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Background
At present time, the study of fuzzy integro-differential equations is an issue of remark-
able consideration because it is one of the modern mathematical fields that arise from 
the modeling of uncertain physical, engineering and medical problems and are useful in 
studying the observability of dynamical control systems. The notion of fuzzy set theory 
has recently increased due to its adaptability and have been of great interest by several 
researchers. Concept of fuzzy numbers was originally introduced by Zadeh (1965) which 
led to the definition of fuzzy mappings and fuzzy control (Chang and Zadeh 1972). The 
basic arithmetic structure of fuzzy numbers was given by (Dubois and Prade 1978) and 
they observed fuzzy numbers as a collection of α-levels, 0 ≤ α ≤ 1. In this regard various 
authors (Dubois and Prade 1982; Goetschel and Voxman 1986; Puri and Ralescu 1983, 
1986; Seikkala 1987) made a significant contribution to fuzzy calculus and gave it a more 
applicable representation. Also few authors have predominantly worked on fuzzy integro-
differential equations (Mosleh and Otadi 2012) and on its existence and uniqueness (Bal-
asubramaniam and Muralisankar 2001; Abu Arqub et al. 2015). As these equations are 
typically complicated to solve analytically & so various authors focus on the development 
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of more advanced and competent methods for solving fuzzy differential equations 
(Kaleva 1987; Friedman et al. 1999; Chalco-Cano and Roman-Flores 2006;  Tapaswini and 
Chakraverty 2013), fuzzy integral equations (Otadi and Mosleh 2014; Ghanbari 2010). 
Various details on calculus (Silverman 1985) and integral equations (Wazwaz 2011) are 
also found in literature. In this point of view, we present an appropriate numerical proce-
dure for solving nonlinear fuzzy integro-differential equations. We consider the nonlinear 
Fredholm and Volterra integro-differential equations of the second kind. We use para-
metric forms of fuzzy numbers to convert nonlinear fuzzy integro-differential equations 
to a nonlinear system of integro-differential equations in crisp case.

The technique we use is the homotopy perturbation method (HPM). It is a general ana-
lytical procedure expansively applied for solving nonlinear equations as well as initial and 
boundary value problems which has been widely developed by scientists and engineers. 
HPM was developed by He (1999) and later promote the growth of it in various stages 
(He 2000, 2003, 2004) consistently. This technique is the coupling of the traditional per-
turbation method and homotopy in topology. It continuously deforms the intricate prob-
lem into a simple problem which is free from constraints and simple to solve without 
any need to transform nonlinear terms. Studies on integration using HPM is also made 
(Chun 2007). Applications of HPM among researchers has been tremendously increased 
over the last decades as it a powerful tool handler for solving functional integral equa-
tions (Abbasbandy 2007), singularly perturbed Volterra integral equations (Alnasr and 
Momani 2008), nonlinear integral and integro-differential equations (Saberi-Nadjafi and 
Ghorbani 2009), fuzzy integral equations (Matinfar and Saeidy 2010),  Lotka–Volterra 
equations (Chowdhury and Rahman 2012). A review of the recently developed works 
using HPM can be found in (Demir et al. 2013; Filobello-Nino et al. 2014a, b; Vazquez-
Leal and Sarmiento-Reyes 2015; Narayanamoorthy and Sathiyapriya 2016). Following 
this, a new approach for solving fractional PDEs arising mathematical physics by employ-
ing local fractional homotopy perturbation method is also proposed (Yang et al. 2015a). 
Moreover, authors are also referred to few recent papers where HPM serves as an exist-
ing background in finding solutions of fractional boundary value problems (Yang et al. 
2015b) local fractional diffusion equation (Yang et al. 2016) and local fractional nonlinear 
PDEs (Zhang and Yang 2016). In this way, various works related to HPM is reported fre-
quently as homotopy perturbation method is considered to be one of the most powerful 
methods to handle a wide variety of real problems arising in different fields. Hence HPM 
is of utmost interest to many researchers and scientists.

As it is extensively known that the importance of research on nonlinear integro-differen-
tial equations is that many observable facts, practical or theoretical is of nonlinear nature. 
Hence various other methods for solving them such as using fixed point theorems (Rahimi 
et al. 2011), expansion method (Allahviranloo et al. 2014), differential transform method 
(Behiry and Mohamed 2012), laplace transformation method (Das and Talukdar 2014) 
and homotopy analysis method (Hussain and Ali 2013) were also reported in recent times. 
We also referred an article (Atangana 2015) which presented a novel method for the lassa 
hemorrhagic fever. Using the fact that HPM is valid uniformly even for large parameters 
and is more accurate than the perturbation solutions as well as it eliminates the shortcom-
ings arising in the small parameter assumption lead us to the development of our proposed 
method. Considering all the aforementioned factors, we intend to present a pertinent 
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numerical approach for solving nonlinear fuzzy integro-differential equations of the sec-
ond kind and find fuzzy approximate solutions to them.

