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Background
In recent years, supply chain coordination mechanisms such as the revenue sharing con-
tract and return contract have become the hot topics faced by both some scholars and 
practitioners. Coordination among the supply chain members is an important strategy 
in supply chain. Contracts are considered as effective instruments to bring the manu-
facturer and the retailer in a decentralized supply chain to operate in coordination. The 
contract can overcome the problem of double marginalization exited in supply chain 
system. The retailer can be induced to order right quantity, and maximize the total profit 
of the supply chain system through the negotiation among the members with contracts. 
In such supply chain contracts, the risks caused by the uncertain demand are shifted 
from the retailers to the manufacturers. In return, the order quantities of the retailers in 
such supply chain contracts are equal to those in the centralized decision making system 
so as to maximize the sum of profits for the manufacturers and retailers.

Revenue sharing (RS) contract has achieved a great success in practice among the 
supply chain members and widely be used in the movie industry. Cachon and Lariviere 
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(2005) compared the RS contract to some other kinds of contracts and pointed out its 
strengths and limitations. Chen et al. (2011) studied the RS contract in a two stage sup-
ply chain, where the demand was a function of retail price and size of self-space. Rhee 
et al. (2010, 2014) used the spanning RS contract for coordinating a multi-echelon sup-
ply chain in a random demand setting, where the most downstream member shared his 
profit with all the other members. Krishnan and Winter (2011) examined the coordinat-
ing role of the RS contract comprising two competitive retailers and one manufacturer. 
Zhang et  al. (2012) also studied the RS contract problem with two competitive retail-
ers in a demand disruption setting. Recently, Palsule-Desai (2013) proposed a revenue-
dependent RS contract to coordinate the supply chain in a two-period model. Giovanni 
(2014) proposed a reverse RS contract to coordinate the closed-loop supply chain with 
green advertising strategies. Panda (2014) used the RS contract aimed at coordinat-
ing the socially responsible issues of supply chain with a linear demand. Hsueh (2014) 
also developed a RS contract with corporate social responsibility in a random demand 
environment.

Return contract is also widely adopted for some high new products with short life 
cycles in a number of industries such as personal computers, fashion apparel and toys. 
Yao et al. (2005) discussed the impact of information sharing on the return contract in 
both traditional retail channels and direct channels. Chen (2011) also studied the impact 
of the sharing customer returns information on the return policy in the Manufacturer 
Stackelberg game scenario. Yao et al. (2008) examined the effects of price-sensitivity fac-
tors on the return contract in a stochastic and price-dependent demand setting. Zhao 
et  al. (2014) also studied the return contract in a price-dependent downward-sloping 
demand environment, but they mainly focused on the problem of the demand uncer-
tainty level. Chen and Bell (2011) used the return policy for coordinating a decentralized 
supply chain in a price-dependent demand setting. Chen and Bell (2012) also examined 
the coordination issue of the dual-channel through return policies. In addition, Ai et al. 
(2012) proposed a full return policy to study the competition problem among two sup-
ply chains with uncertain demand. Wu (2013) also used a return contract to coordinate 
the competing supply chains, where two power distributions namely Vertical Integration 
model and Manufacturer’s Stackelberg game were considered. Huang et al. (2014) devel-
oped a return contract to coordinate the supply chain comprising many retailers with a 
secondary market. Yoo (2014) used a return policy to coordinate the supply chain, where 
the supplier has two different risk attitudes: risk averse and risk neutral.

The works mentioned above analyzed the revenue sharing contract and the return 
contract in a linear or random market demand. In recent years, fuzzy set theory has 
been adopted by more and more scholars to solve the problems in the supply chain man-
agement. For instance, Xu and Zhai (2008) considered the demand as a triangular fuzzy 
variable and developed a fuzzy newsboy model. Xu and Zhai (2010) also extend their 
work to the coordination problem, where the demand was considered as an L-R fuzzy 
number. Hu et  al. (2010) developed the fuzzy decentralized and centralized decision 
marking systems with imperfect quality in a fuzzy random demand setting. Kazemi et al. 
(2010) investigated the EOQ model with backorders in a fuzzy decision environment, 
where the parameters of the model were considered as the trapezoidal and triangular 
numbers. Samal and Pratihar (2014) also studied the fuzzy EOQ model without and with 
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backordering. In addition, Chen and Cheng (2014) studied the inventory policies with a 
multi-stage supply chain, where the demand and inventory cost were considered as fuzzy 
variables. Ye and Li (2011) developed a Stackelberg game model between a supplier and 
a retailer under a fuzzy market demand environment, where the risks of the supply chain 
members were considered. Yu and Jin (2011) adopted signed distance method to study 
the return contract under uncertain demands, where the demand and the retail price 
were regarded as the triangular fuzzy numbers. Yu et al. (2013) also studied the fuzzy 
newsboy model in a price-dependent demand environment. In recent paper, Chang and 
Yeh (2013) analyzed the centralized and decentralized decision-making systems with 
returnable products, where the demand was considered as the trapezoidal number. Sang 
(2013) studied the revenue sharing contract and the return contract comprising multiple 
competing retailers with fuzzy demand. Zhang et al. (2014) adopted the crisp possibilis-
tic mean method to study a two-level return contract in a fuzzy random demand envi-
ronment. Recently, some researchers such as Boutkhoum et al. (2015), Abdolmajidi et al. 
(2016) and Hanine et al. (2016) studied the applications of fuzzy theory in other optimal 
problems. Boutkhoum et al. (2015) studied the industrial location selection problem in 
a fuzzy decision making environment. Hanine et al. (2016) proposed the fuzzy TODIM 
and fuzzy AHP methods to select the landfill location. Abdolmajidi et  al. (2016) used 
fuzzy logic for modeling the spatial data infrastructure development.

To the best of our knowledge, there is no study on the RS contract and the return 
contract that the parameters of supply chain models are all characterize by the fuzzy 
variables. However, in the real word, the rapid change of the product life cycle makes 
the parameters of the supply chain models more and more uncertain. These uncertain-
ties may be the retail price, market demand, costs of the supply chain members, etc. For 
practical purpose, the linguistic terms are usually used to describe these uncertainties, 
such as “the retail price is about b, but definitely not greater than c and not less than a”. 
Therefore, we assume the fuzzy number variables can be forecasted and expressed as 
triangular membership functions. Triangular fuzzy numbers are easy to handle arith-
metically and have intuitive interpretations. Triangular fuzzy numbers as one types of 
left–right fuzzy numbers are adopted because they are considered the most fit for mod-
eling uncertain parameters (Xu and Zhai 2008; Yu et al. 2013).

This study aims at developing coordination mechanisms of the manufacturer and the 
retailer and pursuing their optimal strategies when the parameters of the models are 
fuzzy. The contributions of this article are as follows. Firstly, we study the supply chain 
coordination mechanisms in a fuzzy decision making environment. The market demand, 
retail price, costs of the manufacturer and the retailer, savage value of the unsold product 
are all fuzziness. Secondly, both the RS contract and the return contract are considered 
in a fuzzy decision making environment. Thirdly, we discuss the impacts of the fuzziness 
of the market demand, retail price, and savage value of the product on the optimal poli-
cies in two contracts. These can improve decision making of the experts in supply chain 
management.

The article is organized as follows. Some definitions and propositions about the 
triangular fuzzy number related to this paper are introduced in section “Prelimi-
naries”. The notations and assumptions of the models are introduced in section “Nota-
tions and assumptions”. In section “Models and solution approaches”, the centralized 
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decision-making system, the RS contract and the return contract in a fuzzy decision 
making environment are proposed. In section “Numerical examples”, some numerical 
examples are given to elucidate the solutions of each model. Last section “Conclusions” 
summarizes the work.

Preliminaries
In this section, we introduce some definitions and propositions about the fuzzy set the-
ory for modeling the supply chain contract with uncertain factors.

