); θ > −1,ϑ > −1 and 

defined on the interval [−1, 1] are generated from the three-term recurrence relation:

(1)

0D
γ
t f (t) =

1

Ŵ(n− γ )

dn

dtn

t
∫

0

f (s)

(t − s)γ−n+1
ds,

C
0 D

γ
t f (t) =

1

Ŵ(n− γ )

t
∫

0

f (n)(s)

(t − s)γ−n+1
ds,

(2)0D
γ (t)
t f (t) =

1

Ŵ(n− γ (t))

dn

dtn

t
∫

0

f (s)

(t − s)γ (t)−n+1
ds,

(3)
C
0 D

γ (t)
t f (t) =

1

Ŵ(1− γ (t))

t
∫

0

f ′(s)

(t − s)γ (t)
ds,

(4)0D
γ (t)
t f (t) =

n−1
∑

k=0

f (k)(0)tk−γ (t)

Ŵ(k + 1− γ (t))
+ C

0 D
γ (t)
t f (t).

P
(θ ,ϑ)
i+1

(x) =
(

a
(θ ,ϑ)
i x − b

(θ ,ϑ)
i

)

P
(θ ,ϑ)
i (x)− c

(θ ,ϑ)
i P

(θ ,ϑ)
i−1

(x), i ≥ 1,

P
(θ ,ϑ)
0

(x) = 1, P
(θ ,ϑ)
1

(x) =
1

2
(θ + ϑ + 2)x +

1

2
(θ − ϑ),
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where

The formula that relates Jacobi polynomials and their derivatives is

The orthogonality condition is

where w(θ ,ϑ) = (1− x)θ (1+ x)ϑ , h
(θ ,ϑ)

k =
2θ+ϑ+1Ŵ(k + θ + 1)Ŵ(k + ϑ + 1)

(2k + θ + ϑ + 1)k!Ŵ(k + θ + ϑ + 1)
.

Let the shifted Jacobi polynomials P(θ ,ϑ)
i (

2x

L
− 1) be denoted by P(θ ,ϑ)

L,i (x), then they 
can be obtained with the aid of the following recurrence formula:

The analytic form of the shifted Jacobi polynomials P(θ ,ϑ)
L,i (x) of degree i is given by

and the orthogonality condition is

where w(θ ,ϑ)
L (x) = xϑ(L− x)θ and �(θ ,ϑ)L,k =

Lθ+ϑ+1Ŵ(k + θ + 1)Ŵ(k + ϑ + 1)

(2k + θ + ϑ + 1)k!Ŵ(k + θ + ϑ + 1)
.

The shifted Jacobi–Gauss quadrature is commonly used to evaluate the previous inte-
grals accurately. For any φ ∈ S2N+1[0, L], we have

where SN [0, L] is the set of polynomials of degree less than or equal to 
N , x

(θ ,ϑ)
G,L,j (0 ≤ j ≤ N ) and ̟(θ ,ϑ)

G,L,j (0 ≤ j ≤ N ) are used as usual the nodes and the cor-
responding Christoffel numbers in the interval [0, L], respectively.

a
(θ ,ϑ)
i =

(2i + θ + ϑ + 1)(2i + θ + ϑ + 2)

2(i + 1)(i + θ + ϑ + 1)
,

b
(θ ,ϑ)
i =

(2i + θ + ϑ + 1)(ϑ2 − θ2)

2(i + 1)(i + θ + ϑ + 1)(2i + θ + ϑ)
,

c
(θ ,ϑ)
i =

(2i + θ + ϑ + 2)(i + θ)(i + ϑ)

(i + 1)(i + θ + ϑ + 1)(2i + θ + ϑ)
.

(5)D(q)P
(θ ,ϑ)

k (x) = P
(θ ,ϑ ,q)
k (x) = 2

−q Ŵ(k + θ + ϑ + q + 1)

Ŵ(k + θ + ϑ + 1)
P
(θ+q,ϑ+q)
k−q (x).