The paper is organized as follows: In the section ‘Preliminaries’, some background 
materials needed for fuzzy operations are brought. Then the nonlinear fuzzy integro-
differential equations are discussed with the requisite lemmas. ‘Analysis of HPM’ section 
presents the basic idea of the method. Our key findings are given in ‘Description of the 
proposed approximation technique’. It is followed by ‘Stability analysis’ and ‘Convergent 
Analysis’ section provided in detail for proving the competence of the proposed tech-
nique. Further ‘Numerical illustrations’ section are included and finally ‘Conclusion’ sec-
tion is provided.

Preliminaries
In this section, some basic notations and definitions that are used in fuzzy operations are 
summarized as follows.

Definition 1 (Dubois and Prade 1982) A fuzzy number is a function u:R → I = [0, 1] 
satisfying the following properties:

1. u is normal, i.e., ∃ x0 ∈ R with u(x0) = 1.
2. u is a convex fuzzy set (i.e., u

(
�x + (1− �)y

)
≥ min

{
u(x),u

(
y
)}

∀x, y ∈ R, � ∈ [0, 1]).

3. u is upper semi-continuous on R.
4. 

{
x ∈ R : u(x) > 0

}
 is compact, where Ā denotes the closure of A.

The set of all fuzzy numbers is denoted by E. Obviously R ⊂ E and it is understood 
as R = {χx : χ is usual real number}. For 0 ≤ α ≤ 1, denote [u]r = {x ∈ R;u(x) ≥ r} and 
[u]0 =

{
x ∈ R : u(x) > 0

}
. Then it is well-known that for any α ∈ [0, 1], [u]r is a bounded 

closed interval.

Definition 2 (Goetschel and Voxman 1986) For arbitrary fuzzy numbers u = (u, ū) 
and v = (v, v̄) the quantity 

is the Hausdorff distance between u and v.

Definition 3 (Seikkala 1987) Let I be a real interval. A mapping v̄ : I → E is called 
a fuzzy process and we denote the α-level set by [v(t)]α = v(t,α), v̄(t,α)]. The seikkala 
derivative ṽ′(t) of ṽ is defined by

provided that is a equation defines a fuzzy number ṽ′(t) ∈ E.

Definition 4 (Seikkala 1987) The fuzzy integral of a fuzzy process ṽ, 
∫ b
a v(t)dt for 

a, b ∈ I, is defined by

D(u, v) = max

{
sup

(0≤α≤1)

|u(α)− v(α)|, sup
(0≤α≤1)

|u(α)− v̄(α)|

}
,

[
v′(t)

]
α
=

[
v′(t,α), v̄

′

(t,α)
]
,
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provided that the Lebesgue integrals on the right exist.

Definition 5 (Puri and Ralescu 1983) A function f : (a, b) → E1 is called H-dif-
ferentiable at x̂ ∈ (a, b) if, for h > 0 sufficiently small, there exist the H-differ-
ences f

(
x̂ + h

)
− f

(
x̂
)
, f

(
x̂
)
− f

(
x̂ − h

)
, and an element f ′

(
x̂
)
∈ E1 such that: 

limh→0+ D
(
f (x̂+h)−f (x̂)

h
, f ′

(
x̂
))

= limh→0− D
(
f (x̂)−f (x̂−h)

h
, f ′

(
x̂
))

= 0.

Then f ′
(
x̂
)
 is called the fuzzy derivative of f  at 

(
x̂
)
.

Nonlinear fuzzy integro‑differential equations

In this section, we discuss the nonlinear Fredholm integro-differential equations of the 
second kind (Hochstadt 1973) and is given by

where � > 0, a and b are constants, k(x, t) is an arbitrary continuous kernel function over 
the square a ≤ x, t ≤ b and f (x) is a function of a ≤ x ≤ b. If F  is a fuzzy function of 
x ∈ [a, b] and F ′ is the fuzzy derivative (By definition 5), this equation may possess only 
fuzzy solution. Sufficient condition for the existence equation of the second kind can 
be found in (Balasubramaniam and Muralisankar 2001). Let F(x) =

(
F(x,α), F̄(x,α)

)
 is 

a fuzzy solution of Eq. (1) and hence we have the equivalent system of nonlinear fuzzy 
Fredholm integro-differential equations of the second kind (FFIDE-2) and is given as 
follows.

which possesses a unique solution 
(
F , F̄

)
∈ B which is a fuzzy function, i.e., for each x, 

the pair 
(
F(x,α), F̄(x,α)

)
 is a fuzzy number. The parametric form of the above equations 

are given by

for α ∈ [0, 1], where

[∫ b

a
v(t)dt

]

α

=

[∫ b

a
v(t,α)dt,

∫ b

a
v̄(t,α)dt

]
,

(1)F ′(x) = f (x)+ �

∫ b

a
k(x, t, F(t))F ′(t)dt, F(x0) = X0

(2)F
′

(x) = f (x)+ �

∫ b

a
k(x, t, F(t))F ′(t)dt, F(x0) = X0

(3)F ′(x) = f̄ (x)+ �

∫ b

a
k(x, t, F(t))F ′(t)dt, F̄(x0) = X0

(4)F
′

(x,α) = f (x,α)+ �

∫ b

a
k(x, t, F(t,α))F ′(t,α)dt, F(x0) = X0(α)

(5)F ′(x,α) = f̄ (x,α)+ �

∫ b

a
k(x, t, F(t,α))F ′(t,α)dt, F̄(x0) = X̄0(α)

(6)k(x, t, F(t,α))F ′(t,α) =

{
k(x, t)F(t,α)F

′
(t,α)k(x, t) ≥ 0

k(x, t)F̄(t,α)F ′(t,α)k(x, t) < 0
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and

The nonlinear Volterra integro-differential equations of the second kind is given by

Here upper limit x is a variable, where x > t, x ∈ [a, b] and b > ∞. The equivalent sys-
tem of the nonlinear fuzzy Volterra integro-differential equations of the second kind 
(FVIDE-2) and its parametric forms are straightforward.

