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Background
Human tuberculosis (TB) is caused by an intracellular pathogen, Mycobacterium tuber-
culosis and it replicates rapidly in the lungs with high oxygen concentration. The genome 
of MTB is approximately 4.4 million base pairs long and is one of the largest known bac-
terial genomes. According to WHO statistics (2015), in the year 2014 an estimated 9.6 
million people developed TB and 1.5 million died from the disease. Global TB control 
measures are affected by the emergence of drug resistant, multidrug resistant and exten-
sively drug resistant strains. Resistance in these MTB strains to anti-TB drugs occurs due 
to chromosomal mutations. Out of the 480,000 cases of multidrug-resistant TB (MDR-
TB) estimated to have occurred in 2014, only about a quarter of these were detected and 
reported.

Tuberculosis disease control can be achieved by determining drug resistance, which is 
a major challenge. There are several diagnostic tests for TB that include sputum smear 
analysis, mycobacterium culture and X-rays. Culture-based drug susceptibility testing 
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(DST) is considered the most significant determinant of drug susceptibility as it can 
define resistance irrespective of the molecular mechanism responsible for resistance. 
Testing of antibiotic resistance to anti-TB drug is done by isolation and culture of the 
bacteria followed by exposure to antibiotic drug. This method takes 3–4 weeks and also 
requires extensive biosafety facilities. During this time patients may not receive appro-
priate treatment, and drug resistance may become amplified. Moreover high burden 
countries lack adequate laboratory facilities. Genotyping methods have also been devel-
oped that differentiate between bacterial strains by examining specific target regions 
associated with drug resistance. Main diagnostic tests available commercially are the 
Xpert MTB/RIF assay (Cepheid, Inc.) (USFDA 2013), INNO-LiPA TB test (Innogenet-
ics) (Morgan et  al. 2005) and the GenoType MTBDRplus kit (Hain Lifescience) (Ling 
et al. 2008). These assays have been approved by the World Health Organization as a tool 
for rapid MDR-TB diagnosis (WHO 2008). Genotypic tools are faster and are hence bet-
ter in terms of diagnostic usefulness but require detailed information about the muta-
tions that cause drug resistance. This is due to their inability to detect resistance due 
to mutations outside target regions or because they may detect inactive or incomplete 
resistance genes in a specimen, which are not associated with resistance to the antimi-
crobial drug under test (Fournier et al. 2013).

Whole genome sequencing (WGS) has the potential to overcome such problems. 
WGS is a promising multi-purpose genotyping tool, which can be used both for predic-
tion of drug susceptibility as well as epidemiological investigations. Though aspects of 
cost-efficiency and the appropriate setting for the implementation of WGS techniques 
are not yet well established but with the current ongoing research and development, 
bacterial genomes can now be sequenced in a few hours with the help of bench top ana-
lyzers (Brown et al. 2015) and at reduced costs due to high throughput (Gardya 2015). 
WGS methods can not only analyze known mutation sites associated with resistance 
but can also help analyze other loci indicating the presence or absence of resistance. 
This can help health care professionals to analyze the entire genome in terms of disease 
related variants (Wlodarska et al. 2015). Thus whole genome sequencing is capable of 
extending rapid testing to the full range of antibiotics, which can expedite the access to 
the required line of treatment and hence minimize the exposure of patient to ineffec-
tive drugs. Several methods based on WGS of MTB sequences such as conception of 
new prophylactic and therapeutic interventions (Cole et al. 1998), factors influencing its 
transmission (Guerra-Assunção et al. 2015), identification of outbreak-related transmis-
sion chains (Roetzer et al. 2013), prediction of drug susceptibility and resistance (Walker 
et al. 2015) have been reported in literature.