(6)(P
(θ ,ϑ)

k (x),P
(θ ,ϑ)

l (x))w(θ ,ϑ) =

1
∫

−1

P
(θ ,ϑ)

k (x)P
(θ ,ϑ)

l (x)w(θ ,ϑ)(x)dx = h
(θ ,ϑ)

k δlk ,

(7)

P
(θ ,ϑ)
L,i+1

(x) =

(

a
(θ ,ϑ)
i

(

2x

L
− 1

)

− b
(θ ,ϑ)
i

)

P
(θ ,ϑ
L,i (x)− c

(θ ,ϑ)
i P

(θ ,ϑ)
L,i−1

(x), i ≥ 1,

P
(θ ,ϑ)
L,0 (x) = 1, P

(θ ,ϑ)
L,1 (x) =

1

L
(θ + ϑ + 2)x − (ϑ + 1),

(8)P
(θ ,ϑ)
L,i (x) =

i
∑

k=0

(−1)i+k Ŵ(i + ϑ + 1)Ŵ(i + k + θ + ϑ + 1)

Ŵ(k + ϑ + 1)Ŵ(i + θ + ϑ + 1)(i − k)!k! Lk
xk ,

(9)

∫ L

0

P
(θ ,ϑ)
L,j (x)P

(θ ,ϑ)

L,k (x)w
(θ ,ϑ)
L (x)dx = �

(θ ,ϑ)

L,k δjk ,

∫ L

0

φ(x)w
(θ ,ϑ)
L (x)dx =

N
∑

j=0

̟
(θ ,ϑ)
G,L,j φ

(

x
(θ ,ϑ)
G,L,j

)

,
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For shifted Jacobi–Gauss (SJ–G), x(θ ,ϑ)G,L,j (0 ≤ j ≤ N ) are the zeros of P(θ ,ϑ)
L,N+1

(x) and the 
weights

where

while the nodes and the corresponding Christoffel numbers in the shifted Jacobi Gauss–
Radau (SJ–GR) quadrature are given by x(θ ,ϑ)R,L,0 = 0, x

(θ ,ϑ)
R,L,j (1 ≤ j ≤ N ) are the zeros of 

P
(θ ,ϑ+1)
L,N (x), and the weights

A function u(x), square integrable in [0, L], may be expressed in terms of shifted Jacobi 
polynomials as

where the coefficients cj are given by

The qth derivative of P(θ ,ϑ)

L,k (x) can be written as

Accordingly, we can calculate the Caputo variable order derivative of shifted Jacobi 
polynomials from

Jacobi collocation method
In this section, we introduce a numerical algorithm extends the SJ–GL-C and SJ–GR-C 
schemes in order to solve the space-time variable order fractional wave equation. The 
collocation points are selected at the SJ–GR and SJ–GL interpolation nodes for temporal 

(10)̟
(θ ,ϑ)
G,L,j =

C
(θ ,ϑ)
L,N

(

L− x
(θ ,ϑ)
G,L,j

)

x
(θ ,ϑ)
G,L,j

[

∂xP
(θ ,ϑ)
N+1

(

x
(θ ,ϑ)
G,L,j

)]2
, 0 ≤ j ≤ N ,

C
(θ ,ϑ)
L,N =

Lθ+ϑ+1Ŵ(N + θ + 2)Ŵ(N + ϑ + 2)

(N + 1)!Ŵ(N + θ + ϑ + 2)
.

(11)

̟
(θ ,ϑ)
R,L,0 =

(L)θ+ϑ+1(ϑ + 1)Ŵ2(ϑ + 1)Ŵ(N + 1)Ŵ(N + θ + 1)

Ŵ(N + ϑ + 2)Ŵ(N + θ + ϑ + 2)
,

̟
(θ ,ϑ)
R,L,j =

C
(θ ,ϑ+1)
L,N−1

(

L− x
(θ ,ϑ)
R,L,j

)(

x
(θ ,ϑ)
R,L,j

)2

∂x

[

P
(θ ,ϑ+1)
N

(

x
(θ ,ϑ)
R,L,j

)]2
, 1 ≤ j ≤ N ,

u(x) =

∞
∑

j=0

cjP
(θ ,ϑ)
L,j (x),

(12)cj =
1

�
(θ ,ϑ)
L,j

∫ L

0

u(x)P
(θ ,ϑ)
L,j (x)w

(θ ,ϑ)
L (x)dx, j = 0, 1, 2, . . . .