Lemma (Ralescu 1979) Let [v(t,α), v̄(t,α)], α ∈ (0, 1], be a given fam-
ily of non-empty intervals. If (1) [v(α), v̄(α) ]⊃[ v(β), v̄(β)] for 0 < α ≤ β and (2) 
[limk→∞ v(αk), limk→∞ v̄(αk)] = [v(α), v̄(α)]whenever (αk) is a non-decreasing sequence 
converging to α ∈ (0, 1], then the family [v(α), v̄(α)], 0 < α ≤ 1, are the α− level sets of a 
fuzzy number v in E. Conversely if [v(α), v̄(α)], 0 < α ≤ 1, are the α− level sets of a fuzzy 
number ṽ in E, then the conditions (1) and (2) holds true.

Lemma (Bede and Gal 2005)  For x̃0 ∈ R the fuzzy differential equation

where f̃ : R× E → E is supposed to be continuous, if equivalent to one of the integral 
equations:

(1) ỹ(x) = ỹ0 +
∫ x
x0
f (t, ỹ(t)), ∀x ∈ [x0, x1]

Or (2) ỹ(x) = ỹ0 + (−1)
∫ x
x0
f (t, ỹ(t)), ∀x ∈ [x0, x1] on some interval (x0, x1) under the 

differentiability condition, (1) or (2) respectively.

Analysis of homotopy perturbation method

The essential idea of this method is to introduce a homotopy parameter, say p, which 
takes the values from 0 to 1. When p = 0, the system of equation usually reduces to a 
sufficiently simplified form, which normally admits a rather simple solution. As p gradu-
ally increases to 1, the system goes through a sequence of deformation, the solution of 
each of which is close to that at the previous stage of deformation. Eventually at p = 1 , 
the system takes the original form of the equation and final stage of deformation gives 
the desired solution. To illustrate HPM, consider the nonlinear differential equation 
(Demir et al. 2013)

with boundary conditions B
(
u, ∂u

∂n

)
= 0, r ∈ Γ , where A(u) = L(u)+ N (u), L is a linear 

operator, N  is a nonlinear operator, B is a boundary operator, Γ  is the boundary of the 
domain Ω and f (r) is a known analytic function. In order to use the HPM, a suitable 
construction of homotopy is of vital importance. He (1999,  2000) constructed a homot-
opy U : Ω × [0, 1] that satisfies

(7)k(x, t)F(t,α)F ′(t,α) =

{
k(x, t)F̄(t,α)F ′(t,α)k(x, t) ≥ 0

k(x, t)F(t,α)F
′
(t,α)k(x, t) < 0

(8)F ′(x) = f (x)+ �

∫ x

a
k(x, t, F(t))F ′(t)dt, F(x0) = X0

ỹ′ = f̃
(
x, y

)
, ỹ(x0) = ỹ ∈ E

(9)A(u)− f (r) = 0, r ∈ Ω ,
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or

where r ∈ Ω and p ∈ [0, 1] is called homotopy parameter and u0 is an initial approxima-
tion of Eq. (9). It is obvious that

and the changing process of p from 0 to 1, is just that of H(U , p) from L(U)− L(u0) to 
A(U)− f (r) and this deformation is called homotopy in topology. Applying HPM, the 
solution of Eqs. (10) or (11) can be expressed as a series in p, where 0 ≤ p ≤ 1, is

When p → 1, Eq. (10) or Eq. (11) corresponds to Eq. (9) and becomes the approximate 
solution of Eq. (9), i.e.,

The above series is convergent for most of the cases and the rate of convergence 
depends on L(u) (He 2000).

Description of the proposed approximation technique

One of the main aims of this paper is to introduce an approximation technique by 
extending the analysis of homotopy perturbation method, for solving nonlinear fuzzy 
Fredholm integro-differential equations of the second kind where its general form is 
given as

� > 0, a ≤ x ≤ b, 0 ≤ α ≤ 1 where F ′(x) =
(
F

′
(x,α), F ′(x,α)

)
, f (x) =

(
f (x,α), f̄ (x,α)

)
, 

k(x, t) =
(
k(x, t), k̄(x, t)

)
, F(t) =

(
F(t,α), F̄(t,α)

)
 and F ′(t) =

(
F

′
(t,α), F ′(t,α)

)
.