Apart from molecular methods based on whole genome sequences of MTB, signal pro-
cessing of complete genomic sequences can help display and explore structural patterns 
capable of being interpreted and compared. Graphical representations obtained from 
signal processing methods can provide insight into the evolution, structure and function 
of genomes (Anastassiou 2000). With the huge amount of genomic data available after 
the completion of genome sequencing projects, rapid analysis of genomic data is pos-
sible using signal processing methods. These methods help characterize DNA sequences 
by distinct visual patterns using graphical representations in comparison to conventional 
laboratory methods (Cristea et al. 2007; Nandy et al. 2006). Several graphical approaches 
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for genomic sequence analysis such as DNA walks (Berger et al. 2003), Z-curves (Zhang 
et  al. 2003), Fourier transforms, phase analysis (Cristea 2003) and wavelet transforms 
(Lorenzo-Ginori et al. 2009) have been reported in literature. DNA walk has been used 
as a tool to visualise changes in nucleotide composition, locating coding and non cod-
ing regions, identifying periodicities and large scale local and global features present in 
many genomes (Li’O 2003; Haimovich et al. 2006). Fourier transforms have been used 
to determine periodicities in proteins, identification of protein coding DNA regions and 
open reading frames (Zhou et al. 2007). Z-curves have been used in identifying replica-
tion origins of archaeal genomes (Zhang and Zhang 2005). Phase analysis has been used 
to report the existence of global helicoidal wrapping of DNA sequences (Cristea 2003), 
determining pathogen drug resistance in HIV, H5N1 (Cristea 2006).

Continuous wavelet transforms have been used as an effective tool to localize events, 
such as the active sites prediction in protein sequences of HIV, Haemoglobin Human 
α protein (Rao and Swamy 2008), fractal analysis of DNA sequences (Voss 1992). Dis-
crete wavelet transforms have been used to identify gene locations in genomic sequences 
(Ning et al. 2003), determining focal genomic aberrations in single nucleotide polymor-
phism (Hur and Lee 2011), determining pattern irregularities (Haimovich 2006), predict 
the ori and ter regions of bacterial chromosomes (Song et  al. 2003), identifying long-
range correlations, determining base change locations (Saini and Dewan 2014), locat-
ing periodicities in DNA sequences (Vannucci and Liò 2001), detecting change points 
in genomic copy number data (Yu et al. 2010), analysis of G + C patterns (Dodin et al. 
2000), analysing the information content in human DNA (Machado et al. 2011), analys-
ing sequence contexts in indels of DNA sequences (Kvikstad et al. 2009).

Of all the graphical methods, wavelet transforms have the advantage of time–fre-
quency analysis of signals. They also have the advantage of analysing signals at different 
frequency resolutions or scales (called multiresolution analysis) and hence are capable 
of determining the hidden variations in patterns of complete genomic sequences at vari-
ous scales. Decomposition of a signal at a coarse scale can be used to view the trend 
of the whole sequence while decompositions at fine scales are used to determine single 
base patterns for local features. These multi resolution wavelet decompositions of com-
plete genomic sequences can be used to investigate the similarity of various sequences at 
different resolution levels without the pre-requisite of sequence alignment and consid-
eration of insertion, deletion events unlike the conventional method-BLAST. Correla-
tion measures between different sequences at various scales of decomposition can help 
investigate the extent of similarity. Lower values of correlation relate to lesser sequence 
similarity whereas higher values of correlation are significant of higher structural simi-
larity. This can help characterize scale wise disparities for each sequence as well as com-
pare different sequences of DNA. Basic Local Alignment Search Tool (BLAST) is the 
most common method to ascertain sequence similarity which works by first aligning a 
query sequence with a subject sequence. The results are reported in the form of a ranked 
list followed by a series of individual sequence alignments and various statistics and 
scores. However for very large sequences with length of the order of million base pairs, 
the alignments and similarity scores are shown for different sub-sequence segments of 
varying lengths and not for the whole contiguous sequence. Hence the overall similarity 
of the complete sequence cannot be evaluated at one go.
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In this paper the potential of discrete wavelet transform for comparison of MTB 
sequences with different resistance characteristics has been investigated. DWT has been 
employed to analyse and compare different strains of MTB sequences at various decom-
position levels by graphical and statistical measures. Comparison of the plots of GC con-
tent of all MTB sequences has also been carried out.

Wavelet transforms

A waveform of finite duration and zero average value is called a wavelet. WT is calcu-
lated using a mother wavelet function ψ(t), by convolving the original signal f(t) with the 
scaled and shifted version of the mother wavelet described by Eq. 1 where a is called the 
scaling parameter and b is called the translational parameter.