Definition 1 The fuzzy set Ã = (a1, a2, a3) is said to be the triangular fuzzy number, 
when it has a following membership function

where a1, a2 and a3 are crisp numbers with a1 < a2 < a3. When x ∈ [a1, a2], 
ÃL(x) = x−a1

a2−a1
 is continuous and increasing about x. When x ∈ (a2 a3], ÃR(x) = a3−x

a3−a2
 is 

continuous and decreasing about x.

Definition 2 If a1 > 0, then Ã = (a1, a2, a3) is called the positive triangular fuzzy 
number.

Definition 3 Given α ∈ [0, 1], the set Ã(α) =
(

x|µÃ(x) ≥ α
)

 is called the α cut set of Ã 
and is denoted by the interval t[Ã−1

L (α), Ã−1
R (α)], with

where Ã−1
L (α) and Ã−1

R (α) are the left and right cut sets of Ã(α).

Example 1 Given α ∈ [0, 1], the α cut set of Ã = (a1, a2, a3) can be given as

where Ã−1
L  and Ã−1

R  are the inverse functions of ÃL and ÃR respectively.
The following Propositions 1 and 2 can be obtained through the extension principle of 

the fuzzy set theory.

Proposition 1 Given α ∈ [0, 1], let Ã be a positive triangular fuzzy variable with α cut 
set [Ã−1

L (α), Ã−1
R (α)], then

(1)µÃ(x) =







x−a1
a2−a1

, x ∈ [a1, a2],
a3−x
a3−a2

, x ∈ (a2, a3],

0, otherwise.

(2)Ã−1
L (α) = inf

{

x ∈ R : µÃ(x) ≥ α

}

, and Ã−1
R (α) = sup

{

x ∈ R : µÃ(x) ≥ α

}

.

(3)Ã−1
L (α) = (1− α)a1 + αa2, and Ã−1

R (α) = αa2 + (1− α)a3.

(4)kÃ(α) =











�

kÃ−1
L (α), kÃ−1

R (α)

�

, k ∈ R+,
�

kÃ−1
R (α), kÃ−1

L (α)

�

, k ∈ R−.
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Proposition 2 Given α ∈ [0, 1], let B̃ and C̃ be two positive triangular fuzzy numbers 
with α cut sets [B̃−1

L (α), B̃−1
R (α)] and [C̃−1

L (α), C̃−1
R (α)], respectively. Then we have

In addition, to solve the fuzzy optimal models, we must first convert the fuzzy number 
into a crisp one. Our study adopts the ranking method proposed by Liu and Liu (2002), 
which is given by

Proposition 3 (Liu and Liu 2002) Let Ã be a positive triangular number with α cut set 
[

Ã−1
L (α), Ã−1

R (α)

]

, then the expected value E
[

Ã
]

 is

Example 2 The triangular fuzzy number Ã = (a1, a2, a3) has an expected value

Example 3 For two nonnegative independent triangular fuzzy numbers Ã = (a1, a2, a3) 
and B̃ = (b1, b2, b3), we have

(a) B̃(α)+ C̃(α) =
[

B̃−1
L (α)+ C̃−1

L (α), B̃−1
R (α)+ C̃−1

R (α)

]

,

(b) B̃(α)− C̃(α) =
[

B̃−1
L (α)− C̃−1

R (α), B̃−1
R (α)− C̃−1

L (α)

]

,

(c)
(

ÃB̃
)−1

L
(α) = Ã−1

L (α)B̃−1
L (α),

(5)(d)
(

ÃB̃
)−1

R
(α) = Ã−1

R (α)B̃−1
R (α).

(6)E
[

Ã
]

=
1

2

∫ 1

0

[

Ã−1
L (α)+ Ã−1

R (α)

]

dα.

(7)

E

[

Ã

]

=
1

2

∫ 1

0

[

Ã
−1
L

(α)+ Ã
−1
R

(α)

]

dα

= 1

2

∫ 1

0

[(1− α)a1 + αa2 + αa2 + (1− α)a3]dα = a1 + 2a2 + a3

4

(8)

E

[

ÃB̃

]

=
1

2

∫ 1

0

[

(

ÃB̃

)−1

L

(α)+
(

ÃB̃

)−1

R

(α)

]

dα

= 1

2

∫ 1

0

[

Ã
−1
L

(α)B̃
−1
L

(α)+ Ã
−1
R

(α)B̃
−1
R

(α)

]

dα

=
1

2

∫ 1

0

[((1− α)a1 + αa2)((1− α)b1 + αb2)

+(αa2 + (1− α)a3)(αb2 + (1− α)b3)]dα

=
2a1b1 + a1b2 + 3a2b1 + 3a2b3 + a3b2 + 2a3b3

12
.
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Proposition 4 (Liu and Liu 2002) Let Ã and B̃ be two independent positive triangular 
fuzzy numbers, then

where m and n are real numbers.

Notations and assumptions
In a single period setting, we examine a two-echelon supply chain in which a retailer 
orders the short life product from a manufacturer and sells it to customers in a high 
uncertain environment. The retailer has only one chance to order such product, since 
its selling season is much shorter than its order lead time. The uncertain demand faced 
by the retailer is assumed to be a positive triangular fuzzy number D̃ = (d1, d2, d3) 
with 0 < d1 < d2 < d3. d2 is the most possible value of demand D̃, this means that the 
demand is about d2. d1 and d3 are the minimum and maximum values of the demand, 
respectively. The fuzzy demand D̃ the following membership function µD̃(x):

For computational convenience, we use L(x) and R(x) denote the left and right spread 
functions of the fuzzy demand D̃. The values of d1, d2 and d3 can be estimated by the 
decision makers.

The other notations used in this paper are as follows

q  Retailer’s order quantity;
p̃  Retailer’s fuzzy retail price of unit product;
c̃m  Manufacturer’s fuzzy production cost of unit product;
c̃r  Retailer’s fuzzy operational cost of unit product;
ṽ  Unsold product’s fuzzy salvage value of unit product;
w  Manufacturer’s wholesale price of unit product;
Φ  Retailer’s percentage revenue sharing in the RS contract with 0 < Φ < 1;
b  Manufacturer’s return price of unit unsold product in the return contract;
Π̃R  Retailer’s fuzzy profit;
Π̃M  Manufacturer’s fuzzy profit;
Π̃SC  Supply chain system’s fuzzy profit

The assumptions related to this paper are given as follows:

Assumption 1 The retailer and the manufacturer are both risk, they maximize the 
expected profits.

Assumption 2 For any given α ∈ [0, 1], we assume p̃−1

R (α) > p̃−1

L (α) > b > ṽ−1

R

(α) > ṽ
−1

L
(α). These ensure that the retailer, the manufacturer and the supply chain sys-

tem can obtain non-negative fuzzy profits.

(9)E
[

mÃ+ nB̃
]

= mE
[

Ã
]

+ nE
[

B̃
]

.

(10)µD̃(x) =







L(x), x ∈ [d1, d2],
R(x), x ∈ (d2, d3],
0 otherwise.
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Models and solution approaches
In this section, we consider the centralized decision-making system and two types of 
supply chain contracts, namely, the revenue sharing contract and the return contract in 
a fuzzy decision environment, which can tell the manufacturer and the retailer how to 
set their optimal policies in this situation.

Centralized decision‑making system

We first consider the fuzzy centralized decision-making system. In this case, the manu-
facturer cooperates with the retailer and can be considered as the whole channel occu-
pied by an integrated decision maker. Then, the profit for supply chain system is

where the profit Π̃SC is a fuzzy number since p̃, D̃, ṽ, c̃m and c̃r are fuzzy numbers. Then, 
the manufacturer and the retailer choose their optimal order quantity q to maximize the 
fuzzy expected profit E

[

Π̃SC

]

, which can be expressed as

Note that the fuzzy demand D̃ = (d1, d2, d3) is a positive triangular fuzzy variable, 
then the optimal solution q set by the integrated decision maker has two conditions, 
q ∈ [d1, d2] or q ∈ (d2, d3].