We consider the above initial value problem with the arbitrary continuous kernels of 
the form k(x, t) = g(x)h(t) =

∑∞
i=0 gi(x)hi(t). By using HPM, we can have

Hence we can define the convex homotopy as follows

(10)H(U , p) = (1− p)[L(U)− L(u0)]+ p[A(U)− f (r)] = 0

(11)H(U , p) = L(U)− L(u0)+ p[L(u0)+ N (U)− f (r)] = 0

(12)H(U , 0) = L(U)− L(u0) = 0, H(U , 1) = A(u)− f (r) = 0,

(13)u = u0 + p1u1 + p2u2 + · · ·

(14)U = lim
p→1

u =

∞∑

n=0

un = u0 + u1 + u2 + · · ·

(15)F ′(x) = f (x)+ �

∫ b

a
k(x, t, F(t))F ′(t)dt, F(x0) = X0

(16)(F(u), F̄(u) =

{
u(x,α)
ū(x,α)

(17)(L(u), L̄(u) =

{
F

′
(x,α)− f (x,α) = 0

F
′

(x,α)− f̄ (x,α) = 0

(18)H(u, p,α) =

{
u
′
(x,α)− f (x,α)− p

∫ b
a g(x)h(t)u(t,α)u′(t,α)dt

ū
′
(x,α)− f̄ (x,α)− p

∫ b
a ḡ(x)h̄(t)ū(t,α)ū

′
(t,α)dt
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and continuously trace an implicitly defined curve from a starting point H(u, 0,α) to a 
solution function H(u, 1,α), where 0 ≤ α ≤ 1. Solution of the above equations can be 
readily assumed as

where (ui, ūi)∀i are unknown functions to be determined.
The initial approximation can be taken as

Substitute Eq. (20) into Eq. (18) and equating the coefficients with identical powers of 
p, we have

In the same way, we get p4 as follows.

(19)

{
u(x,α) =

∑∞
i=0 p

iui(x,α)

ū(x,α) =
∑∞

i=0 p
iūi(x,α)

(20)p0 :

{
u
′

0(x,α)− f (x,α) = 0 ⇒ u
′

0(x,α) = f (x,α)

u′0(x,α)− f̄ (x,α) = 0 ⇒ u′0(x,α) = f̄ (x,α)

(21)





u0(x,α) =
� b
a f (x,α)dx

ū0(x,α) =
� b
a f̄ (x,α)dx

(22)p1 :





u
′

1(x,α) =
� b
a g(x)h(t)u0(t,α)u

′

0(t,α)dt

u′1(x,α) =
� b
a ḡ(x)h̄(t)ū0(t,α)u′0(t,α)dt

(23)





u1(x,α) =
� b
a (

� b
a g(x)h(t)u0(t,α)u

′

0(t,α)dt)dx

ū1(x,α) =
� b
a (

� b
a ḡ(x)h̄(t)ū0(t,α)u′0(t,α)dt)dx

(24)p2 :





u
′

2(x,α) =
� b
a g(x)h(t)

�
u0(t,α)u

′

1(t,α)+ u1(t,α)u
′

0(t,α)
�
dt

u′2(x,α) =
� b
a ḡ(x)h̄(t)

�
ū0(t,α)u′1(t,α)+ ū1(t,α)u′0(t,α)

�
dt

(25)





u2(x,α) =
� b
a (

� b
a g(x)h(t)

�
u0(t,α)u

′

1(t,α)+ u1(t,α)u
′

0(t,α)
�
dt)dx

ū2(x,α) =
� b
a (

� b
a ḡ(x)h̄(t)

�
ū0(t,α)u′1(t,α)+ ū1(t,α)u′0(t,α)

�
dt)dx

(26)

p3 :





u
′

3(x,α) =
� b
a g(x)h(t)

�
u0(t,α)u

′

2(t,α)+ u1(t,α)u
′

1(t,α)+ u
′

2(t,α)u
′

0(t,α)
�
dt

u′3(x,α) =
� b
a ḡ(x)h̄(t)

�
ū0(t,α)u′2(t,α)+ ū1(t,α)u′1(t,α)+ ū

′

2(t,α)ū
′

0(t,α)
�
dt

(27)





u3(x,α) =
� b
a (

� b
a g(x)h(t)

�
u0(t,α)u

′

2(t,α)+ u1(t,α)u
′

1(t,α)+ u2(t,α)u
′

0(t,α)
�
dt)dx

ū3(x,α) =
� b
a (

� b
a ḡ(x)h̄(t)

�
ū0(t,α)u′2(t,α)+ ū1(t,α)u′1(t,α)++ū2(t,α)ū

′

0(t,α)
�
dt)dx
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and so on. Therefore the solution of Eq. (15) can be obtained as

Since the above series is infinite, all the terms of the series cannot be determined in 
practice and so we use an appropriate approximation of the solution by the following 
truncated series

with 

The similar algorithm can be applied for nonlinear fuzzy Volterra integro-differential 
equations of the second kind.