(13)DqP
(θ ,ϑ)

L,k (x) = P
(θ ,ϑ ,q)
L,k (x) =

Ŵ(q + k + θ + ϑ + 1)

LqŴ(k + θ + ϑ + 1)
P
(θ+q,ϑ+q)
L,k−q (x).

(14)

C
D
γ (x)
x P

(θ ,ϑ)
L,i

(x) = P
(θ ,ϑ ,γ (x))
L,i

(x)

=

i
∑

k=1

(−1)i+kŴ(i + ϑ + 1)Ŵ(i + k + θ + ϑ + 1)

Ŵ(k + ϑ + 1)Ŵ(i + θ + ϑ + 1)(i − k)! Lk Ŵ(k − γ (x)+ 1)
x
k−γ (x)

.
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and spatial variables, respectively. The core of the proposed method consists of discre-
tizing the space–time variable order fractional wave equation to create a system of alge-
braic equations of the unknown coefficients. This system can be then easily solved with a 
standard numerical scheme.

In particular, we consider the following space–time variable order fractional wave 
equation

with the initial conditions

and the boundary conditions

where B(x, t) > 0, g0(x), g1(x), g2(t) and g3(t) are given functions, while f(u,  x,  t) is a 
source term.

We choose the approximate solution to be of the form

where P i,j,k
0

(x, y, t) = P
(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2)
T ,j (t).

The approximation of the temporal partial derivative Dtu(x, t) can be easily computed 
as follows

where P i,j
1
(x, t) = P

(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2,1)
T ,j (t).

A straightforward calculation shows that the fractional derivative of variable order of 
the approximate solution can be computed by

(15)CD
β(x,t)
t u(x, t) = B(x, t)CDα(x,t)

x u(x, t)+ f (u, x, t), 1 < α(x, t),β(x, t) ≤ 2,

(16)u(x, 0) = g0(x), ut(x, 0) = g1(x), x ∈ [0, L],

(17)u(0, t) = g2(t), u(L, t) = g3(t), t ∈ [0,T ]

(18)

u(x, t) =

N
∑

i,j=0

ûi,j P
(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2)
T ,j (t),

=

N
∑

i,j=0

ûi,j P
i,j
0
(x, t),

(19)

Dtu(x, t) =

N
∑

i,j=0

ûi,j P
(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2,1)
T ,j (t)

=

N
∑

i,j=0

ûi,j P
i,j
1
(x, t),

(20)

CD
β(x,t)
t u(x, t) =

N
∑

i,j=0

ûi,j P
(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2,β(x,t))
T ,j (t)

=

N
∑

i,j=0

ûi,j P
i,j
2
(x, t),
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where

Now, adopting (18)–(21), enable one to write (15) in the form:

while the numerical treatments of initial and boundary conditions are

In the proposed shifted Jacobi collocation method, the residual of (15) is set to be zero 
at (N − 1)2 of collocation points. Moreover, the initial-boundary conditions in (23) will 
be collocated at collocation points. Firstly, we have (N − 1)2 algebraic equations for 
(N + 1)2 unknowns of ûi,j

where

and also we have 2(N − 1) algebraic equations which will be obtained due to the initial 
conditions

(21)

CDα(x,t)
x u(x, t) =

N
∑

i,j=0

ûi,j P
(θ1,ϑ1,α(x,t))
L,i (x)P

(θ2,ϑ2)
T ,j (t)

=

N
∑

i,j=0

ûi,j P
i,j
3
(x, t),

P
i,j
2
(x, t) = P

(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2,β(x,t))
T ,j (t),

P
i,j
3
(x, t) = P

(θ1,ϑ1,α(x,t))
L,i (x)P

(θ2,ϑ2)
T ,j (t).

(22)
N
�

i,j=0

ûi,j P
i,j
2
(x, t) = B(x, t)

N
�

i,j=0

ûi,j P
i,j
3
(x, t)+ f





N
�

i,j=0

ûi,j P
i,j
0
(x, t), x, t



,

(23)

u(x, 0) =

N
∑

i,j=0

ûi,j P
i,j
0
(x, 0) = g0(x),

Dtu(x, 0) =

N
∑

i,j=0

ûi,j P
i,j
1
(x, 0) = g1(x),

u(0, t) =

N
∑

i,j=0

ûi,j P
i,j
0
(0, t) = g2(t),

u(L, t) =

N
∑

i,j=0

ûi,j P
i,j
0
(L, t) = g3(t).