Theorem 1 When q ∈ [d1, d2], the optimal solution q∗ satisfies the following equation

Proof If q ∈ [d1, d2], we can get the α cut sets of min
(

q, D̃
)

 and max
(

q − D̃, 0
)

 as 
follows

If α ∈ [0, L(q)], then the α cut set of Π̃SC(α) can be obtained as

(11)Π̃SC = p̃min
(

q, D̃
)

+ ṽmax
(

q − D̃, 0
)

− c̃mq − c̃rq.

MaxqE

[

Π̃SC

]

= E

[

p̃min

(

q, D̃

)

+ ṽmax

(

q − D̃, 0

)

− c̃mq − c̃rq

]

(12)s.t. d1 ≤ q ≤ d3.

(13)
1

2

∫ L(q∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα = E[p̃]− E[c̃m]− E[c̃r].

(

min
(

q, D̃
))

(α) =
{

[

L−1(α), q
]

, α ∈ [0, L(q)],

[q, q], α ∈ (L(q), 1].

(

max
(

q − D̃, 0
))

(α) =
{

[

0, q − L−1(α)

]

, α ∈ [0, L(q)],

[0, 0], α ∈ (L(q), 1].
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If α ∈ (L(q), 1], then the α cut set of Π̃SC(α) can be derived as

According to Proposition 3, the fuzzy expected profit E
[

Π̃SC

]

 is

The first-order and second-order derivatives E
[

Π̃SC

]

 about q are

Since L(q) is an increasing function about q with L′(q) > 0, therefore 
d2E

[

Π̃SC

]

dq2
< 0 and 

E
[

Π̃SC

]

 is a concave function with respect to q for q ∈ [d1, d2].

Hence, let 
dE

[

Π̃SC

]

dq
= 0, we can derive the optimal order quantity q∗ as

Solving Eq. (15), the optimal order quantity q∗ can be derived as shown in Eq. (13).
Theorem 1 is proved.

Theorem 2 When q ∈ (d2, d3], the optimal solution q∗ satisfies the following equation

Π̃SC(α) =
[

p̃−1
L (α)L−1(α), p̃−1

R (α)q
]

+
[

0, ṽ−1
R (α)q − ṽ−1

R (α)L−1(α)

]

−
[

(c̃m)
−1
L (α)q, (c̃m)

−1
R (α)q

]

−
[

(c̃r)
−1
L (α)q, (c̃r)

−1
R (α)q

]

=
[

p̃−1
L (α)L−1(α)− (c̃m)

−1
R (α)q − (c̃r)

−1
R (α)q ,

p̃−1
R (α)q + ṽ−1

R (α)q − ṽ−1
R (α)L−1(α)− (c̃m)

−1
L (α)q − (c̃r)

−1
L (α)q

]

.

Π̃SC(α) =
[

p̃−1
L (α)q, p̃−1

R (α)q
]

−
[

(c̃m)
−1
L (α)q, (c̃m)

−1
R (α)q

]

−
[

(c̃r)
−1
L (α)q, (c̃r)

−1
R (α)q

]

=
[

p̃−1
L (α)q − (c̃m)

−1
R (α)q − (c̃r)

−1
R (α)q, p̃−1

R (α)q − (c̃m)
−1
L (α)q − (c̃r)

−1
L (α)q

]

.

(14)

E

[

Π̃SC

]

=
1

2

∫

L(q)

0

(

p̃
−1
L

(α)L−1(α)− (c̃m)
−1
R

(α)q − (c̃r)
−1
R

(α)q + p̃
−1
R

(α)q

+ ṽ
−1
R

(α)q − ṽ
−1
R

(α)L−1(α)− (c̃m)
−1
L

(α)q − (c̃r)
−1
L

(α)q

)

dα

+
1

2

∫ 1

L(q)

(

p̃
−1
L

(α)q − (c̃m)
−1
R

(α)q − (c̃r)
−1
R

(α)q + p̃
−1
R

(α)q − (c̃m)
−1
L

(α)q − (c̃r)
−1
L

(α)q

)

dα

= −
1

2

∫

L(q)

0

(

p̃
−1
L

(α)− ṽ
−1
R

(α)

)(

q − L
−1(α)

)

dα +
(

E[p̃]− E[c̃m]− E[c̃r ]
)

q.

dE
[

Π̃SC

]

dq
= −

1

2

∫ L(q)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα + E[p̃]− E[c̃m]− E[c̃r],

d2E
[

Π̃SC

]

dq2
= −

1

2

(

p̃−1
L (L(q))− ṽ−1

R (L(q))
)

L
′
(q).

(15)−
1

2

∫ L(q∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα + E[p̃]− E[c̃m]− E[c̃r] = 0.

(16)
1

2

∫ R(q∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα = E[c̃m]+ E[c̃r]− E[ṽ].
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Proof If q ∈ (d2, d3], we can get the α cut sets of min
(

q, D̃
)

 and max
(

q − D̃, 0
)

 as 
follows

If α ∈ [0,R(q)], then the α cut set of the fuzzy profit Π̃SC(α) can be obtained as

If α ∈ (R(q), 1], then the α cut set of the fuzzy profit Π̃SC(α) can be derived as

According to Proposition 3, the fuzzy expected profit E
[

Π̃SC

]

 is

The first-order and second-order derivatives E
[

Π̃SC

]

 about q are

�

min
�

q, D̃
��

(α) =











�

L−1(α), q
�

, α ∈ [0,R(q)],
�

L−1(α), R−1(α)

�

, α ∈ (R(q), 1].

�

max
�

q − D̃, 0
��

(α) =











�

0, q − L−1(α)

�

, α ∈ [0,R(q)],
�

q − R−1(α), q − L−1(α)

�

, α ∈ (R(q), 1].

Π̃SC(α) =
[

p̃−1
L (α)L−1(α), p̃−1

R (α)q
]

+
[

0, ṽ−1
R (α)q − ṽ−1

R (α)L−1(α)

]

−
[

(c̃m)
−1
L (α)q, (c̃m)

−1
R (α)q

]

−
[

(c̃r)
−1
L (α)q, (c̃r)

−1
R (α)q

]

=
[

p̃−1
L (α)L−1(α)− (c̃m)

−1
R (α)q − (c̃r)

−1
R (α)q,

p̃−1
R (α)q + ṽ−1

R (α)q − ṽ−1
R (α)L−1(α)− (c̃m)

−1
L (α)q − (c̃r)

−1
L (α)q

]

.

Π̃SC(α) =
[

p̃
−1

L
(α)L−1(α), p̃

−1

R
(α)R−1(α)

]

+
[

ṽ
−1

L
(α)q − ṽ

−1

L
(α)R−1(α), ṽ

−1

R
(α)q − ṽ

−1

R
(α)L−1(α)

]

−
[

(c̃m)
−1

L
(α)q, (c̃m)

−1

R
(α)q

]

−
[

(c̃r)
−1

L
(α)q, (c̃r)

−1

R
(α)q

]

=
[

p̃
−1

L
(α)L−1(α)+ ṽ

−1

L
(α)q − ṽ

−1

L
(α)R−1(α)− (c̃m)

−1

R
(α)q − (c̃r)

−1

R
(α)q,

p̃
−1

R
(α)R−1(α)+ ṽ

−1

R
(α)q − ṽ

−1

R
(α)L−1(α)− (c̃m)

−1

L
(α)q − (c̃r)

−1

L
(α)q

]

.

(17)

E
[

Π̃SC

]

=
1

2

∫ R(q)

0

(

p̃−1
L (α)L−1(α)− (c̃m)

−1
R (α)q − (c̃r)

−1
R (α)q + p̃−1

R (α)q

+ ṽ−1
R (α)q − ṽ−1

R (α)L−1(α)− (c̃m)
−1
L (α)q − (c̃r)

−1
L (α)q

)

dα

+
1

2

∫ 1

R(q)

(

p̃−1
L (α)L−1(α)+ ṽ−1

L (α)q− ṽ−1
L (α)R−1(α)− (c̃m)

−1
R (α)q − (c̃r)

−1
R (α)q

×p̃−1
R (α)R−1(α)+ ṽ−1

R (α)q − ṽ−1
R (α)L−1(α)− (c̃m)

−1
L (α)q − (c̃r)

−1
L (α)q

)

dα

= 1

2

∫ R(q)

0

(

p̃−1
R (α)− ṽ−1

l (α)

)(

q − R−1(α)

)

dα +
(

E[ṽ]− E[c̃m]− E[c̃r ]
)

q

+ E
[

p̃D̃
]

−
1

2

∫ 1

0

(

ṽ−1
L (α)R−1(α)+ ṽ−1

R (α)L−1(α)

)

dα.
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Since R(q) is a decreasing function about q with R′(q) < 0, therefore 
d2E

[

Π̃SC

]

dq2
< 0 and 

E
[

Π̃SC

]

 is a concave function with respect to q for q ∈ (d2, d3].