Mathematical transforms such Fourier Transforms (FT) and Short Time Fourier 
Transform (STFT) are also used in signal processing and analysis. Whereas FT only gives 
information about the various frequency components in a particular signal, STFT pro-
vides the time–frequency localization of the signal but in a fixed window frame. Wave-
let transforms in comparison to FT and STFT, offer the advantage of time frequency 
localisation of a signal by using windows of varying sizes and hence are capable of multi 
resolution of signals. There are two types of wavelet transforms: continuous wavelet 
transforms (CWT) and discrete wavelet transforms (DWT).

Since continuous wavelet transforms are calculated at all possible scales and positions, 
they generate a large amount of data and require larger computation time. In discrete 
wavelet analysis, scales and positions are chosen based on powers of two called the 
dyadic scales. After discretization the wavelet function is defined as given in Eq. 2:

where a0 and b0 are constants. The scaling term is represented as a power of a0 and the 
translation term is a factor of a0

m. Values of the parameters a0 and b0 are chosen as 2 and 
1 respectively and is called as dyadic grid scaling. The dyadic grid wavelet is expressed in 
Eq. 3 as

where ψm,n(t) represents the wavelet coefficients at scale m and location n. This dyadic 
scaling scheme is implemented using filters developed by Mallat (2000). The basic filter-
ing process is represented in Fig. 1. The original signal is filtered through a pair of high 
pass filter g(n) and low pass filter h(n) and then down sampled to get the decomposed 
signal through each filter which is half the length of the original signal. This process of 
filtering results in decomposition of the signal into different frequency components. The 
low frequency components are called approximations and high frequency components 
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are called details. This constitutes one level of decomposition, mathematically expressed 
as

where X(n) is the original signal, h[n] and g[n] are the sample sequences or impulse 
responses and Yhp(k) and Ylp(k) are the outputs of the high-pass and low-pass filters, 
respectively, after subsampling by 2. This procedure, known as sub-band coding, can 
be repeated for further decomposition. At every level, the filtering and subsampling 
results in half the number of samples (and hence half the time resolution) and half the 
frequency band spanned (and hence double the frequency resolution). The signal S after 
one level of decomposition can be expressed as S = cD + cA (Fig. 1). After the decom-
position, the original signal can be synthesized using inverse discrete wavelet transform. 
The signal is reconstructed as shown in Fig. 2 by up sampling of the decomposed signal 
followed by filtering through two complementary filters (L′ and H′) and is expressed as 
A + D = S. The low-pass and high-pass decomposition filters (L and H) and reconstruc-
tion filters (L′ and H′) together form a set of quadrature mirror filters as shown in Fig. 3.

The resolution of the signal is a measure of the amount of detail information in the sig-
nal, can be changed by the filtering operations, and the scale can be changed by up sam-
pling and down sampling operations. The decomposed signal can be broken down into 
lower resolution components by decomposing the successive approximations iteratively. 
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Signal decomposition at different frequency bands is successive high-pass and low-pass 
filtering and forms the basis of multi resolution decomposition (Fig. 4). The signal can be 
analyzed at different frequency bands and resolutions by decomposing the signal into a 
coarse approximations and details. Similar relationships also hold for the reconstructed 
signal (Fig. 5). The decomposed signal can be written as s = cA2 + cD2 + cD1. Simi-
larly the signal can be reconstructed from the successive approximations and details as 
A2 + D2 + D1 = s.

With the decomposition of the original signal into components of different scales, 
DWT provides a powerful tool to detect the patterns of variations across scales in 
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observed data. The following statistical parameters of the wavelet decompositions can 
be calculated and compared between different sequences.

1.	 Energy of a signal x(n) decomposed into approximations an and details dn at a par-
ticular scale m is given as

	

2.	 Wavelet variance, which is a scale-by-scale decomposition of variance of signal. It is 
calculated at a particular scale m as

	

where Tm,n represents the discrete wavelet coefficients and 2M (=N) is the total num-
ber of data points in a signal. Wavelet variance is a measure of the average energy per 
coefficient at each scale.

3.	 Fluctuation intensity (FI) measures the energy distribution across different scales of 
decomposition. It is calculated as

	

	 Fluctuation intensity is also called coefficient of variation and measures standard 
deviation in the variance of coefficient energies at scale m.