(24)

N
�

i,j=0

ûi,j F
i,j
r,τ = f





N
�

i,j=0

ûi,j P
i,j
0
(x

(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ ), x

(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ



,

r = 1, . . . ,N − 1; τ = 1, . . . ,N − 1,

(25)F
i,j
r,τ = P

i,j
2

(

x
(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ

)

− B
(

x
(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ

)

P
i,j
3

(

x
(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ

)
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Furthermore, using the boundary conditions, we have 2(N + 1) algebraic equations

Combining Eqs. (24), (26) and (27), we obtain

 The previous system of nonlinear algebraic equations can be easily solved. After the 
coefficients ai,j are determined, it is straightforward to compute the approximate solu-
tion uN ,M(x, t) at any value of (x, t) in the given domain from the following equation

Numerical examples
This section reports two numerical examples to demonstrate the high accuracy and 
applicability of the proposed method. We also compare the results given from our 
scheme and those reported in the literature. The comparisons reveal that our method is 
very effective and convenient.

Example 1  Consider the following variable order fractional wave equation which is 
given in Sweilam and Assiri (2015),

where β(x, t) = 1.5+ 0.25 cos(x) sin(2t), α(x, t) = 1.5+ 0.5e−(xt)2−1 and

(26)

N
∑

i,j,=0

ûi,j, P
i,j
0

(

x
(θ ,ϑ)
G,L,r , 0

)

= g0

(

x
(θ ,ϑ)
G,L,r

)

, r = 1, . . . ,N − 1,

N
∑

i,j,=0

ûi,j, P
i,j
1

(

x
(θ ,ϑ)
G,L,r , 0

)

= g1

(

x
(θ ,ϑ)
G,L,r

)

, r = 1, . . . ,N − 1.

(27)

N
∑

i,j=0

ûi,j P
i,j
0

(

0, t
(θ ,ϑ)
R,T ,τ

)

= g2

(

t
(θ ,ϑ)
R,T ,τ

)

, τ = 0, . . . ,N ,

N
∑

i,j=0

ûi,j P
i,j
0

(

L, t
(θ ,ϑ)
R,T ,τ

)

= g3

(

t
(θ ,ϑ)
R,T ,τ

)

, τ = 0, . . . ,N .

(28)







































































�N
i,j=0 ûi,j F

i,j
r,τ = f

�

�N
i,j=0 ûi,j P

i,j
0

�

x
(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ

�

, x
(θ ,ϑ)
G,L,r , t

(θ ,ϑ)
R,T ,τ

�

, r, τ = 1, . . . ,N − 1,

�N
i,j,=0 ûi,j, P

i,j
0

�

x
(θ ,ϑ)
G,L,r , 0

�

= g0

�

x
(θ ,ϑ)
G,L,r

�

, r = 1, . . . ,N − 1,

�N
i,j,=0 ûi,j, P

i,j
1

�

x
(θ ,ϑ)
G,L,r , 0

�

= g1

�

x
(θ ,ϑ)
G,L,r

�

, r = 1, . . . ,N − 1,

�N
i,j=0 ûi,j P

i,j
0

�

0, t
(θ ,ϑ)
R,T ,τ

�

= g2

�

t
(θ ,ϑ)
R,T ,τ

�

, τ = 0, . . . ,N ,

�N
i,j=0 ûi,j P

i,j
0

�

L, t
(θ ,ϑ)
R,T ,τ

�

= g3

�

t
(θ ,ϑ)
R,T ,τ

�

, τ = 0, . . . ,N .

(29)u(x, t) =

N
∑

i,j=0

ûi,j P
(θ1,ϑ1)
L,i (x)P

(θ2,ϑ2)
T ,j (t).