Hence, let 
dE

[

Π̃SC

]

dq
= 0, we can derive the optimal order quantity q∗ as

Solving Eq. (18), the optimal order quantity q∗ can be obtained as shown in Eq. (16).
Theorem 2 is proved.
Here, we further consider the fuzzy parameters p̃, ṽ, c̃m and c̃r as triangular fuzzy num-

bers as follows

where �ij > 0, i = 1, 2, 3, 4, j = 1, 2.
According to Eqs.  (3) and (7), the α cut sets of the fuzzy parameters p̃, ṽ, c̃m, c̃r, and 

their fuzzy expected values can be obtained as

Then, the Theorems 1 and 2 can be translated into the following Theorems 3 and 4, 
respectively.

Theorem 3 When cm + cr +�1 < p ≤ 2(cm + cr)− v − 2�2, the optimal order quan-
tity q∗ can be expressed as

where

dE
[

Π̃SC

]

dq
=

1

2

∫ R(q)

0

(

p̃−1
R (α)− ṽ−1

L (α)

)

dα + E[ṽ]− E[c̃m]− E[c̃r],

d2E
[

Π̃SC

]

dq2
=

1

2

(

p̃−1
R (R(q))− ṽ−1

L (R(q))
)

R′(q).

(18)
1

2

∫ R(q)

0

(

p̃−1
R (α)− ṽ−1

L (α)

)

dα + E[ṽ]− E[c̃m]− E[c̃r] = 0.

p̃ = (p−�11, p, p+�12), ṽ = (v −�21, v, v +�22),

c̃m = (cm −�31, cm, cm +�32), and c̃r = (cr −�41, cr , cr +�42).

p̃
−1
L

(α) = p−�11+�11α, p̃
−1
R

(α) = p+�12−�12α, and E[p̃] = p+0.25�12−0.25�11.

ṽ
−1
L

(α) = v−�21+�21α, ṽ
−1
R

(α) = v+�22−�22α, and E[ṽ] = v+0.25�22−0.25�21.

(c̃m)
−1
L

(α) = cm −�31 +�31α, (c̃m)
−1
R

(α) = cm +�32 −�32α,

and E[c̃m] = cm + 0.25�32 − 0.25�31.

(c̃r)
−1
L

(α) = cr −�41 +�41α, (c̃r)
−1
R

(α) = cr +�42 −�42α,

and E[c̃r] = cr + 0.25�42 − 0.25�41.

(19)

q
∗ = L

−1





−0.5(p− v −�11 −�22)+
�

0.25(p− v −�11 −�22)
2 + (�11 +�22)(p− cm − cr −�1)

0.5(�11 +�22)



.

�1 = 0.25�11 − 0.25�12 − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�2,

�2 = 0.25�12 + 0.25�22 + 0.25�31 − 0.25�32 + 0.25�41 − 0.25�42,
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L−1 is the inverse function of L.

Proof When q ∈ [d1, d2], substituting p̃−1
L (α), ṽ−1

R (α), E[p̃], E[c̃m] and E[c̃r] into Eq. (13), 
we can obtain

where

Solving Eq. (20) leads to

Due to 0 ≤ L(q∗) ≤ 1, we have p ≤ 2(cm + cr)− v − 2�2. where

In addition, in order to let the supply chain members obtain the positive fuzzy profits, 
E[p̃] > E[c̃m]+ E[c̃r] must hold.

That is p > cm + cr +�1.

Theorem 3 is proved.

Theorem  4 When p ≥ 2(cm + cr)− v − 2�2, the optimal order quantity q∗ can be 
expressed as

where

R−1 is the inverse function of R.

Proof When q ∈ (d2, d3], Substituting p̃−1
R (α), ṽ−1

L (α), E[c̃m], E[c̃r] and E[ṽ] into 
Eq. (13), we can obtain

where

Solving Eq. (22) leads to

(20)

0.25(�11 +�22)L
2
(

q∗
)

+ 0.5(p− v −�11 −�22)L
(

q∗
)

− (p− cm − cr −�1) = 0.

�1 = 0.25�11 − 0.25�12 − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�42.

L
(

q
∗) =

−0.5(p− v −�11 −�22)+
√

0.25(p− v −�11 −�22)
2 + (�11 +�22)(p− cm − cr −�1)

0.5(�11 +�22)
.

�2 = 0.25�12 + 0.25�22 + 0.25�31 − 0.25�32 + 0.25�41 − 0.25�42.

(21)

q
∗ = R

−1





0.5(p− v +�12 +�21)−
�

0.25(p− v +�12 +�21)
2 − (�12 +�21)(cm + cr − v +�3)

0.5(�12 +�21)



.

�3 = 0.25�21 − 0.25�22 − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�42,

(22)

−0.25(�12 +�21)R
2
(

q∗
)

+0.5(p− v +�12 +�21)R
(

q∗
)

−(cm + cr − v +�3) = 0.

�3 = 0.25�21 − 0.25�22 − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�42.
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Due to 0 ≤ R(q∗) ≤ 1, we have p ≥ 2(cm + cr)− v − 2�2.

Theorem 4 is proved.

Proposition 5 If p = 2(cm + cr)− v − 2�2, then L(q∗) = R(q∗). Proposition 5 reveals 
that the optimal order quantity q∗ is a continuous function with respect to the retail price.

Proposition 6 If �ij → 0, i = 1, 2, 3, 4, j = 1, 2, then the fuzzy parameters p̃, ṽ, c̃m, c̃r 
degenerate to crisp values, and the results in Theorems 3 and 4 degenerate to

There are just the solutions in a fuzzy demand environment.

Proof Case 1 q ∈ [d1, d2]

If q ∈ [d1, d2], that is cm + cr +�1 < p ≤ 2(cm + cr)− v − 2�2, then let �ij → 0, we 
can have

Case 2. q ∈ (d2, d3]

If q ∈ (d2, d3], that is p ≥ 2(cm + cr)− v − 2�2, then let �ij → 0, we can have

R
(

q
∗) =

0.5(p− v +�12 +�21)−
√

0.25(p− v +�12 +�21)
2 − (�12 +�21)(cm + cr − v +�3)

0.5(�12 +�21)
.

q∗ =







L−1
�

2(p−cm−cr )
p−v

�

, p ∈ (cm + cr , 2(cm + cr)− v],

R−1
�

2(cm+cr−v)
p−v

�

, p ∈ [2(cm + cr)− v,+∞).

q
∗ = lim

�ij→0
L
−1





−0.5(p− v −�11 −�22)+
�

0.25(p− v −�11 −�22)
2 + (�11 +�22)(p− cm − cr −�1)

0.5(�11 +�22)





= lim
�ij→0

L
−1





0.5+ −0.5(p−v)+(p−cm−cr )

2
√

0.25(p−v−�11−�22)
2+(�11+�22)(p−cm−cr−�1)

0.5





= L
−1

�

0.5+ −0.5(p−v)+(p−cm−cr )

p−v

0.5

�

= L
−1

�

2(p− cm − cr)

p− v

�

.

q
∗ = lim

�ij→0
R
−1





0.5(p− v +�12 +�21)−
�

0.25(p− v +�12 +�21)
2 − (�12 +�21)(cm + cr − v +�3)

0.5(�12 +�21)





= lim
�ij→0

R
−1





0.5− 0.5(p−v)−(cm+cr−v)

2
√

0.25(p−v+�12+�21)
2−(�12+�21)(cm+cr−v+�3)

0.5





= R
−1

�

0.5− 0.5(p−v)−(cm+cr−v)

p−v

0.5

�

= R
−1

�

2(cm + cr − v)

p− v

�

.
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Proposition 6 is proved.
The result of Proposition 6 is similar to that of the works by Xu and Zhai (2010), Ye 

and Li (2011). They only consider the demand as a fuzzy number. Compared to their 
models, the parameters D̃, p̃, ṽ, c̃m and c̃r are all assumed to be the triangular fuzzy num-
bers in our model, and their models are special cases of this paper.

