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Abstract

Background: There is an urgent need to understand the pathways and processes underlying Alzheimer’s disease
(AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer's
dementia using an unsupervised lipid, protein and gene multi-omics integrative approach.

Methods: A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185
controls, and two proteomics datasets (295 AD, 159 MCl and 197 controls) were used for weighted gene co-
expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD
diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were
analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular
and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid
modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein
modules that showed high correlation with AD phenotypes were also explored.

Results: Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with
clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids,
triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response
and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-
mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and
complement systems and in lipid metabolism (the APOE €4 genotype).
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Conclusions: Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are

strongly associated with AD phenotypes.
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Background

There is an urgent need to further understand the path-
ways and processes underlying Alzheimer’s disease (AD)
for early diagnosis and development of effective treatments.
With the estimated number of patients suffering from de-
mentia rising up to 115.4 million worldwide in 2050 [1],
AD is undoubtedly one of the major healthcare challenges
in the twenty-first century. Blood-based biomarkers serve
as an easily accessible and minimally invasive screening
tool to identify at-risk individuals for further investigation
and monitoring or stratification in clinical trials. In
addition, they can reveal molecular pathways leading to
AD, providing new opportunities for drug development
[2].

In the past decade, a large number of untargeted and
targeted blood biomarker studies have revealed and
replicated associations of proteins either individually or
in combinations with AD and AD endophenotypes.
These endophenotypes include brain atrophy, rate of
cognitive decline (ROD) and amyloid burden [3, 4]. Al-
though the majority of protein biomarkers have failed to
survive further validations, several proteins, especially in-
flammatory proteins and proteins involved in the com-
plement pathway, have been consistently associated with
AD or AD endophenotypes, including complement C6
and C-C motif chemokine 15 [3].

More recently, a number of untargeted and targeted
blood metabolomics studies have revealed the roles of
lipids in AD [5-7]. Lipidomics aims to identify and
quantify thousands of lipids. It is regarded as a subset of
metabolomics [8, 9], reflecting functional networks of
downstream changes of the genome, transcriptome and
proteome [10], and bridging the phenotype—genotype
gap due to their close association with cellular processes
[11]. We have previously performed lipid phenotyping
and identified a panel of 10 metabolites, which predicted
an AD training dataset with 83% accuracy and a test
dataset with 79% accuracy [12]. As in the case of
proteins, results have not always been the same, but
phosphatidylcholines (PCs), cholesteryl esters (ChEs),
and triglycerides (TGs) have been consistently shown to
be altered in mild cognitive impairment (MCI) and AD
compared to controls [7, 12—14].

Most biomarker studies to date have been restricted to
one modality (proteomics or metabolomics), and only a
modest number have used systems biology approaches

[15-17]. Network analysis methods provide a powerful
tool to depict the disease-associated networks of highly
connected molecules, which could be potential targets
for AD investigation and treatment. A small number of
blood and brain network studies using Weighted Gene
(or Protein or Lipid) Correlation Network Analysis
(WGCNA) have highlighted gene, protein and lipid
pathways that are involved in the aetiology, initiation,
and progression of AD [15, 18].

In the present study, we aimed to explore the role of
blood lipids and proteins in AD at a systems level by
performing an integrative multiscale network analysis
and correlating the identified modules with AD diagno-
sis, brain atrophy and the ROD. As genome-wide associ-
ation studies and meta-analyses have consistently
implicated immunity and lipid processing in AD [19], we
also integrated these networks with established AD risk
loci (study design shown in Fig. 1).