4.	 Correlation is a measure of the strength of linear relationship between variables. The 
correlation coefficient rxy of two random variables X and Y with expected values μx 
and μy and standard deviation σx and σy is given by

	

where Cov(X,Y) is the covariance function between two variables X and Y. Correla-
tion values lie between +1 and −1. Whereas the values of rxy close to 1 suggest linear 
relationship between X and Y, values close to −1 suggest anti-correlation between the 
two variables and values close to 0 suggest no relationship between the two variables. 
Correlation coefficients can be used to evaluate the measure of similarity between dif-
ferent sequences.

DNA

DNA is the main nucleic genetic material of the cells. There are four kinds of nitroge-
nous bases found in DNA that constitute the genomic sequences: thymine (T) and cyto-
sine (C)—called pyrimidines, adenine (A) and guanine (G)—called purines. Nucleotide 
A always pairs with T while nucleotide C always pairs with G. Hence, the two strands of 
a DNA helix are complementary and contain exactly the same number of A, T nucleo-
tides and the same number of C, G nucleotides. In order to apply graphical representa-
tion techniques, DNA sequences need to be mapped into their corresponding numerical 
values for visualization and analysis with digital signal processing methods. In this paper, 
DNA walk method (Berger et al. 2002) is used for mathematical representation wherein, 
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pyrimidines (nucleotides C, T) are assigned a value of +1 and purines (nucleotides A, 
G) are assigned a value of −1. A DNA walk is then calculated for a particular DNA 
sequence as given by Eq. 10.

where x(n) is the numerical value of the nucleotide base in a given DNA sequence. The 
DNA sequences can also be represented in the form of GC (Guanine–Cytosine) con-
tent. GC content is an important parameter of bacterial genomes which has been used 
to scan the basic makeup of the genome, as well as to understand its coding sequence 
evolution. A genome shows marked variations in its GC content within a long region of 
its sequence in contrast to the background GC content for the whole genome. GC-rich 
regions include many protein coding genes, and thus determination of GC ratio helps in 
identifying gene-rich regions of the genome. G + C content for the whole sequence is 
calculated as ratio of sum of G, C bases to the sum of A, G, C, T bases (Eq. 11).

where nA, nG, nC, nT represent the number of A, G, C, T nucleotide bases respectively 
in a sequence. The GC content can also be calculated for a part of the sequence using 
sliding window technique where GC content is calculated for fixed length of a sequence 
called window.

Results
The DNA walks of all sequences were decomposed and approximation coefficients were 
compared at level 5 (Figs. 6, 7, 8). Visual comparison of patterns in the approximation 
coefficients of DR and DS sequences showed almost similar plots in close proximity but 

(10)Y (i) =
N
∑
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(11)GC content =
nG + nC

nA+ nG + nC + nT
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the MDR and XDR sequences showed significantly higher peaks. The scalograms of all 
the sequences were also compared. Since 99 % energy of the entire sequence was con-
tained only in the approximation coefficients, the statistical parameters of only level 5 
approximations of all the sequences were compared (Table 1). The energy contained in 
approximation coefficients of MDR and XDR sequences is much higher than that of DS 
and DR sequences. Wavelet variance of the MDR and XDR sequences was also higher in 
magnitude in comparison to the DS and DR sequences. Fluctuation Intensity is a statisti-
cal measure of the dispersion of data points in a data series around the mean. Compari-
son of FI values showed that the XDR and MDR sequences exhibited values less than 1 
whereas all DS and DR sequences showed FI values of greater than 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

 

 