From Eqs. (13), (14), (16) and (17), the optimal fuzzy expected profit E
[

Π̃SC

]∗
 can be 

obtained as follows
Case 1 p ∈ (cm + cr +�1, 2(cm + cr)− v − 2�2]

where L(q∗) is given as in Eq. (19).
Case 2 p ∈ [2(cm + cr)− v − 2�2,+∞)

where R(q∗) is given as in Eq. (21).
In the next subsections, we develop two types of supply chain coordinating contracts, 

namely, the revenue sharing contract and the return contract that provide incentive 
mechanism to the retailer and the manufacturer.

Revenue sharing contract

In the RS contract, the manufacturer shares a portion of revenue for retailer. Let Φ 
denote the percentage revenue the retailer keeps, and then 1−Φ denotes the portion 
the manufacturer shares, where 0 < Φ < 1.

Thus, the fuzzy profit functions of the manufacturer and retailer are

The retailer wants to get the optimal order quantity q which maximizes his fuzzy 
expected profit E

[

Π̃R

]

. Thus, the retailer’s optimal objective function is

Theorem 5 In the RS contract, the optimal wholesale price w∗ is

(23)E
[

Π̃SC

]∗
=

1

2

∫ L(q∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

L−1(α)dα.

(24)

E

[

Π̃SC

]∗
= −1

2

∫

R(q∗)

0

(

p̃
−1
R

(α)− ṽ
−1
L

(α)

)

R
−1(α)dα + E

[

p̃D̃

]

−
1

2

∫ 1

0

(

ṽ
−1
L

(α)R−1(α)+ ṽ
−1
R

(α)L−1(α)

)

dα.

(25)Π̃M = (1−Φ)

(

p̃min
(

q, D̃
)

+ ṽmax
(

q − D̃, 0
))

+ wq − c̃sq,

(26)Π̃R = Φ

(

p̃min
(

q, D̃
)

+ ṽmax
(

q − D̃, 0
))

− wq − c̃rq.

MaxqE
[

Π̃R

]

= E
[

Φ

(

p̃min
(

q, D̃
)

+ ṽmax
(

q − D̃, 0
))

− wq − c̃rq
]

(27)s.t. d1 ≤ q ≤ d3.

(28)

w
∗ = Φ(cm + cr − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�42)−(cr − 0.25�41 + 0.25�42).
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Proof Case 1 q ∈ [d1, d2]

Similar to the discussion in Theorem 1, the fuzzy expected profit E
[

Π̃R

]

 in this case is

The first-order and second-order derivatives E
[

Π̃R

]

 about q are

Since L(q) is an increasing function about q with L′(q) > 0, therefore 
d2E

[

Π̃R

]

dq2
< 0 and 

E
[

Π̃R

]

 is a concave function with respect to q for q ∈ [d1, d2].

Hence, let 
dE

[

Π̃R

]

dq
= 0, we can derive the optimal order quantity q∗∗ in the RS contract 

as

That is

For coordinating this supply chain, q∗∗ = q∗ must hold. This means that the optimal 
order in the RS contract is the same as that in fuzzy centralized decision-making system.

Comparing Eq. (30) with Eq. (13), we have

Case 2 q ∈ (d2, d3]

Similar to the discussion in Theorem 2, the fuzzy expected profit E
[

Π̃R

]

 in this case is

The first-order and second-order derivatives E
[

Π̃R

]

 about q are

(29)

E
[

Π̃R

]

= −
Φ

2

∫ L(q)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)(

q − L−1(α)

)

dα +
(

ΦE[p̃]− E[c̃r]− w
)

q.

dE
[

Π̃R

]

dq
= −

Φ

2

∫ L(q)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα +ΦE[p̃]− E[c̃m]− w,

d2E
[

Π̃R

]

dq2
= −

Φ

2

(

p̃−1
L (L(q))− ṽ−1

R (L(q))
)

L′(q).

−
Φ

2

∫ L(q∗∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα +ΦE[p̃]− E[c̃m]− w = 0.

(30)
1

2

∫ L(q∗∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

dα = E[p̃]−
w + E[c̃r]

Φ
.

w
∗ = Φ(E[c̃m]+ E[c̃r ])− E[c̃r ]

= Φ(cm + cr − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�42)− (cr − 0.25�41 + 0.25�42).

(31)

E
[

Π̃R

]

=
Φ

2

∫ R(q)

0

(

p̃−1
R (α)− ṽ−1

l (α)

)(

q − R−1(α)

)

dα +
(

ΦE[ṽ]− E[c̃r]− w
)

q

+ ΦE
[

p̃D̃
]

−
Φ

2

∫ 1

0

(

ṽ−1
L (α)R−1(α)+ ṽ−1

R (α)L−1(α)

)

dα.

dE
[

Π̃R

]

dq
=

Φ

2

∫ R(q)

0

(

p̃−1
R (α)− ṽ−1

L (α)

)

dα +ΦE[ṽ]− E[c̃r]− w,

d2E
[

Π̃R

]

dq2
=

Φ

2

(

p̃−1
R (R(q))− ṽ−1

L (R(q))
)

R′(q).
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Since R(q) is a decreasing function about q with R ′
(q) < 0, therefore 

d2E
[

Π̃R

]

dq2
< 0 and 

E
[

Π̃R

]

 is a concave function with respect to q for q ∈ (d2, d3].

Hence, let 
dE

[

Π̃R

]

dq
= 0, we can derive the optimal order quantity q∗∗ as

That is

For coordinating this supply chain, q∗∗ = q∗ must hold.
Comparing Eq. (32) with Eq. (16), we have

Theorem 5 is proved.

Proposition 7 If �31 = �32 = �41 = �42 = 0, then the fuzzy parameters c̃m and c̃r 
degenerate to the crisp values, and the solution in Theorem 5 degenerates to

The solution in Proposition 7 is the same as the result in Cachon and Lariviere (2005), 
they studied the RS contract in a random demand environment. It shows that the opti-
mal wholesale price is not affected with the change of the fuzziness of demand

Theorem 6 In the RS contract, the optimal fuzzy expected profit functions of the mem-
bers are

Proof Case 1 q ∈ [d1, d2]

Substituting w∗ in Eq. (28) and q∗∗ = q∗ into Eq. (29), the optimal fuzzy profit E
[

Π̃R

]∗
 

in the RS contract is

Then, the fuzzy expected profit E
[

Π̃M

]∗
 in this case is

Φ

2

∫ R(q∗∗)

0

(

p̃−1
R (α)− ṽ−1

L (α)

)

dα +ΦE[ṽ]− E[c̃r]− w = 0.

(32)
1

2

∫ R(q∗∗)

0

(

p̃−1
R (α)− ṽ−1

L (α)

)

dα =
w + E[c̃r]

Φ
− E[ṽ].

w
∗ = Φ(E[c̃m]+ E[c̃r ])− E[c̃r ]

= Φ(cm + cr − 0.25�31 + 0.25�32 − 0.25�41 + 0.25�42)− (cr − 0.25�41 + 0.25�42).

(33)w∗ = Φ(cm + cr)− cr .

(34)E
[

Π̃R

]∗
= ΦE

[

Π̃SC

]∗
, and E

[

Π̃M

]∗
= (1−Φ)E

[

Π̃SC

]∗
.

E
[

Π̃R

]∗
= −Φ

2

∫ L(q∗)

0

(

p̃−1
L (α)− ṽ−1

R (α)

)

L−1(α)dα

= ΦE
[

Π̃SC

]∗
.