Stability analysis

We present in this section, the general stability idea of the proposed numerical scheme 
for solving nonlinear fuzzy Fredholm integro-differential equation of the second kind. 
We consider the stability of the solution components (u(x,α), ū(x,α)) as given in Eq. (30) 
under the presence of a small perturbation in the function 

(
f (x,α), f̄ (x,α)

)
 which is used 

for initial fuzzy approximation as given in Eq.  (21) is disturbed with the perturbation 
function 

(
δf (x,α), δf (x,α)

)
 where it is an unknown function relative to 

(
f (x,α), f̄ (x,α)

)
. 

The following results can also be proved in a similar way for nonlinear FVIDE-2.

Theorem  1 The presence of the small perturbation function 
(
δf (x,α), δf (x,α)

)
 in 

the continuous fuzzy function 
(
f (x,α), f̄ (x,α)

)
 alters the fuzzy approximate solution  (

F(x,α), F̄(x,α)
)
 by an equivalent value to the solution of nonlinear FFIDE-2  Eq.  (15) 

with initial fuzzy approximation equal to the perturbation function 
(
δf (x,α), δf (x,α)

)
 

itself respectively.

Proof Without loss of generality, let us assume 
(
F(x,α), F̄(x,α)

)
= (u(x,α), ū(x,α)) 

as the solution of Eq. (15) under the presence of a small perturbation in form of finite 
sequences given as follows

(28)





u
′

4(x,α) =
� b
a g(x)h(t)

�
u0(t,α)u

′

3(t,α)+ u1(t,α)u
′

2(t,α)+ u2(t,α)u
′

1(t,α)+ u3(t,α)u
′

0(t,α)
�
dt)dx

ū
′

4(x,α) =
� b
a ḡ(x)h̄(t)

�
ū0(t,α)u

′

3(t,α)+ ū1(t,α)u
′

3(t,α)++ū2(t,α)ū
′

1(t,α)+ ū3(t,α)ū
′

0(t,α)
�
dt)dx

(29)





u4(x,α) =
� b
a (

� b
a g(x)h(t)

�
u0(t,α)u

′

3(t,α)+ u1(t,α)u
′

2(t,α)+ u2(t,α)u
′

1(t,α)+ u3(t,α)u
′

0(t,α)
�
dt)dx

ū4(x,α) =
� b
a (

� b
a ḡ(x)h̄(t)

�
ū0(t,α)u

′

3(t,α)+ ū1(t,α)u
′

2(t,α)++ū2(t,α)ū
′

1(t,α)+ ū3(t,α)ū
′

0(t,α)
�
dt)dx

(30)

{
u(x,α) =

∑∞
i=0 ui(x,α)

ū(x,α) =
∑∞

i=0 ūi(x,α)

(31)
(
γ
m
(x), γ̄m(x)

)
=

(
m−1∑

i=0

ui(x,α),

m−1∑

i=0

ūi(x,α)

)

(32)(u(x), ū(x)) =
(

lim
m→∞

γ
m
(x,α), lim

m→∞
γ̄m(x,α)

)
.
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then we have

Now assume the initial fuzzy approximation as

where

We have by Eq. (22)

Proceed by induction we have

Hence the perturbed fuzzy approximate solution is given by

(33)





δf (x,α) =
�
δf

1
(x,α), δf

2
(x,α), . . . , δf

n
(x,α)

�

δf (x,α) =
�
δf 1(x,α), δf 2(x,α), . . . , δf n(x,α)

�

(34)





F
′

(x,α) = δf (x,α)+
� b
a k(x, t, F(t,α))F ′(t,α)dt, F(x0) = X0(α)

F ′(x,α) = δf (x,α)+
� b
a k(x, t, F(t,α))F ′(t,α)dt, F̄(x0) = X̄0(α)

(35)





�V 0(x,α) =
� b
a

�
F0(x,α)+ ε0(x,α)

�
dx

�̄V 0(x,α) =
� b
a (F̄0(x,α)+ ε̄0(x,α))dx

(36)





�V 0(x,α) =
�
�V 10(x,α),

�V 20(x,α), . . . ,
�Vn0(x,α)

�

�̄V 0(x,α) =
� �̄V 10(x,α),

�̄V 20(x,α), . . . ,
�̄Vn0(x,α)

�

(37)





� b
a F

′

0(x,α)dx =
�� b

a F
′

10(x,α)dx,
� b
a F

′

20(x,α)dx, . . . ,
� b
a F

′

n0(x,α)dx
�

� b
a F ′

0(x,α)dx =
�� b

a F ′
10(x,α)dx,

� b
a F ′

20(x,α)dx, . . . ,
� b
a F ′

n0(x,α)dx
�

(38)





� b
a ε0(x,α)dx =

�� b
a ε10(x,α)dx,

� b
a ε20(x,α)dx, . . . ,

� b
a εn0(x,α)dx

�

� b
a ε̄0(x,α)dx =

�� b
a ε̄10(x,α)dx,

� b
a ε̄20(x,α)dx, . . . ,

� b
a ε̄n0(x,α)dx

�

(39)





�V 1(x,α) =
� b
a k(x, t, (F(t,α)+ ξ0)

�
F ′(t,α)+ ξ0

�
dt = V 1(x,α)+

� b
a ε1(x,α)dx

�̄V 1(x,α) =
� b
a k(x, t, (F(t,α)+ ξ0)(F ′(t,α)+ ξ0)dt = V̄1(x,α)+

� b
a ε̄1(x,α)dx

(40)