X: 2.02e+006
Y: 1.962e+004

Sequence Length

Le
ve

l 5
 A

pp
ro

xi
m

at
io

ns
 P

lo
t o

f D
N

A
 W

al
k

X: 2.384e+006
Y: 2.677e+004

X: 2.046e+006
Y: 1.894e+004

DS Seq3
MDR Seq7
DS Seq9
DS Seq10

Fig. 7  Level 5 approximation plots of DNA walk

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

X: 2.055e+006
Y: 1.913e+004

Sequence Length

Le
ve

l 5
 A

pp
ro

xi
m

at
io

n 
P

lo
ts

 o
f D

N
A

 W
al

k X: 2.016e+006
Y: 1.937e+004

X: 2.381e+006
Y: 2.669e+004

XDR Seq8
DR Seq5
DS Seq11
DS Seq12

Fig. 8  Level 5 approximation plots of DNA walk



Page 10 of 15Saini and Dewan ﻿SpringerPlus  (2016) 5:64 

To quantify the similarity in the structural organization of these sequences, correlation 
measures were evaluated for the level 5 approximation coefficients (Table 2). From the 
values of correlation coefficients, it is evident that all DS, DR sequences are very similar 
to each other as they possess correlation values of around 0.99. The two MDR sequences 
and one XDR sequence are also highly correlated to each other as observed from their 
correlation coefficients nearing 1. At the same time the correlation values of 0.65–0.69 
between the DS/DR and XDR/MDR sequences suggest that the DS and DR sequences 
possess different structural and sequence organization in comparison to the XDR and 
MDR sequences. Correlation value of 1 for the two MDR sequences (seq6, 7) and two 
DS sequences (seq10, 12) shows that these sequences exhibit perfect similarity in nucle-
otide content.

The sequences were also compared by plotting their windowed GC content (Figs. 9, 
10). Plots of windowed GC content cannot compare the sequences for similarities/dis-
similarities except for locating the maxima and minima of GC content for a particular 

Table 1  Statistical estimates of MTB sequences

Sequence 
number

NCBI 
accession 
number

Resistance 
type

Energy 
(×1014)

Variance 
(×107)

Fluc-
tuation 
intensity

Mean 
(×103)

Average GC 
content

Seq1 CP002992 DS 4.5134 4.5311 1.0651 7.5697 0.6560

Seq2 NC_009565 DS 4.5574 4.36 1.0717 7.072 0.6561

Seq3 CP001641 DS 4.875 4.1582 1.0814 8.3212 0.6561

Seq4 CP001642 DR 4.8752 4.3167 1.0552 8.2148 0.6559

Seq5 CP001664 DR 4.4055 4.3616 1.0770 7.5048 0.6563

Seq6 NC_012943 MDR 12.885 5.5967 0.7220 15.395 0.6561

Seq7 CP001658.1 MDR 12.855 5.5967 0.7220 15.395 0.6561

Seq8 NC_018078 XDR 12.866 5.6036 0.7243 15.377 0.6561

Seq9 NC_021251 DS 4.794 4.1725 1.0663 8.1778 0.6561

Seq10 NC_000962 DS 4.7932 4.284 1.0587 8.1134 0.6561

Seq11 NC_009525 DS 4.7418 4.261 1.0637 7.9384 0.6561

Seq12 CP002884 DS 4.794 4.172 1.0633 8.1778 0.6561

Table 2  Correlation coefficients

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10 Seq11 Seq12

Seq1 1 0.9952 0.9963 0.9972 0.9980 0.6526 0.6526 0.6551 0.9948 0.9963 0.9959 0.9948

Seq2 1 0.9961 0.9973 0.9976 0.6743 0.6743 0.6765 0.9978 0.9963 0.9993 0.9978

Seq3 1 0.9987 0.9969 0.6975 0.6975 0.6997 0.9986 0.9984 0.9969 0.9986

Seq4 1 0.9988 0.6754 0.6754 0.6766 0.9986 0.9990 0.9980 0.9986

Seq5 1 0.6558 0.6558 0.6611 0.9974 0.9974 0.9985 0.9980

Seq6 1 1 0.9988 0.6984 0.6876 0.6802 0.6984

Seq7 1 0.9988 0.6984 0.6876 0.6802 0.6984

Seq8 1 0.7005 0.6897 0.6823 0.7005

Seq9 1 0.9994 0.9986 1

Seq10 1 0.9989 0.9994

Seq11 1 0.9986

Seq12 1



Page 11 of 15Saini and Dewan ﻿SpringerPlus  (2016) 5:64 

sequence. However wavelet plots of level 5 approximations of windowed GC content 
show peaks in specific regions along the complete sequences which can be compared 
visually (Figs. 11, 12, 13). The locations of the peaks can help in identifying gene rich 
regions. From the Figs. 11, 12, 13, it is observed that the locations of positive and nega-
tive peaks of all the drug susceptible and drug resistant sequences are overlapping with 
only slight deviations in their peak values. This suggests that in these sequences the 
genes are located at identical locations with only slight differences in the magnitude of 
GC content. However, MDR and XDR sequences showed significantly different plots. 
In the region between 1 Mbase to 3.5 Mbases along the sequence, most of their peaks 
appeared shifted with the positive peaks exhibiting significantly lower values and a neg-
ative peak of a much higher value in comparison to the peaks in plots of DS and DR 
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Fig. 9  Windowed GC content for sequences 1–6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0.5