Page 16 of 25Sang  SpringerPlus  (2016) 5:953 

Case 2 q ∈ (d2, d3]

Substituting w∗ in Eq. (30) and q∗∗ = q∗ into Eq. (31), the optimal fuzzy profit E
[

Π̃R

]∗
 

in the RS contract is

Then, the fuzzy expected profit E
[

Π̃M

]∗
 in this case is

Theorem 6 is proved.
In Theorem 6, the parameter Φ depends on the negotiating ability for the retailer and 

manufacturer. It shows that, the more powerful bargaining the retailer has, the more 
fuzzy expected profit he will derive.

Return contract

In the return contract, if the retailer has the unsold products, then the manufacturer 
should pay unit return price b of these products for the retailer. Thus, the fuzzy profit of 
the manufacturer and retailer can be expressed as follows respectively

In the return contract, the retailer wants to get the optimal order quantity q which 
maximizes his fuzzy expected profit E

[

Π̃R

]

, which can be denoted as the following 
model

Theorem 7 When cm + cr +�1 < p ≤ 2(cm + cr)− v − 2�2, the optimal return price 
b∗ in return contract is

E
[

Π̃M

]∗
= E

[

Π̃SC

]∗
− E

[

Π̃R

]∗

= (1−Φ)E
[

Π̃SC

]∗
.

E

[

Π̃R

]∗
= −Φ

2

∫

R(q∗)

0

(

p̃
−1
R

(α)− ṽ
−1
L

(α)

)

R
−1(α)dα +ΦE

[

p̃D̃

]

−
Φ

2

∫ 1

0

(

ṽ
−1
L

(α)R−1(α)+ ṽ
−1
R

(α)L−1(α)

)

dα

= ΦE

[

Π̃SC

]∗
.

E
[

Π̃M

]∗
= E

[

Π̃SC

]∗
− E

[

Π̃R

]∗

= (1−Φ)E
[

Π̃SC

]∗
.

(35)Π̃s = wq − c̃sq − bmax
(

q − D̃, 0
)

+ ṽmax
(

q − D̃, 0
)

,

(36)Π̃R = p̃min
(

q, D̃
)

+ bmax
(

q − D̃, 0
)

− c̃rq − wq.

MaxqE
[

Π̃R

]

= E
[

p̃min
(

q, D̃
)

+ bmax
(

q − D̃, 0
)

− c̃rq − wq
]

(37)s.t. d1 ≤ q ≤ d3.
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Proof If q ∈ [d1, d2], similar to the discussion in Theorem 1, the fuzzy expected profit 
E
[

Π̃R

]

 in this case is

The first-order and second-order derivatives E
[

Π̃R

]

 about q are

Since L(q) is an increasing function about q with L′(q) > 0, and for any given 

L(q) ∈ [0, 1], p̃−1
L (L(q)) > b, therefore 

d2E
[

Π̃R

]

dq2
< 0 and E

[

Π̃R

]

 is a concave function with 
respect to q for q ∈ [d1, d2].

Hence, let 
dE

[

Π̃R

]

dq
= 0, we can derive the optimal order quantity q∗∗∗ in the return con-

tract as

That is

For coordinating this supply chain, q∗∗∗ = q∗ must hold. That is to say, the optimal 
order quantity q∗∗∗ chosen by the retailer in return contract is equal to that in central-
ized decision-making system.

Comparing Eq. (40) with Eq. (13), we have

Using Eq. (20), we can get the optimal return price b∗ as shown in Eq. (38).

(38)

b∗ =
w − cm + 0.25�31 − 0.25�32

p− cm − cr −�1

(
√

0.25(p− v −�11 −�22)
2 + (�11 +�22)(p− cm − cr −�1)+ 0.5(p− v −�11 −�22)

)

−
�22

�11 +�22

(
√

0.25(p− v −�11 −�22)
2 + (�11 +�22)(p− cm − cr −�1)− 0.5(p− v −�11 −�22)

)

+ v +�22.

(39)

E
[

Π̃R

]

=
1

2

∫ L(q)

0

(

p̃−1
L (α)L−1(α)− p̃−1

R (α)q − bL−1(α)

)

dα+
1

2
bL(q)q+E[p̃]q−E[c̃r ]q−wq.

dE
[

Π̃R

]

dq
= −

1

2

∫ L(q)

0

p̃−1
L (α)dα +

1

2
bL(q)+ E[p̃]− E[c̃r]− w,

d2E
[

Π̃R

]

dq2
= −

1

2

(

p̃−1
L (L(q))− b

)

L′(q).

−
1

2

∫ L(q∗∗∗)

0

p̃−1
L (α)dα +

1

2
bL

(

q∗∗∗
)

+ E[p̃]− E[c̃r]− w = 0.

(40)
1

2

∫ L(q∗∗∗)

0

p̃−1
L (α)dα =

1

2
bL

(

q∗∗∗
)

+ E[p̃]− E[c̃r]− w.

(41)
b∗ =

2(w − E[c̃m])+
∫ L(q∗)
0 ṽ−1

R (α)dα

L(q∗)

=
2(w − cm + 0.25�31 − 0.25�32)

L(q∗)
− 0.5�22L

(

q∗
)

+ v +�22.
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Theorem 7 is proved.

Theorem 8 When p ≥ 2(cm + cr)− v − 2�2, the optimal return price b∗ in return con-
tract is

Proof If q ∈ (d2, d3], similar to the discussion in Theorem 2, the fuzzy expected profit 
E
[

Π̃R

]

 in this case is

The first-order and second-order derivatives E
[

Π̃R

]

 about q are

Since R(q) is a decreasing function about q with R′(q) < 0 and for any given 

R(q) ∈ [0, 1], p̃−1
R (R(q)) > b, therefore 

d2E
[

Π̃R

]

dq2
< 0 and E

[

Π̃R

]

 is a concave function with 
respect to q for q ∈ (d2, d3].

Hence, let 
dE

[

Π̃R

]

dq
= 0, we can derive the optimal order quantity q∗∗∗ in the return con-

tract as

That is

For coordinating this supply chain, q∗∗∗ = q∗ must hold.
Comparing Eq. (44) with Eq. (16), we have

(42)

b∗ =
w − cm − 0.25�21 + 0.25�22 + 0.25�31 − 0.25�32

p− cm − cr −�3
(

0.5(p− v −�12 −�21)+
√

0.25(p− v +�12 +�21)
2 − (�12 +�21)(cm + cr − v +�3)

)

+
�21

�12 +�21

(

0.5(p− v +�12 +�21)−
√

0.25(p− v +�12 +�21)
2 − (�12 +�21)(cm + cr − v +�3)

)

+ v.

(43)

E
[

Π̃R

]

=
1

2

∫ R(q)

0

(

p̃−1
R (α)q + bR−1(α)− p̃−1

R (α)R−1(α)

)

dα + bq

−
1

2
bR(q)q − wq − E[c̃r]q + E

[

p̃D̃
]

− bE
[

D̃
]

.

dE
[

Π̃R

]

dq
=

1

2

∫ R(q)

0

p̃−1
R (α)dα −

1

2
bR(q)+ b− w − E[c̃r],

d2E
[

Π̃R

]

dq2
=

1

2

(

p̃−1
R (R(q))− b

)

R′(q).

1

2

∫ R(q∗∗∗)

0

p̃−1
R (α)dα −

1

2
bR

(

q∗∗∗
)

+ b− w − E[c̃r] = 0.

(44)

1

2

∫ R(q∗∗∗)

0

p̃−1
R (α)dα =

1

2
bR

(

q∗∗∗
)

− b+ w + E[c̃r].

b∗ =
w − E[c̃m]+ E[ṽ]− 1

2

∫ R(q∗)
0 ṽ−1

L (α)dα

1− 0.5R(q∗)

=
w − cm − 0.25�21 + 0.25�22 + 0.25�31 − 0.25�32

1− 0.5R(q∗)
+ 0.5�21R

(

q∗
)

+ v.
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Using Eq. (21), we can get the optimal return price b∗ as shown in Eq. (42).
Theorem 8 is proved.