Methods
Participants
Three datasets were employed in this study (Table 1).
Briefly, dataset 1 contained proteomic data across 201
AD patients, 104 individuals with MCI and 97 controls
from the EU-funded AddNeuroMed (ANM) study [20].
Dataset 2 consisted of lipidomic data across 185 AD, 40
MCI and 185 control individuals from the Maudsley and
King’s Healthcare Partners Dementia Case Register
(DCR) and the ANM study. The datasets 1 and 2 over-
lapped on 240 individuals, comprising 147 AD, 10 MCI
and 83 controls. An additional proteomic dataset 3 from
the Alzheimer’s Research Trust (ART) cohort [21] was in-
cluded with 94 AD, 55 MCI and 100 control individuals.
All individuals with AD met the criteria for probable
AD according to the National Institute of Neurological
and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association
criteria [22], and the fourth edition of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-IV)
[23]. Subjects in the MCI group were mainly recruited
from memory clinics, and scored 0.5 on the total Clinical
Dementia Rating Scale (CDR) or 0.5 or 1 on the memory
category of the CDR [24]. All MCI individuals reported
memory problems, but showed no significant impair-
ment in daily living according to the Petersen’s criteria
of MCI [25]. Individuals in the control group showed no
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Fig. 1 Study workflow. Protein and lipid modules were produced, and their preservation was investigated. An internal validation among AD, MCI
and CTL groups was performed for the protein and lipid modules, and additional external validation of the protein modules was performed
against the ART cohort. Correlation analyses among lipid modules, protein modules and phenotypes (clinical diagnosis, rate of cognitive decline,
left and right hippocampal volumes, left and right entorhinal cortex volumes) were made separately and led to a selected number of modules.
Gene ontology enrichment analysis was applied for selected protein modules, while the annotation of lipid species was conducted for selected
lipid modules. The associations between lipid/protein modules and AD risk loci were also investigated

signs of cognitive impairment in the mini-mental state
examination (MMSE) [26] or ADAS-cog assessment.
Subjects were excluded from this study if they had any
other significant psychiatric or neurological illness. All
AD cases had an age-of-onset of at least 60 years, and
the control and MCI individuals were 60 years or above
at examination. Finally, AD diagnosis was confirmed by
pathological examination in 5AD patients from the
DCR cohort and 15 AD patients from the ART cohort.
Each individual was required to fast for 2 h before sam-
ple collection, and then 10 ml of blood was collected in
tubes coated with sodium ethylenediaminetetraacetic
acid to prevent clotting. The whole blood was centri-
fuged at 2000 g for 10 min under 4 °C to collect plasma

and stored it at —80°C. All samples were centrifuged
within approximately 2 h after collection.

Proteomic and lipidomic analyses

The lipidomic and proteomic experiments have been
described previously in detail [14, 27]. All plasma samples
used for the lipidomic and proteomic analyses were col-
lected at baseline visit. Overall, 1016 proteins with Uniprot
ID were measured with a Slow Off-rate Modified Aptamer
(SOMAmer)-based capture array called “SOMAscan”
(SomaLogic, Inc). Lipidomics was performed by a Waters
ACQUITY UPLC and XEVO QTOF system where 2216
lipid features were measured and included.
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Table 1 Sample demographics
Dataset AD MCl Controls Differences among three groups*
Proteomic dataset n=210 n=104 n=297
(dataset 1, n = 411)
Age (years), mean (SD) 77 (6.5) 75 (6.1) 72 (6.6) P =1.13e-08
Gender (female/male) 133/77 59/45 56/41 P =04431
APOE €4 allele (absence/presence) 89/115 58/46 65/32 P = 5.349¢-04
ROD per year, mean (SD)* —149 (1.26) (n =127) NA NA NA
Brain imaging n=>53 n=0 n=67
Whole brain volume, mean (SD)° 0.66 (0.073) NA 0.69 (0.043) P =0.003184
Left hippocampal volume, mean (SD) o 0.0018 (0.00037) NA 0.0024 P=7717e-15
(0.00031)
Right hippocampal volume, mean (SD) ° 0.0019 (0.00041) NA 0.0025 (0.00031) P =3535e-13
Left entorhinal cortical volume, mean (SD) © 0.00095 (0.00038) NA 0.0012 (0.00024) P = 1433e-05
Right entorhinal cortical volume, mean (SD) ®  0.00092 (0.00034) NA 0.0013 (0.00028) P = 3.562e-08
Lipidomic dataset n=185 n=40 n=190
(dataset 2, n = 415)
Age (years), mean (SD) 77 (6.9) 75 (6.3) 79 (5.5) P =6.77e-05
Gender (female/male) 114/71 20/20 116/74 P=0377
APOE €4 allele (absence/presence) 73/110 22/15 138/51 P =8.725e-10
ROD per year, mean (SD)? —1.50 (1.22) NA NA NA
(n =144)
Brain imaging results n=57 n=_8 n=67
Whole brain volume, mean (SD) ° 0.66 (0.071) 0.71 (0.041) 0.69 (0.098) P = 0.0006595
Left hippocampal volume, mean (SD) o 0.0018 (0.00038) 0.0021 (0.00031)  0.0024 (0.00060) P = 1.763e-15
Right hippocampal volume, mean (SD) ° 0.0018 (0.00043) 0.0022 (0.00032)  0.0024 (0.00062) P =2572e-13
Left entorhinal cortical volume, mean (SD) ® 0.00093 (0.00038) 0.0012 (0.00024)  0.0012 (0.00030) P =2.782e-06
Right entorhinal cortical volume, mean (SD) 5 000090 (0.00033) 0.0011 (0.00028)  0.0013 (0.00027) P =4.114e-09
Proteomic validation dataset n =9 n=>55 n =100
(dataset 3, n = 249)
Age (years), mean (SD) 83 (6.2) 77 (4.5) 79 (7.0) P =202e-12
Gender (female/male) 72/22 35/20 47/53 P =1.185e-04
APOE €4 allele (absence/presence) 40/50 30/10 79/20 P = 8.204e-07

