
Shafee et al. SpringerPlus  (2016) 5:27 
DOI 10.1186/s40064-015-1609-z

SOFTWARE

Structural homology guided alignment 
of cysteine rich proteins
Thomas M. A. Shafee1*  , Andrew J. Robinson2,3, Nicole van der Weerden1 and Marilyn A. Anderson1

Abstract 

Background:  Cysteine rich protein families are notoriously difficult to align due to low sequence identity and fre-
quent insertions and deletions.

Results:  Here we present an alignment method that ensures homologous cysteines align by assigning a unique 10 
amino acid barcode to those identified as structurally homologous by the DALI webserver. The free inter-cysteine 
regions of the barcoded sequences can then be aligned using any standard algorithm. Finally the barcodes are 
replaced with the original columns to yield an alignment which requires the minimum of manual refinement.

Conclusions:  Using structural homology information to constrain sequence alignments allows the alignment of 
highly divergent, repetitive sequences that are poorly dealt with by existing algorithms. Tools are provided to perform 
this method online using the CysBar web-tool (http://CysBar.science.latrobe.edu.au) and offline (python script avail-
able from http://github.com/ts404/CysBar).
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Background
Cysteine Rich Proteins (CRPs) are found in all kingdoms 
of life and are involved in diverse functions—from innate 
immunity to signalling to neurotoxicity (Craik et  al. 
2001; Koppers et al. 2011; Van der Weerden and Ander-
son 2013). Their properties are markedly different from 
globular proteins since their stability stems from the 
covalent disulphide bonds that cross-link their sequence, 
rather than relying on a hydrophobic core (Colgrave and 
Craik 2004; Fass 2012). This robustness allows families to 
evolve high sequence diversity in the inter-cysteine loops 
as well as making them interesting scaffolds for protein 
engineering (Gracy and Chiche 2011; Northfield et  al. 
2014). In this work we use the example of defensins, a 
family of small, cationic CRPs found in plants in inver-
tebrates which perform key roles in defence against 
pathogens.

Protein sequence alignment is the first step in 
many bioinformatic analyses necessary to understand 

sequence-function relationships. Errors in alignment 
may lead to erroneous conclusions being drawn and 
so having accurate alignments is very important. As 
well as increasingly accurate multiple sequence align-
ment tools being developed, some software tools take 
existing alignments and refine them. For example the 
RASCAL and Refiner software (Thompson et  al. 2003; 
Chakrabarti et  al. 2006), however CRPs still pose prob-
lems for most alignment algorithms, leading to a high 
reliance on extensive manual alignment (Dassanayake 
et  al. 2007; Whittington et  al. 2008). This is due to two 
factors. Firstly, the only conserved part of the sequences 
is often the cysteines comprising the disulphide bridges 
and sequence identity within a family is frequently below 
15 % (Van der Weerden and Anderson 2013). Secondly, 
inter-cysteine loops typically have a high rate of inser-
tion and deletion leading to large gaps in the alignment. 
Together these factors lead to misalignment of sequences 
such that alignment columns frequently contain struc-
turally non-homologous cysteines (Russell and Ponting 
1998; Liu et al. 2009; Dwivedi and Gadagkar 2009).

Here we solve these problems with a method for align-
ing divergent, disulphide-rich protein sequences by iden-
tifying structurally homologous cysteines using the DALI 
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server (Holm and Rosenström 2010) and replacing them 
with 10 amino acid barcodes (Fig.  1). Tertiary struc-
ture is widely considered a good indicator of homology 
since structure is more conserved than protein or DNA 
sequence (Grishin 2001; Hasegawa and Holm 2009). Bar-
coding homologous cysteines by CysBar links the known 
structural information to the sequences.

The barcoded sequences can then be aligned by exist-
ing algorithms with the barcoded columns effectively 

forced to align. Finally, the barcode sequences are 
removed from the alignment and the original columns 
restored by CysBar to yield a final alignment. This pro-
cess reduces the need for manual manipulation leading to 
a more impartial alignment. Barcoding and reconstruc-
tion steps can be performed online with the new CysBar 
web-tool (http://CysBar.science.latrobe.edu.au) or with 
the offline python script (cysbar.py) and results analysed 
with the loopproperties.xlsx spreadsheet.