Proposition 8 If �ij → 0, i = 1, 2, 3, 4, j = 1, 2, then the fuzzy parameters p̃, ṽ, c̃m, c̃r 
degenerate to the crisp values, and the results in Theorems 7 and 8 degenerate to

There are just the results in a fuzzy demand environment.

Proof Similar to the proof of Proposition 6.

Proposition 9 If we do not take the fuzzy salvage value of product ṽ and the retailer’s 
fuzzy operational cost of product c̃r into consideration, and let �31 = �32 = 0, then the 
results of Theorems 7 and 8 reduce to

There are just the solutions studied in Yu and Jin (2011).
From Eqs.  (19), (21), (39), (40), (43) and (44), the optimal fuzzy expected profits 

E
[

Π̃R

]∗∗
 and E

[

Π̃M

]∗∗
 can be derived as

Case 1 cm + cr +�1 < p ≤ 2(cm + cr)− v − 2�2

where L(q∗) and b∗ are given as in Eqs. (19) and (38) respectively.
Case 2 p ≥ 2(cm + cr)− v − 2�2

where R(q∗) and b∗ are given as in Eqs. (21) and (42) respectively.

(45)b∗ = (p− v)(w − cm)

p− cm − cr
+ v.

(46)b∗ =















(w−cm)
�√

0.25p2+�11(0.5p−cm+0.25�12)+0.5(p−�11)

�

p−cm−0.25�11+0.25�12
, p ≤ 2cm − 0.5�12,

(w−cm)
�√

0.25(p+�12)
2−�12cm+0.5(p−�12)

�

p−cm
, p > 2cm − 0.5�12.

(47)E
[

Π̃R

]∗∗
=

1

2

∫ L(q∗)

0

(

p̃−1
L (α)− b∗

)

L−1(α)dα,

(48)E
[

Π̃M

]∗∗
=

1

2

∫ L(q∗)

0

(

b∗ − ṽ−1
R (α)

)

L−1(α)dα.

(49)E
[

Π̃R

]∗∗
= −

1

2

∫ R(q∗)

0

(

p̃−1
R (α)− b∗

)

R−1(α)dα − b∗E
[

D̃
]

+ E
[

p̃D̃
]

,

(50)

E
[

Π̃M

]∗∗
= −

1

2

∫ R(q∗)

0

(

b∗ − ṽ−1
L (α)

)

R−1(α)dα + b∗E
[

D̃
]

−
1

2

∫ 1

0

(

ṽ−1
L (α)R−1(α)+ ṽ−1

R (α)L−1(α)

)

dα.
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Numerical examples
Because the optimal solutions obtained above are in complicated forms, we have to pro-
vide some numerical examples to further illustrate the effectives of the proposed models.

Discussion 1

In this subsection, we discuss the impact of the fuzziness of parameter D̃ on the opti-
mal solutions in both contracts. The fuzzy salvage value of product ṽ, the fuzzy produc-
tion cost of product c̃m and the fuzzy operational cost of product c̃r estimated by the 
experience of the decision maker are assumed to be the triangular fuzzy numbers. The 
salvage value of item is nearly $ 3, but not greater than $ 4 and not less than 2, that is 
ṽ = (2, 3, 4) . Similarly, the production cost of item by the manufacturer is nearly $ 15, 
but not greater than $ 16 and not less than 14, that is c̃m = (14, 15, 16). The operational 
cost of item by the retailer is nearly $ 2, but not greater than $ 3 and not less than 1, that 
is c̃r = (1, 2, 3).

Since the optimal order quantity q∗ has two cases, the optimal policies in two con-
tracts can be listed in Tables 1 and 2.

From Tables 1 and 2, we can get the results as follows

1. When p̃ = (22, 25, 28), that satisfies p ≤ 2(cm + cr)− v − 2�2, q∗ is smaller 
than the most possible value of the demand. When p̃ = (32, 35, 38), that satisfies 
p > 2(cm + cr)− v − 2�2, q∗ is larger than the most possible value of the demand in 
both contracts.

2. The fuzziness the parameter D̃ decreases as d2 increases or d3 decreases. No mat-
ter in what kind of supply chain contract, when p ≤ 2(cm + cr)− v − 2�2, the opti-
mal order quantity q∗ increases as the fuzziness of parameter D̃ decreases. How-
ever, when p > 2(cm + cr)− v − 2�2, decreasing the fuzziness of parameter D̃ will 
decrease the order quantity q∗.

3. The change of retail price p̃ and fuzziness of parameter D̃ will not impact on the 
wholesale price w∗ in the RS contract. This is because the wholesale price w∗ is 
impacted only by the parameters c̃s and c̃r. In addition, the change of the fuzziness of 
demand D̃ has no impact on the return price b in the return contract.

Table 1 The RS contract policies with Φ = 0.6

p̃ D̃ q∗ w∗

E
[

Π̃R

]∗

E
[

Π̃M

]∗

E
[

Π̃SC

]∗

(22, 25, 28) (100, 200, 300) 181.51 8.20 681.03 454.02 1135.05

(110, 200, 290) 183.36 8.20 708.93 472.62 1181.55

(120, 200, 280) 185.21 8.20 736.82 491.22 1228.04

(130, 200, 270) 187.06 8.20 764.72 509.82 1274.54

(140, 200, 260) 188.90 8.20 792.62 528.41 1321.03

(150, 200, 250) 190.75 8.20 820.52 547.01 1367.53

(32, 35, 38) (100, 200, 300) 218.54 8.20 1736.75 1157.83 2894.58

(110, 200, 290) 216.68 8.20 1779.07 1186.05 2965.12

(120, 200, 280) 214.83 8.20 1821.40 1214.26 3035.66

(130, 200, 270) 212.97 8.20 1863.72 1242.48 3106.20

(140, 200, 260) 211.12 8.20 1906.05 1270.70 3176.75

(150, 200, 250) 209.27 8.20 1948.37 1298.92 3247.29
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4. When the fuzziness of market demand decreases, the expected profits for all mem-
bers increase. In other words, the retailer, the manufacturer and the supply chain 
system all gain more expected profit when the fuzziness of demand is lower. This is 
intuitive because the lower the fuzziness of demand, the more efficient of the supply 
chain system. Therefore, for the manufacturer and retailer, they should seek as low 
fuzziness of market demand as possible in both contracts.

Discussion 2

In this subsection, we discuss the impact of retail price’s fuzziness on optimal policies 
in two contracts. The demand of the market is nearly 200, but not greater than 300 and 
not less than 100, that is D̃ = (100, 200, 300). The other fuzzy parameters are the same as 
above discussion. The optimal solutions obtained are shown in Tables 3 and 4.

5. The optimal order quantity q∗ drops as the fuzziness of retail price p̃ falls in both 
contracts. It indicates that increasing the fuzziness of retail price p̃ can simulate the 
order quantity.