AD Alzheimer's disease, ROD Rate of cognitive decline, SD Standard deviation, NA Not available
*Differences in the means/frequencies of clinical/demographic variables were tested using ANOVA, t test or x2 test

“Data of the rate of cognitive decline were available for a subset of AD patients

PSMRI data were available from a subset of study participants

Structural magnetic resonance imaging (sMRI)

Volumes of the whole brain, the hippocampi and the
entorhinal cortices were obtained from subjects who had
undergone sMRI (Table 1). Regions were normalized by
intracranial volume [4]. The detailed information regard-
ing data acquisition, pre-processing, and quality control
assessment has been described elsewhere [28, 29]. Before
analyses, sSMRI measures were standardized to have a
mean of 0 and a standard deviation (SD) of 1.

Calculation of ROD

ROD was available from 127 AD patients in dataset 1 and
144 AD patients in dataset 2. The ROD was calculated
based on longitudinal MMSE assessments [30], and only

participants with at least three MMSE measures were in-
cluded for linear mixed effect models [27]. Calculations
were done separately for ANM and DCR due to the
differences in assessment windows between the cohorts.
After covariate adjustment, the slope coefficient obtained
from the final model for each sample was then used as the
ROD, defined as the change in MMSE score per day [27].

Weighted lipid co-expression network analysis

Prior to network analysis, missing values were imputed
using the k-nearest neighbour (KNN) imputation func-
tion from “impute” package within R version 3.6.1 [31].
Inverse normal transformation (quantile normalisation)
was applied to normalize the lipidomics data (dataset 2).
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Principal component analysis (PCA) was conducted on
the genotype data to extract principal components that
represent the population structure. Each normalised
lipid was then regressed against age, gender, batch and
the first seven principal components. The lipid residuals
were used in downstream analyses.

A weighted lipid co-expression network was built with R
package “WGCNA” [32] using the inverse-normalized lipi-
domics residuals. Briefly, a thresholding power of 12 was
chosen (as it was the smallest threshold that resulted in a
scale-free R fit of 0.9) and the signed network was created
by calculating the component-wise minimum values for
topologic overlap (TO). Using 1 — TO (dissTOM) as the
distance measure, lipid features were hierarchically clus-
tered. Initial module assignments were determined by
using a dynamic tree-cutting algorithm (“tree” method,
cutHeight = 0.99, deepSplit = True, minModulesize = 30).

Before applying the network analysis to the whole
lipidomics dataset, internal module preservation was
applied to verify that module assignments were not
affected by the diagnosis groups. This was conducted by
splitting lipidomics dataset into three sub-datasets
according to the clinical status (AD, MCI, or control).
The module preservation analysis was applied for any
two sub-datasets, assigning one as the reference dataset
and the other as the test dataset.