Fig. 1  Overview of barcode alignment method. Lack of sequence conservation and abundance of cysteines prevents automatic alignment by 
standard methods. Homologous cysteines identified from structural alignment are replaced with 10aa barcodes to pin them in place. Standard 
algorithms are used to realign free loops between the barcoded columns. Barcodes are exchanged for the original columns for the final alignment 
and phylogeny calculation. Sequences are coloured with cysteines in yellow, any other residue in grey, gaps in light grey, and barcode sequences in 
blue

http://CysBar.science.latrobe.edu.au
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Implementation and results
Repeat cysteines and divergent loop sequences cause 
cysteine misalignment
CRP superfamilies are typically highly sequence 
diverse, possibly due to the stability of the small, disul-
phide-constrained fold. Indeed, the cysteines are often 
the only conserved residue. In the absence of similar 
sequence, alignment algorithms are typically heavily 
biased by attempting to align cysteines. Additionally, 
the high insertion and deletion rate and variations in 
disulphide pattern causes frequent cysteine misalign-
ment (Additional file  1: Figure S1). Misalignment of 
15–25 % of the cysteines (Additional file 1: Figure S2a) 
causes further misalignment between non-homol-
ogous inter-cysteine residues. For example, the fre-
quent insertions and deletions within known secondary 
structure (Additional file  1: Figure S2b) conflicts with 
known trends in structure evolution (Pascarella and 
Argos 1992; Zhang et al. 2012).

Structure used to align homologous cysteines
To address the deficiencies of standard alignment proto-
cols, it is necessary to use structural homology to iden-
tify the homologous cysteines that should be barcoded. 
The DALI (Holm and Rosenström 2010) structural 
homology webserver can be queried using a PDB struc-
ture and return both a list of homologous structures, 
and a sequence alignment based on backbone positions 
of the overlaid structures (Fig. 2). This alignment is used 
to identify homologous cysteines. In the sample data-
set of defensins, cysteines are counted as homologous 
if they are either in the same column, or a neighbour-
ing column (having shifted  <3Å along the structure). 
Checking which columns contain a set of homologous 
cysteines is the only step that requires manual decision 
making.

Sequences without known structure are assigned to the 
closest relative with known structure by querying BLAST 
(Altschul et  al. 1990) with the sequences of known 

Fig. 2  Identifying homologous cysteines by structural alignment. a The starting query structure (1MR4). b Overlay of aligned structures identified 
by DALI (Holm and Rosenström 2010). c The cysteine pairs indicated by DALI to be homologous in the structures. d Alignment of sequence based 
on structure by DALI. PDB accession numbers: 1MR4, 1N4N, 1UGL, 2LR5, 1I2V, 1FJN, 1SN1, 2PTA
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structure. This process generates sub-group alignments 
containing at least one sequence of known structure 
(Additional file  1: Figure S3). These initial sub-groups 
only need to accurately align cysteines. In the absence of 
any sequence similarity to a known structure, homolo-
gous cysteines cannot be reliably identified, although a 
number of prediction programs exist (Fariselli and Casa-
dio 2001; Vullo and Frasconi 2004; Ceroni et al. 2006).

Barcoding of cysteines with CysBar maintains the 
structural alignment of sequences
In order to merge these sub-group alignments, the non-
homologous cysteines need to be distinguished from 
one another by retaining structural information in the 
sequences. To do this, alignment columns known to con-
tain structurally homologous residues are replaced with 
10 amino acid barcodes (Additional file  1: Figure S4a). 
This is done with either the user-friendly CysBar online 
web-tool or running the barcoder tool (cysbar.py) locally.

Two user inputs are required for each sub-group: firstly 
an alignment fasta file, and secondly the alignment posi-
tions to be barcoded. Each barcode is composed of the 
four least common amino acids (Wilkins et  al. 1999) 
to prevent accidental mis-alignment to non-barcode 
sequence (Table 1).

The default set of barcode sequences minimise the 
likelihood of misalignment with the input sequences 
or with each other, based on principles developed for 
multiplex sequencing (Bystrykh 2012; Faircloth and 
Glenn 2012). Each sequence consists of the 4 least 
common amino acids in high-complexity sequences 
(Shannon entropy  ≥1.8). Chance identity to random 
sequence is extremely low, with P(match) ≈  10−10 for 
an alignment of 1000 sequences of length 1000. Addi-
tionally, to minimise the probability that barcodes erro-
neously align with one another, each differs from the 
others by at least 4 substitutions or indels (Hamming+ 

distance ≥4), with the first 8 barcodes differing from 
any others by 7 changes. The default set of 949 bar-
codes is ordered such that the sequences with higher 
robustness are used first. Equally robust barcodes are 
then ranked from high to low complexity. A full list 
of 948 default sequences, their Shannon entropy, and 
Hamming+ distance is contained in supplementary file 
default_barcode_info.csv.

Finally, the barcodes to be used are checked automati-
cally for matches to the input sequences and the user 
notified that the next suitable barcode has been used 
instead. Custom barcodes of any length or sequence can 
be entered if required. The output fasta file is compat-
ible with any standard alignment program and the resi-
dues in loops between the barcoded columns are free to 
realign (Additional file  1: Figure S4b). The identities of 
residues that were replaced with barcodes are stored in 
the fasta sequence ID for later reinsertion into the final 
alignment.