�V 2(x,α) = V 2(x,α)+
� b
a ε2(x,α)dx,

�̄V 2(x,α) = V̄2(x,α)+
� b
a ε̄2(x,α)dx

(41)





�Vn(x,α) = Vn(x,α)+
� b
a εn(x,α)dx

�̄Vn(x,α) = V̄n(x,α)+
� b
a ε̄n(x,α)dx

(42)





F(x,α) =
� b
a F

′

(x,α)dx = limn→∞

�n
i=0 V i(x,α)

F̄(x,α) =
� b
a F ′(x,α)dx = limn→∞

�n
i=0 V̄i(x,α)
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Therefore the inclusion of the small perturbation function term (∫ b
a ε0(x,α)dx,

∫ b
a ε̄0(x,α)dx

)
 affects the solution by

From the above equation, we conclude that 
(
δF(x,α), δF(x,α)

)
 and 

(
δf (x,α), δf (x,α)

)
 

are related by the generalized nonlinear FFIDE-2 as follows

where β is a constant.
As 

(
δf (x,α), δf (x,α)

)
 is an unknown function and by taking supremum for it 

(
supa≤x≤b

∣∣∣δf (x,α)
∣∣∣ < ε, supa≤x≤b

∣∣∣δf (x,α)
∣∣∣ < ε̄

)
, then Eq. (46) reduces to

which can be solved and it confirms the stability of the used numerical approach for 
solving nonlinear FFIDE-2. In the similar way, stability can also be analysed for nonlin-
ear FVIDE-2.

Convergence analysis

In this section, we proved that the nonlinear fuzzy Fredholm integro-differential equa-
tion of the second kind converges to the exact solution while using the presented approx-
imation technique using HPM. The limit of the solution series as obtained in Eq. (30) is 
considered as solution of Eq.  (15). Assume that F(x,α) and F̄(x,α) are bounded func-
tions for a ≤ x ≤ b and 0 ≤ α ≤ 1.

Let us assume the nonlinear functions in Eqs. (4) and (5) as

(∫ b

a
ε0(x,α)dx,

∫ b

a
ε̄0(x,α)dx

)

(43)=
(
f̃ (x,α),

˜̄
f (x,α)

)
−

(
f (x,α), f̄ (x,α)

)

(44)= lim
n→∞

n∑

i=0

(
Ṽ j(x,α),

˜̄V j(x,α)
)
− lim

n→∞

n∑

i=0

(
V j(x,α), V̄j(x,α)

)

(45)= lim
n→∞

n∑

i=0

(∫ b

a
εj(x,α)dx,

∫ b

a
ε̄j(x,α)dx

)

(46)

{
βδF

′

(x,α) = δf (x,α)+
∫ b
a k(x, t, δF(t,α))δF ′(t,α)dt

βδF
′

(x,α) = δf (x,α)+
∫ b
a k(x, t, δF(t,α))δF ′(t,α)dt

(47)





βδF
′

(x,α) = ε +
� b
a k(x, t, δF(t,α))δF ′(t,α)dt

βδF
′

(x,α) = ε̄ +
� b
a k(x, t, δF(t,α))δF ′(t,α)dt

(48)

{
k(x, t, F(t,α))F ′(t,α) = k(x, t)Gr(t,α)

k(x, t, F(t,α))F ′(t,α) = k(x, t)Gr(t,α)
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Theorem 2 The series solution Eq. (30) of nonlinear FFIDE-2 as given in Eq. (15) using 
homotopy perturbation method converges to exact solution.

Proof Consider Eqs. (4) and (5) corresponding to Eq. (15) in the form

where � > 0, a ≤ x ≤ b, 0 ≤ α ≤ 1.
If the solution series Eq. (30) converges to 

(
F(x,α), F̄(x,α)

)
, where

Now we can write

where

Subtract Eq. (51) from Eq. (49) correspondingly, we define the error function as

Hence we have

At this stage, we have to prove that when n → ∞, the error function En(x,α) → 0.
Therefore

(49)





F
′

(x,α) = f (x,α)+ �
� b
a k(x, t)Gr(t,α)dt, F(x0) = X0

F ′(x,α) = f̄ (x,α)+ �
� b
a k(x, t)Gr(t,α)dt, F̄(x0) = X0

(50)





F(x,α) =
� b
a F

′

(x,α)dx

F̄(x,α) =
� b
a F ′(x,α)dx

(51)





F
′

n(x,α) = f (x,α)+ �
� b
a k(x, t)Gr

n(t,α)dt, F(x0) = X0

F ′
n(x,α) = f̄ (x,α)+ �

� b
a k(x, t)Gr

n(t,α)dt, F̄(x0) = X0

(52)





F ′(x,α) = limn→∞ F
′

n(x,α)

F ′(x,α) = limn→∞ F ′
n(x,α)

(53)En(x,α) = En(x,α)+ Ēn(x,α)

(54)