0.6

0.7

0.8

0.9

Sequence Length

G
C

 C
on

te
nt

Sequence 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0.5

0.6

0.7

0.8

0.9

G
C

 C
on

te
nt

Sequence Length

Sequence 8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0.5

0.6

0.7

0.8

0.9

Sequence Length

G
C

 C
on

te
nt

Sequence 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0.5

0.6

0.7

0.8

0.9

G
C

 C
on

te
nt

Sequence Length

Sequence 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0.5

0.6

0.7

0.8

0.9

Sequence Length

G
C

 C
on

te
nt

Sequence 11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0.5

0.6

0.7

0.8

0.9
Sequence 12

G
C

 C
on

te
nt

Sequence Length

Fig. 10  Windowed GC content for sequences 7–12



Page 12 of 15Saini and Dewan ﻿SpringerPlus  (2016) 5:64 

sequences. Thus the organisation of the GC content of the XDR and MDR sequences is 
significantly different from that of DS and DR sequences. This suggests that the gene rich 
regions in MDR and XDR sequences are not located at similar locations as in DS and DR 
regions.

Thus from all the results it is observed that the wavelet coefficients of MDR and XDR 
sequences possess similar statistical estimates but their parameters are totally differ-
ent in magnitude when compared with the DR and DS sequences. Of all the estimates, 
energy is the most distinguishing parameter. The energy of MDR and XDR sequences is 
nearly three times the energy of DR and DS sequences. Therefore it can be used to seg-
regate the sequences broadly into two groups- one group which contains the DR and DS 
MTB while the other group contains the XDR and MDR MTB. Any unknown sequence 
can be categorised as DS or DR if it possesses energy magnitude roughly around 5 × 1014 
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Fig. 11  Level 5 approximation plots of GC content
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while if the energy of the sequence is more than 10 × 1014, the sequence can be catego-
rised as XDR or MDR.

Conclusions
Several features of genomic sequences of MTB, irrespective of their length can be visual-
ized using DWT analysis. The plots of multiresolution decompositions of the sequences 
can be used to interpret the regions of biological interest underlying them. Such multi 
resolution decompositions are not possible with other signal processing techniques. 
Apart from the visual representations, statistical approaches such as correlation using 
DWT can facilitate the determination of similarity between different sequences with 
lengths of the order of millions of bases without the need of sequence alignment and 
insertion–deletion events to be considered in comparison to BLAST. Therefore wavelet 
transforms can provide a faster method of assessing and interpreting sequences based 
on their nucleotide content. DWT decomposition plots can also help identify the pat-
terns underlying the GC content that can be visualised to identify gene rich regions. The 
control of drug resistant TB relies on preventing the amplification of drug resistance as 
well as timely diagnosis of drug-resistant disease. This DWT based method can help 
identify the broad category of the resistance type from the complete sequence and thus 
can be used as an additional method along with conventional sequence based methods 
for development of new diagnostic tools.

Methods
Different MTB sequences (Ilina et  al. 2013): DR, MDR, XDR and DS were down-
loaded from NCBI (National Center for Biotechnology Information 2012) database for 
comparison (Table  1). To apply the signal processing techniques, the DNA sequences 
were mapped into a mathematical representation. DNA walks of all the mathemati-
cally represented sequences were then analyzed using discrete Haar wavelet trans-
form. The sequences were decomposed up to 5 levels of decomposition. Statistical 
measures of energy, wavelet variance, fluctuation intensity, and correlation for each of 
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the decomposed sequences were evaluated and compared. The GC content of all the 
sequences was also evaluated and plotted using a sliding window of 10,000 bases. The 
GC plots were then analyzed using DWT. The pattern differences of different sequences 
were visualized by comparing their approximation coefficients plots.
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