The barcoded sequences can then be re-aligned with 
any standard alignment algorithm, which allows the 
inter-cysteine loops to optimally align with the cysteine 
columns constrained by the barcode sequences. In this 
example Clustal Omega was used to align the barcoded 
defensin sequences since it is both accurate and scales 
well to large alignments (Sievers et al. 2011). The simul-
taneous alignment of all inter-cysteine regions, rather 
than aligning each block in isolation, allows the entire 
sequence to inform optimal alignment.

Once the loops have been realigned, the second page 
of the CysBar web-tool or reconstructer function of the 
python tool will return the original columns in place 
of the barcodes to generate a final sequence alignment 
(Fig. 3). The only user input required for this is the rea-
ligned fasta file.

The final alignment by this method is superior to the 
initial, naïve alignments. Homologous cysteine align-
ment is retained at 100  %, rather than the 75–85  % 
by standard methods. Indels are also primarily pre-
dicted in loop regions, in agreement with the known 
evolutionary trends (Additional file  1: Figure S2). 
The sequence of the default barcodes do not affect 
the final alignment. When the method was repeated 
10 times on the example dataset (using the first 80 
default barcodes), no misalignment of barcodes to 
target sequences was observed. These alignments dif-
fered by <2 % (the same margin for repeating identical 
alignments with different random seeds). Repeating 
the method on a larger set of 965 sequences (Addi-
tional file 1: Figure S5), finds that the misalignment of 
cysteines and secondary structure by standard algo-
rithms is slightly poorer than for the smaller example 
set (Additional file 1: Figure S6).

Table 1  First 8 default barcode sequences used to replace 
homologous cysteine columns

ID Sequence

bc.001 WWYHWYYHMM

bc.002 WHWMMHYHYY

bc.003 WWHHMWMMYW

bc.004 WHYYMMWMWM

bc.005 HWWMYHHMHW

bc.006 HMHYYWHHYM

bc.007 MMYMWMWHHW

bc.008 MYYHHMYWYY
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In addition to the final alignment, a.csv file is pro-
duced containing the biophysical properties for each 
loop of each sequence: length, hydrophobicity and net 

charge (Kyte and Doolittle 1982). These variables can 
also be user-defined if an alternative set of values is 
required. This file can be pasted into loopproperties.

Fig. 3  Final alignment. a Alignment of the sequences after barcodes have been replaced with original sequence columns by CysBar-r. Sequences 
coloured with cysteines in yellow, any other residue in grey, gaps in light grey. b Distribution of lengths of inter-cysteine loops. c–e Distribution of 
sequence length, hydrophobicity and net charge. Data from oop_statistics.csv processed by loopproperties.xlsx
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xlsx spreadsheet to display and graphically summarise 
the loop property results in Microsoft Excel (Additional 
file  1: Figure S7). This allows trends and similarities to 
be identified in the properties of sequences that are too 
diverse for easy comparison.

Conclusion
Using the CysBar webtool and offline tools allows the 
alignment of previously unalignable protein sequences. 
This enables more robust bioinformatics on divergent, 
cysteine-rich sequences that previously had to be aligned 
manually. Most importantly, cysteine misalignment is 
abolished. A secondary effect of the improved cysteine 
alignment is that the inter-cysteine loop alignment is 
not disturbed by non-homologous loops. Finally, mini-
mising manual alignment reduces user bias. Although 
extreme sequence diversity means that there is never 
enough information encoded in sequence or structure for 
perfect alignments, this method represents a significant 
improvement on previous protocols.

The CysBar web-tool provides a simple graphical user 
interface for performing the barcoding and reconstructing 
steps of the method. The biophysical properties are sum-
marised by the loopproperties.xlsx spreadsheet interface 
and can be used to categorise sequences by their general 
properties even when their sequences are highly diverse. 
The annotated python script cysbar.py is also included in 
the supplementary materials along with a detailed readme 
containing step-by-step instructions and example data sets.

Defensin sequences have been used here as examples, 
however this method is equally applicable to other CRP 
superfamilies for which protein structures are avail-
able. Finally, the method is also applicable to sequences 
containing residues for which homology can be unam-
biguously assigned based on structural alignment (for 
example key catalytic residues).

Availability and requirements
Project name: CysBar.

Project home page: http://CysBar.science.latrobe.edu.au/.
Scripts repository: http://github.com/TS404/CysBar/.
Operating system(s):  The web-tool can be accessed 

through any web browsers. The python script runs on any 
Linux-like platform, such as the terminal on Linux/Unix/
MacOS, or runs on Microsoft Windows with Python 
installed. The excel spreadsheet requires Microsoft Excel 
2007 or newer.

Programming language: Python and PHP.
License: Academic Free License 3.0.
Any restrictions to use by non-academics: None 

beyond the general restriction against redistribution in 
the license.
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