The resulting 20 modules or clusters of co-expressed
lipid features were selected by merging modules based
on the clustering of module eigenlipids (MEs; or the 1st
principal component of the module). The module
membership (kME) quantifies how close a lipid is to a
given module and can be measured by calculating the
correlation between individual lipids and the ME. Lipids
with high kME (top 10) in the module were informally
referred to as top drivers [33].

The associations between the eigenlipids of 20 modules
and six phenotypes including AD clinical diagnosis (AD vs
controls), left and right hippocampal volumes, left and
right entorhinal cortical volumes and the ROD, were in-
vestigated using Pearson correlation. Only modules associ-
ated with more than one phenotype and having at least
one association passing Bonferroni correction threshold
(P =4.2e-04) were selected for further analysis. The rela-
tionship between lipid correlation with AD phenotypes
and lipid module membership in selected modules was
also investigated to examine the association of top module
drivers with the examined phenotypes.

Weighted protein co-expression network analysis

Similar pre-treatment approaches were applied to both
ANM and ART proteomics datasets. After imputing
missing values using KNN [31], log2 transformation was
applied and values outside of 4 SDs of the mean were
excluded. The log2-transformed and outlier-removed
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proteomics data were regressed against age, gender and
the first seven PCs (for the ANM cohort). The resulting
datasets were utilized for further analyses.

Two weighted protein co-expression networks were
built for the above pre-treated datasets using WGCNA
[32]. A thresholding power of 7 was chosen and the
signed networks for both datasets were created following
the same steps described in the “weighted lipid co-
expression network” section, except for using a mini-
mum module size of 17 [15]. For both proteomics data-
sets, 17 modules were built.

The internal preservation analyses as previously de-
scribed were applied in each proteomics dataset to investi-
gate whether the generated modules were preserved in
AD patients, controls and MCI individuals. External valid-
ation was also conducted using dataset 1 as reference,
dataset 3 as test and vice versa. Cross-tabulation analysis
was then employed to investigate module overlap and cor-
relations between the two datasets [34]. After validating
the modules, Pearson’s correlation with Bonferroni cor-
rection (P =4.9e-04) was applied to investigate the associ-
ations between the six phenotypes and the module
eigenproteins for 17 modules in dataset 1. The relation-
ship between individual protein correlations with AD phe-
notypes and protein module membership kME in selected
modules was also explored as in the case of lipid modules.

Associations between lipid and protein modules

The associations between five lipid and five protein mod-
ules that were associated with AD phenotypes at a Bonfer-
roni corrected level were also analyzed with Pearson’s
correlation coefficient in (i) all individuals (overlapping
samples between ANM proteomics and lipidomics data-
set, n=240); (ii) only AD group; and (iii) only control
group. The correlations of individual lipids to proteins in
modules that passed Bonferroni correction (P =2e-03)
were further investigated at two different thresholds
with correlation coefficient absolute values in the
ranges of 0.1-1 and 0.2-1, respectively.

Annotation of top drivers of the lipid modules and gene
set enrichment analyses of protein modules

Lipid species annotation was performed in the selected
lipid modules, ie. those associated with at least two
phenotypes. To examine the biological processes and the
molecular and cellular functions of protein modules as-
sociated with the tested phenotypes, Gene Ontology
(GO) enrichment analysis against KEGG and Reactome
pathways and Over-representation analysis (ORA) were
performed using WebGestalt (WEB-based Gene SeT
AnaLysis Toolkit) [35]. The genome database was used
as the background/reference set. Z scores determined
the over-representation of ontologies in a module and
one-tailed Fisher’s exact tests (Benjamini-Hochberg FDR
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corrected) were used to assess the significance of the Z
score [36]. A minimum of five genes per ontology were
used as filters prior to pruning the ontologies and the
FDR significant (¢ <0.05) or top 10 categories were
selected.