Table 2 The return contract policies with w = 20

p̃ D̃ q∗ b∗
E
[

Π̃R

]∗∗

E
[

Π̃M

]∗∗

E
[

Π̃SC

]∗

(22, 25, 28) (100, 200, 300) 181.51 15.86 429.03 706.02 1135.05

(110, 200, 290) 183.36 15.86 446.13 735.42 1181.55

(120, 200, 280) 185.21 15.86 463.22 764.82 1228.04

(130, 200, 270) 187.06 15.86 480.32 794.22 1274.54

(140, 200, 260) 188.90 15.86 497.42 823.61 1321.03

(150, 200, 250) 190.75 15.86 514.51 853.01 1367.53

(32, 35, 38) (100, 200, 300) 218.54 11.84 2091.30 803.28 2894.58

(110, 200, 290) 216.68 11.84 2142.17 822.95 2965.12

(120, 200, 280) 214.83 11.84 2193.04 842.62 3035.66

(130, 200, 270) 212.97 11.84 2243.91 862.29 3106.20

(140, 200, 260) 211.12 11.84 2294.78 881.97 3176.75

(150, 200, 250) 209.27 11.84 2345.65 901.64 3247.29

Table 3 The RS contract policies with Φ = 0.6

p̃ q∗ w∗

E
[

Π̃R

]∗

E
[

Π̃M

]∗

E
[

Π̃SC

]∗

(20, 25, 30) 186.10 8.20 696.22 464.14 1160.36

(21, 25, 29) 183.79 8.20 688.46 458.97 1147.43

(22, 25, 28) 181.51 8.20 681.03 454.02 1135.05

(23, 25, 27) 179.25 8.20 673.94 449.29 1123.23

(24, 25, 26) 177.03 8.20 667.16 444.78 1111.94

(25, 25, 25) 174.86 8.20 660.70 440.47 1101.17

(30, 35, 40) 221.44 8.20 1762.66 1175.11 2937.77

(31, 35, 39) 220.00 8.20 1749.60 1166.40 2916.00

(32, 35, 38) 218.54 8.20 1736.75 1157.83 2894.58

(33, 35, 37) 217.05 8.20 1724.10 1149.40 2873.51

(34, 35, 36) 215.55 8.20 1711.68 1141.12 2852.80

(35, 35, 35) 214.03 8.20 1699.48 1132.99 2832.46
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6. The change of the fuzziness of retail price p̃ has no impact on w∗ in the RS contract. 
Conversely, the return price b∗ increases as the fuzziness of retail price p̃ decreases in 
the return contract.

7. When the fuzziness of retail price decreases, the expected profits for all members 
decrease. This is because a decrease in fuzziness of retail price results in a decrease in 
order quantity. This results in the decrease of the fuzzy expected profit of the retailer, 
the manufacturer and the whole supply chain. Therefore, for the manufacturer and 
the retailer, they should seek as high fuzziness of the retail price as possible in both 
contracts.

Discussion 3

In this subsection, we discuss the impact of salvage value’s fuzziness on optimal poli-
cies in two contracts. The fuzzy demand is assumed to be D̃ = (100, 200, 300). The other 
fuzzy parameters are the same as above discussion. The optimal solutions obtained are 
shown in Tables 5 and 6.

8. The change of fuzziness of salvage value ṽ will not impact on the wholesale price w∗ 
in the RS contract. This is because the wholesale price w∗ is impacted only by the 

Table 4 The return contract policies with w = 20

p̃ q∗ b∗
E
[

Π̃R

]∗∗

E
[

Π̃M

]∗∗

E
[

Π̃SC

]∗

(20, 25, 30) 186.10 15.18 442.45 717.91 1160.36

(21, 25, 29) 183.79 15.52 435.49 711.93 1147.43

(22, 25, 28) 181.51 15.86 429.03 706.02 1135.05

(23, 25, 27) 179.25 16.22 423.03 700.20 1123.23

(24, 25, 26) 177.03 16.60 417.45 694.49 1111.94

(25, 25, 25) 174.86 16.98 412.28 688.89 1101.17

(30, 35, 40) 221.44 11.63 2126.70 811.07 2937.77

(31, 35, 39) 220.00 11.73 2108.80 807.20 2916.00

(32, 35, 38) 218.54 11.84 2091.30 803.28 2894.58

(33, 35, 37) 217.05 11.96 2074.20 799.31 2873.51

(34, 35, 36) 215.55 12.08 2057.50 795.30 2852.80

(35, 35, 35) 214.03 12.20 2041.20 791.26 2832.46

Table 5 The RS contract policies with Φ = 0.6

p̃ ṽ q∗ w∗

E
[

Π̃R

]∗

E
[

Π̃M

]∗

E
[

Π̃SC

]∗

(22, 25, 28) (2.0, 3.0, 4.0) 181.51 8.20 681.03 454.02 1135.05

(2.2, 3.0, 3.8) 181.05 8.20 679.59 453.06 1132.65

(2.4, 3.0, 3.6) 180.60 8.20 678.16 452.10 1130.26

(2.6, 3.0, 3.4) 180.15 8.20 676.74 451.16 1127.90

(2.8, 3.0, 3.2) 179.70 8.20 675.33 450.22 1125.55

(32, 35, 38) (2.0, 3.0, 4.0) 218.54 8.20 1736.75 1157.83 2894.58

(2.2, 3.0, 3.8) 218.24 8.20 1734.20 1156.13 2890.33

(2.4, 3.0, 3.6) 217.94 8.20 1731.66 1154.44 2886.10

(2.6, 3.0, 3.4) 217.65 8.20 1729.13 1152.76 2881.89

(2.8, 3.0, 3.2) 217.35 8.20 1726.61 1151.08 2877.69
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parameters c̃s and c̃r. In addition, the return price b∗ decreases slightly as the fuzzi-
ness of salvage value ṽ decreases in the return contract.

9. When the fuzziness of salvage value decreases, the expected profits for the manu-
facturer and the retailer decrease. That is to say, the decreasing fuzziness of salvage 
value results in decreasing order quantity thereby the fuzzy expected profit of the 
retailer, the manufacturer and the whole supply chain decreases. Therefore, for the 
supply chain members, they should seek as high fuzziness of salvage value ṽ as pos-
sible in both contracts.

Based on the three discussions above, the following findings can be achieved:

10. Both contracts can achieve the coordination of the supply chain in a fuzzy envi-
ronment, in which the manufacturer and the retailer obtain the same total fuzzy 
expected profits as the centralized decision-making system.

11. The manufacturer and the retailer will lower the fuzziness of demand, and increase 
the fuzziness of retail price and salvage value in order to deal with the environment 
uncertainty, which increases the retailer’s order quantity and eventually leads to the 
increase of the fuzzy expected profits.

Conclusions
This article deals with the coordination problems of the retailer and the manufacturer 
in a fuzzy decision environment, where the RS contract and the return contract are 
employed. For examining the performance of supply chain members in two contracts, 
we apply the fuzzy set theory to solve these fuzzy models. We find that the change of 
fuzziness of the demand does not impact on the wholesale prices in both contracts, the 
supply chain members should seek as low fuzziness of demand, and high fuzziness of 
retail price and salvage value as possible. The model proposed in this article is easy to 
perform and needs little data, and can be apply for newly development items with a 
short life cycle such as PC, communication and consumer electronic category.

One limitation in this study is that we only consider one retailer and one manufac-
turer in a two stage supply. Future research can be done for the situations including two 
or more competing supply chain members or in a multi-stage supply chain. The other 

Table 6 The return contract policies with w = 20

p̃ ṽ q∗ b∗
E
[

Π̃R

]∗

E
[

Π̃M

]∗

E
[

Π̃SC

]∗

(22, 25, 28) (2.0, 3.0, 4.0) 181.51 15.86 429.03 706.02 1135.05

(2.2, 3.0, 3.8) 181.05 15.81 428.24 704.41 1132.65

(2.4, 3.0, 3.6) 180.60 15.76 427.45 702.81 1130.26

(2.6, 3.0, 3.4) 180.15 15.72 426.66 701.23 1127.90

(2.8, 3.0, 3.2) 179.70 15.67 425.88 699.67 1125.55

(32, 35, 38) (2.0, 3.0, 4.0) 218.54 11.84 2091.30 803.28 2894.58

(2.2, 3.0, 3.8) 218.24 11.78 2089.22 801.11 2890.33

(2.4, 3.0, 3.6) 217.94 11.72 2087.14 798.96 2886.10

(2.6, 3.0, 3.4) 217.65 11.66 2085.06 796.83 2881.89

(2.8, 3.0, 3.2) 217.35 11.60 2082.97 794.72 2877.69
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limitation is that the parameters of the supply chain models are considered as triangular 
fuzzy numbers. In fact, the membership function of the fuzzy number can be nonlinear, 
one can consider the case the parameters are fuzzy random variables. The third limita-
tion is that the supply chain members are all assumed to be risk neutral. It is still inter-
esting to discuss the problem how to design the contract policies when the supply chain 
members are risk averse or risk preference in a fuzzy environment.
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