En(x,α) =
�
F

′

(x,α)− F
′

n(x,α)
�
f (x,α)+ �

� b
a k(x, t)Gr

n(t,α)dt

Ēn(x,α) =
�
F ′(x,α)− F ′

n(x,α)
�
f̄ (x,α)+ �

� b
a k(x, t)Gr

n(t,α)dt

(55)
max

∀x ∈ [a, b]
|En| =

max
∀x ∈ [a, b]

∣∣En + Ēn
∣∣

(56)

≤
max

∀x ∈ [a, b]

∣∣∣F
′

(x,α)− F ′
n(x,α)

∣∣∣+ max
∀x ∈ [a, b]

∣∣F ′(x,α)− F ′
n(x,α)

∣∣l

+
max

∀x ∈ [a, b]

∣∣∣∣G
r(t,α)− Gr

n(t,α)

∣∣∣∣+
max

∀x ∈ [a, b]

∣∣∣∣Ḡ
r(t,α)− Ḡr

n(t,α)

∣∣∣∣

(57)

≤

∣∣∣
∣∣∣F

′

(x,α)− F
′

n(x,α)||+||F ′(x,α)− F ′
n(x,α)

∣∣∣
∣∣∣

+ |�|

∫ b

a

∣∣∣∣k
∣∣∣∣(∣∣∣∣Gr(t,α)− Gr

n(t,α)||+||Ḡr(t,α)− Ḡr
n(t,α)

∣∣∣∣)dt
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We know that 
∣∣∣∣k

∣∣∣∣ is bounded. Therefore in the above equation ∣∣∣∣Gr(t,α)− Gr
n(t,α)

∣∣∣∣ → 0 and 
∣∣∣∣Ḡr(t,α)− Ḡr

n(t,α)
∣∣∣∣ → 0 which implies that 

||En|| → 0 . So the series is convergent and the proof is complete. In the similar way, con-
vergence can also be analysed for nonlinear FVIDE-2.

Numerical illustrations
To illustrate the utility of the technique proposed in this paper, we consider the follow-
ing examples of nonlinear fuzzy Fredholm and Volterra integro-differential equations.

Example 1 Consider the nonlinear FFIDE-2 given by

a = 0, b = 1, � = 1, 0 ≤ x, t ≤ 1, 0 ≤ α ≤ 1, with the initial conditions 
F(0,α) = F̄(0,α) = 0

The exact solution of this equation is given by

Here we have

By making use of homotopy perturbation method we may choose a convex homotopy as

Taking p0 : (u0(x,α), ū0(x,α)) as the initial fuzzy approximations we have

We apply our presented method to approximate the solutions. Hence the HPM series 
solution will be as follows

F
′(x) =

(
α −

α2

8
,
12− 4α − α2

8

)
+

∫ 1

0

t2

2
F2(t)dt

F(x,α) = u(x,α) = αx

F̄(x,α) = ū(x,α) = (2− α)x

K (x, t) = K (x, t) =
t

2

f (x,α) = α −
α2

8

f̄ (x,α) =
12− 4α − α2

8

H(u, p,α) =





u
′
(x,α)−

�
α − α2

8

�
− p

� 1

0
F2(t)dt

ū
′
(x,α)−

�
12−4α−α2

8

�
− p

� 1

0
F2(t)dt

u
′

0(x,α) = f (x,α) = α −
α2

8

u′0(x,α) = f̄ (x,α) =
12− 4α − α2

8
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We solved these equations and found the components of the above iterations by using 
Mathematica program (Mathematica package version 7). In this case, fuzzy approxi-
mate solutions is calculated at four iterations and are given in Table 1. Figure 1 shows 
the graphical illustration of the obtained approximate solution with the exact solution 
subject to the initial conditions. We compute the values for x = 0.5 and it is noticeable 
that the approximate solutions are in close proximity to the exact solutions due to the 
effective convergence of the solution series. In most cases, for the known function series, 
even the exact solution could be achieved.

Example 2 Consider the nonlinear FVIDE-2 given by

a = 0, � = 1, 0 ≤ t ≤ x, 0 ≤ α ≤ 1,with the initial conditions F(0,α) = α and 
F̄(0,α) = 2− α.

The exact solution of this equation is given by

Here we have

u(x,α) =
−1

8
(−8+ α)α +

1

256
(−8+ α)2α2 −

(−8+ α)3α3

4096
+ · · ·

ū(x,α) =
−1

8
(−2+ α)(6+ α)+

1

256
(−12+ 4α + α2)2 −

(−12+ 4α + α2)3

4096
+ · · ·

F
′(x) =

(
α2

2
+ αex − α2

2
e2x,

2ex − αex + 2− 2α + α2

2
− 2e2x + 2αe2x − α2

2
e2x

)
+

∫ x

0

F2(t)dt

F(x,α) = u(x,α) = αex

F̄(x,α) = ū(x,α) = (2− α)ex

K (x, t) = K (x, t) = 1

Table 1 Comparisons between exact and approximate solutions at x = 0.5

α Exact solution Approximate solution Error

u(x,α) ū(x,α) u(x,α) ū(x,α) E(x,α) Ē(x,α)