Lipid and protein association with AD genetic variants
Genetic data from the blood samples of the ANM-DCR
studies were obtained using the Illumina 610-Quad chip
in three different batches as previously described [37].
After quality control using PLINK [38], genetic data
were mapped to the “build37” reference genome and
imputation was performed using IMPUTE2 [39]. Indi-
viduals with >10% missingness and variants with >5%
missingness were excluded. The remaining variants were
filtered using a minor allele frequency threshold of 5%,
leaving ~ 4.5 M genetic variants for each dataset.

Linear regression was used to investigate associations
of 34 established AD risk variants [19, 40—43] (Table S1)
with the five lipid and five protein modules (residuals)
associated with the six tested phenotypes. Genetic
variants associated with AD at P < 5e-08 in genome-wide
association and meta-analyses (GWAMA) studies
published until December 2019 were used. Variants
from the study by Kunkle et al. [19] were primarily used
as this was the largest GWAMA study with clinical AD
diagnosis. Additional variants that were not identified by
Kunkle et al. but reached genome-wide significance in
four large GWA and GWAMA studies [40-43] were
also included. When a risk variant was not available in
our dataset, a proxy in high linkage disequilibrium (+* >
0.8) was used. The Bonferroni corrected P < 1.5e-04 was
used to account for the number of variants (n = 34) and
phenotypes (n=10) tested; however, nominal associa-
tions at P < 0.05 were also investigated.

Results

Demographics of participants

There were no differences in gender among the three
diagnostic groups in both datasets 1 and 2 (Table 1).
The AD participants had an older age than MCI and
control participants in datasets 1 and 3. There were
significantly more APOE €4 carriers in the AD group
than in the other two groups in all the three datasets (all
P<0.01). MRI analyses showed lower hippocampal
volumes (left and right) and entorhinal cortical volumes
in the AD participants (all P < 0.01).

Module preservation

To assess the reliability and reproducibility of the estab-
lished modules and to investigate whether the modules
were preserved among the AD patients, individuals with
MCI and healthy controls, module preservation analysis
was applied. Most of the lipid and protein modules
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showed medium-to-high preservation among AD cases,
individuals with MCI and controls. Therefore, WGCNA
was applied to all three groups (Figs. S1 and S2). Exter-
nal validation was conducted for the ANM proteomics
dataset versus the ART cohort (Fig. S3). Overall, there
was good agreement between the ANM and ART cohort
module assignments. Five ANM modules (black, blue,
grey60, red and lightyellow) were well preserved in ART
(black, green yellow, turquoise, blue and lightgreen, re-
spectively) (Fig. S3). Conversely, the ANM module mid-
nightblue appeared not to be preserved in ART
networks since most of its proteins were classified as
unassigned (grey colour). The rest of the modules in the
ANM network appeared to show medium preservation
and split into one or more modules in the ART network.
For example, lightcyan module in the ANM network
showed high preservation with salmon and lightyellow
modules in the ART network (Fig. S3).

Weighted lipid correlation network analysis identified
17 modules of co-regulated lipids ranging from 36 to
328 lipids in each module (Fig. S4A). Weighted protein
correlation network analysis identified 17 modules of co-
regulated proteins ranging from 20 to 159 proteins in
each module (Fig. S4B).

Association of lipid modules with AD phenotypes

After Bonferroni correction, 11 lipid modules were asso-
ciated with at least one trait (Fig. 2a). Most associations
were observed with ROD, where five modules showed
positive associations and three modules showed negative
associations. In addition, one module (green) was re-
duced in AD versus controls and five modules showed
associations with brain atrophy, including two modules
associated with less brain atrophy and three with in-
creased brain atrophy. Of the eight modules correlated
with ROD, only three were also associated with AD diag-
nosis or brain atrophy. Overall, there were five modules
associated with at least two phenotypes. These modules
included the darkturquoise module, which was associ-
ated with faster ROD and greater atrophy; green module,
which was decreased in AD and was also associated with
less atrophy; greenyellow module, which was associated
with greater atrophy; midnightblue module, which was
associated with slower ROD and less atrophy in the
hippocampus; and orange module, which was associated
with greater brain atrophy and was increased in AD,
though the association with AD did not survive multiple
testing (Fig. 2b—f).