(30)

CD
β(x,t)
t u(x, t) = −0.5 cos(α(x, t)π/2)CDα(x,t)

x u(x, t)+ f (u, x, t), (x, t) ∈ [0, 8] × [0, 1],
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with the initial-boundary conditions

The exact solution of this problem when α(x, t) = β(x, t) = 2 is given by

Sweilam and Assiri (2015) proposed the non-standard finite difference (NSFD) 
method to solve this problem with choices of N = 1000 and M = 125. In Table 1, we 
contrast our numerical results based on absolute errors obtained using the proposed 
algorithm for three choices of the shifted Jacobi parameters at N = 8 with the corre-
sponding results of NSFD method (Sweilam and Assiri 2015). In Table 2, we contrast our 
results based on maximum absolute errors (MAEs) obtained by the present method for 
three choices the shifted Jacobi parameters at N = 8. From the results of this example, 

f (u, x, t) =
2u

t2 + 1
− (t2 + 1)

(

16x2−α(x,t)

Ŵ(3− α(x, t))
+

6x3−α(x,t)

Ŵ(4 − α(x, t))

)

,

(31)

u(x, 0) = x2(8− x), ut(x, 0) = 0, u(0, t) = u(8, t) = 0, (x, t) ∈ [0, 8] × [0, 1].

(32)u(x, t) = x2(8− x)(t2 + 1), (x, t) ∈ [0, 8] × [0, 1].

Table 1  The absolute errors of  problem (30) for  our method at  N = 8 and  the NSFD 
method in Sweilam and Assiri (2015)

x t Our method NSFD method  
(Sweilam and Assiri 2015)

θ1 = θ2 = 0 θ1 = θ2 =
1
2

θ1 = 1, θ2 = 0 N = 1000

ϑ1 = ϑ2 = 0 ϑ1 = ϑ2 =
1
2

ϑ1 = 0,ϑ2 = 1 M = 125

0 1 2.15204 × 10−14 3.55271 × 10−14 0 0

0.8 2.1985 × 10−15 9.9476 × 10−14 3.55271 × 10−14 2.70905 × 10−3

1.6 1.22734 × 10−14 1.84741 × 10−13 1.42109 × 10−14 2.47795 × 10−3

2.4 1.60228 × 10−14 5.68434 × 10−14 7.10543 × 10−14 2.12119 × 10−3

3.2 3.54371 × 10−15 1.42109 × 10−14 1.42109 × 10−14 1.62219 × 10−3

4 1.69769 × 10−14 2.84217 × 10−14 2.84217 × 10−14 9.1329 × 10−4

4.8 1.93105 × 10−14 8.52651 × 10−14 5.68434 × 10−14 9.988 × 10−5

5.6 5.34145 × 10−14 0 0 1.52948 × 10−3

6.4 2.16945 × 10−14 1.42109 × 10−14 2.13163 × 10−14 3.50169 × 10−3

7.2 5.49134 × 10−14 3.55271 × 10-15 0 6.15396 × 10−3

8 1.37362 × 10−15 1.42109 × 10−14 0 0

Table 2  The MAEs of  problem (30) for  our method at  N = 8 and  the NSFD method 
in Sweilam and Assiri (2015)

T Our method NSFD method  
(Sweilam and Assiri 2015)

θ1 = θ2 = 0 θ1 = θ2 =
1
2

θ1 = 1, θ2 = 0 N = 1000

ϑ1 = ϑ2 = 0 ϑ1 = ϑ2 =
1
2

ϑ1 = 0,ϑ2 = 1 M = 125

1 3.88506× 10
−14

3.55271× 10
−14

5.68434× 10
−14

6.1539× 10
−3

4 4.86067× 10
−13

6.82121× 10
−13

7.95808× 10
−13

3.4818× 10
−3

8 2.00448× 10
−11

5.00222× 10
−12

6.36646× 10
−12 9.0641× 10

−5
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we observe that the approximate solution obtained by our method is more better than 
those obtained in Sweilam and Assiri (2015).

Figure  1 displays the space-graph of the numerical solution of problem (1) with 
N = 8, and θ1 = θ2 = ϑ1 = ϑ2 = 0. While, Fig.  2 compares graphically the curves 
of numerical and exact solutions of problem (1) for the different values of t at N = 8, 
and θ1 = θ2 = ϑ1 = ϑ2 =

1
2
. Moreover, we represent in Figs.  3 and 4 the absolute 

error curves obtained by the present method at t = 0.5 and x = 5 with N = 8, and 
θ1 = θ2 = ϑ1 = ϑ2 = 0, respectively. This demonstrates that the proposed method leads 
to an accurate approximation and yields exponential convergence rates.