0 0 1 0 0.985254 0 0.014746

0.1 0.050000 0.950000 0.048711 0.943658 0.001289 0.006342

0.2 0.100000 0.900000 0.097247 0.896235 0.002753 0.003765

0.3 0.150000 0.850000 0.146107 0.848632 0.003893 0.003680

0.4 0.200000 0.800000 0.197524 0.792325 0.002476 0.007675

0.5 0.250000 0.750000 0.249120 0.749856 0.000880 0.000144

0.6 0.300000 0.700000 0.299771 0.699762 0.000229 0.000238

0.7 0.350000 0.650000 0.3496260 0.649823 0.000374 0.000177

0.8 0.400000 0.600000 0.399712 0.599735 0.000288 0.000265

0.9 0.450000 0.550000 0.449252 0.549753 0.000748 0.000247

1 0.500000 0.500000 0.499783 0.499685 0.000217 0.000315
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We may choose a convex homotopy such that

Taking into account the initial conditions, we have p0 : (u0(x,α), ū0(x,α)) as the initial 
fuzzy approximations where

Now we begin with the above approximations and applying the proposed numerical 
technique, we consequently found the HPM series solutions as

f (x,α) =
α2

2
+ αex −

α2

2
e2x

f̄ (x,α) = 2ex − αex + 2− 2α +
α2

2
− 2e2x + 2αe2x −

α2

2
e2x

H(u, p,α) =





u
′
(x,α)−

�
α2

2
+ αex − α2

2
e2x

�
− p

� x
0
F2(t)dt

ū
′
(x,α)−

�
2ex − αex + 2− 2α + α2

2
− 2e2x + 2αe2x − α2

2
e2x

�
− p

� x
0
F2(t)dt

u
′

0(x,α) = F(0,α) = α

u′0(x,α) = F̄(0,α) = 2− α

u(x,α) = α − αx −
α2

2
+

(
α

6
−

α2

3

)
x3 +

(
α

24
−

α2

6

)
x4 + · · ·

Fig. 1 Exact and obtained approximate solutions at x = 0.5 for example 1



Page 15 of 17Narayanamoorthy and Sathiyapriya  SpringerPlus  (2016) 5:449 

All the above recursive components were obtained using Mathematica program 
(Mathematica package version 7). Fuzzy approximate solutions is calculated at four iter-
ations for this example and are given in Table 2. We use α = 0, 0.1, 0.2, . . . , 1 for all fuzzy 
numbers and calculate the accurate approximations. Besides the graphical representa-
tion of exact and approximate solutions for x = 0.5 is provided to show the comparison 
(Fig. 2) and to reveal that the obtained values are nearly accurate to the exact solution.

ū(x,α) = 2− α + (2− α)x +
(
1−

α

2

)
x2 +

(
−1+

7α

6
−

α2

3

)
x3 + · · ·

Table 2 Comparisons between exact and approximate solutions at x = 0.5

α Exact solution Approximate solution Error

u(x,α) ū(x,α) u(x,α) ū(x,α) E(x,α) Ē(x,α)

0 0 3.297440 0 3.297412 0 0.000028

0.1 0.164872 3.132570 0.164718 3.132432 0.000154 0.000138

0.2 0.329744 2.967699 0.329726 2.967489 0.000018 0.000210

0.3 0.494616 2.802826 0.494592 2.802652 0.000024 0.000174

0.4 0.659489 2.637954 0.659456 2.637726 0.000033 0.000228

0.5 0.824631 2.473082 0.824586 2.472886 0.000045 0.000916

0.6 0.989233 2.308210 0.989196 2.307985 0.000037 0.000225

0.7 1.154100 2.143338 1.154069 2.143228 0.000031 0.000011

0.8 1.318980 1.978466 1.318952 1.978395 0.000028 0.000071

0.9 1.483850 1.813593 1.483808 1.813587 0.000042 0.000006

1 1.648720 1.648721 1.648672 1.648706 0.000048 0.000015

Fig. 2 Exact and obtained approximate solutions at x = 0.5 for example 2
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Conclusions
In this paper, we attempt to propose an appropriate approach for solving nonlinear fuzzy 
integro-differential equations of the second kind by incorporating homotopy perturba-
tion method. Interesting feature of this method is the construction of convex homot-
opy in a correct way results in precise fuzzy approximate solutions. A detailed proof of 
the stability analysis and convergence analysis validates effectiveness of the presented 
method. The methodology has been exemplified by two illustrated numerical exam-
ples which prove the computational efficiency. Here the solution is considered as the 
summation of infinite series which converges rapidly and precision can be improved 
by taking few more terms in the solution. Numerical results tabulated emphasize the 
convergence of the solution. This technique can extremely minimize the size of work if 
compared to existing methods as it reduces the huge calculations needed by them. In 
fact, this method let to solve in a simpler fashion, the nonlinear fuzzy integro-differential 
equations which has the advantage in terms of its straightforward selection of the initial 
approximation and offers reliable accuracy. Future works can be focused on developing 
a novel method by taking this approach as a basis for solving higher order fuzzy integro-
differential equations.With this end, we conclude that the presented method will be a 
reliable tool to deal with the practical applications of nonlinear fuzzy integro-differential 
equations.
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