Example 2  Consider the following problem

where

with the initial and boundary conditions

where f(x, t) is a given function such that the exact solution of this problem is

(33)CD
β(x,t)
t u(x, t) = t2 CDα(x,t)

x u(x, t)+ f (x, t), (x, t) ∈ [0, 1] × [0, 1],

β(x, t) = 2− sin
2(t) cos2(x), α(x, t) = 1.8 + 0.5e−(tx)2−1

.

(34)u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = t3, u(1, t) = t3, (x, t) ∈ [0, 1] × [0, 1],

Fig. 1  Space-graph of numerical solution of problem (1)

Fig. 2  x-Direction curves of exact and numerical solutions of problem (1)
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In Table 3, we list the results based on the MAEs obtained by the proposed method 
(with various choices of N , θ1, θ2, ϑ1, and ϑ2). From this table, we see that we can achieve 
an excellent approximation for the exact solution by using proposed method for a lim-
ited number of the collocation nodes. Also this demonstrates that the proposed method 
provides an accurate approximation and yields exponential convergence rates.

Figure  5 shows the space graph of the absolute errors with N = 20, 
and θ1 = θ2 = − 1

2
, ϑ1 = ϑ2 =

1

2
. While, Fig.  6 compares graphically the 

curves of numerical and exact solutions of problem (2) for the different 

(35)u(x, t) = t3 cos(2πx), (x, t) ∈ [0, 1] × [0, 1].

Fig. 3  x-Direction curve of the absolute errors of problem (1)

Fig. 4  t-Direction curve of the absolute errors of problem (1)
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values of t at N = 20, θ1 = θ2 = − 1
2
, ϑ1 = ϑ2 =

1

2
. Meanwhile, we plot in Fig.  7 the 

absolute error curve obtained by the present method at t = 0.5 with N = 20, and 
θ1 = θ2 = ϑ1 = ϑ2 = 0 . Moreover, we present in Fig.  8 the logarithmic graphs 
of MAEs (i.e., log10ME) obtained by the present method with different values of 
(N = 2, 4, 6, · · · , 20) at three cases of θ1, θ2, ϑ1, and ϑ2

1.	 Case 1, θ1 = θ2 = ϑ1 = ϑ2 = 0.
2.	 Case 2, θ1 = θ2 = ϑ1 = ϑ2 =

1
2
.

3.	 Case 3, θ1 = θ2 = − 1
2
, ϑ1 = ϑ2 =

1

2
.

Table 3  The MAEs of problem 2

N Our method with several choices of N, M

(0, 0, 0, 0)
(

1
2
, 1
2
, 1
2
, 1
2

) (

−
1
2
,− 1

2
, 1
2
, 1
2

)

4 7.3277× 10
−2

4.46797× 10
−2 0.107228

8 1.024× 10
−4

1.09006× 10
−4

1.14665× 10
−4

12 1.55737× 10
−8

2.31041× 10
−8

3.18938× 10
−8

16 1.75149× 10
−12

3.27383× 10
−12

2.14628× 10
−12

20 3.70814× 10
−14

5.32907× 10
−14

6.51701× 10
−14

Fig. 5  space graph of the absolute errors of problem (2)

Fig. 6  x-Direction curves of exact and numerical solutions of problem (2)
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All the above numerical simulations demonstrate the high accuracy and applicability of 
our technique.

Conclusions
We presented a collocation method to achieve an accurate numerical solution for var-
iable-order fractional wave problem subject to initial-boundary conditions. One of the 
most advantages of the present technique is that a fully spectral method was imple-
mented for the time and space variables by using SJ–GR-C and SJ–G-C approximations 
respectively. The problem with its conditions was then reduced to an algebraic system. 
The greatest feature of the present scheme is, adding few terms of the SJ–G and SJ–GR 
collocation points, a full agreement between the approximate and exact solutions was 
achieved. Through the numerical examples and specially the comparison between the 
obtained approximate solution and those obtained by other approximations, we demon-
strate the validity and high accuracy of the present method.

Fig. 7  x-Direction curve of the absolute errors of problem (2)

Fig. 8  ME convergence of problem (2)
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