We further investigated the five modules associated with
at least two phenotypes. The top drivers for each of the
five modules based on their kME are listed in Table S2.
Annotations for all lipids in each module revealed that the
green module was enriched in phosphatidylethanolamines
(PEs), PCs and TGs; the orange module was enriched in
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Fig. 2 Correlations between lipid modules and AD phenotypes. a Lipid modules were clustered to assess module relatedness based on the
correlations of lipid network eigenlipids (top). Heat map showing the correlation between lipid module eigenlipids and phenotypes (bottom). b
Association of eigenlipid with diagnosis and main lipid species in the green module. ¢ Association of eigenlipid with ROD and main lipid species
in the darkturquoise module. d Association of eigenlipid with the left entorhinal cortical volume and main lipid species in the greenyellow
module. e Association of eigenlipid with the left hippocampal volume and main lipid species in the midnightblue module. f Association of
eigenlipid with the right entorhinal cortical volume and main lipid species in the orange module

PCs and diacylglycerides (DGs); the greenyellow module
was enriched in sphingomyelins (SMs), PCs, ceramides
(Cers) and TGs; the darkturquoise module was enriched
in TGs and DGs; and the midnightblue module was
enriched in TGs and ChEs (Table S3). We subse-
quently observed strong associations between the
module membership of the lipids in the five modules
and the lipid-phenotype correlations, indicating that
lipids with high kME (i.e. top module drivers/hub
lipids) were also associated with the respective AD
phenotypes. Figure 2b displays the association of the
green module with clinical diagnosis and Figure S5A
shows the association of lipid kME in the green
module against the lipid-diagnosis correlation. The rest
of the associations between lipid modules and pheno-
types that passed Bonferroni correction are presented
in Supplementary Figs. S6 and S7. The lipid module
memberships in the five selected modules and the
lipid-phenotype correlations that passed Bonferroni
correction are presented in Fig. S8.

Association of protein modules with AD phenotypes
After Bonferroni correction, five protein modules were
shown to be associated with at least one trait (Fig. 3a).
Four of the five modules (yellow, red, cyan and lightc-
yan) were associated with increased brain atrophy and
the eigenprotein in one module (lightgreen) was increased
in AD patients compared to controls. Most associations
were observed for the left hippocampal volume. Although
some modules were associated with more than one
phenotype, most of these associations did not pass mul-
tiple testing corrections (Fig. 3b-f).

The top drivers for each of the five protein modules,
based on their kME, are displayed in Table S4. Overall,
the protein module membership was lower compared to
that of lipids. The top drivers in the five modules
included many AD protein candidates, some of which
have been associated with AD in the same cohort. ApoE
(apoE3 and apoE4), one of these top drivers in the light-
green module, is involved in complement cascade and
growth factors. The results of GO over-representation
analyses of proteins in the five modules associated with
AD phenotypes are presented in Table S5. The biological
processes that passed the Benjamini-Hochberg (BH)
correction for each protein module are shown in the
directed acyclic graph (DAG) in Figure S9. Biological GO

terms that passed BH correction for the lightgreen module
included neutrophil-mediated immunity, granulocyte
activation, STAT cascade and regulation of inflammatory
response; biological GO terms for the cyan module in-
cluded positive regulation of cytokine production and
mast cell activation; biological GO terms for the lightcyan
module included protein activation cascade, insulin-like
growth factor receptor signaling pathway and regulation
of plasma lipoprotein particle levels; and biological GO
terms for the red and yellow modules included humoral
immune response. For KEGG pathway analysis, GO terms
like complement and coagulation cascades which passed
BH correction in the lightcyan and yellow modules, were
also included in the cyan module; the JAK-STAT signal-
ling pathway was listed as one of the top 10 pathways in
the lightgreen module and the cyan module; the MAPK
signalling pathway was highlighted in the red module after
BH correction.

When we plotted KME of the proteins in the five
modules versus the protein-phenotype correlations, the
correlations were not as strong as in the case of lipids,
except for the lightgreen module with AD diagnosis
(Fig. 3b). Figure S5B illustrates the association of
protein kME in the lightgreen module against the
protein-diagnosis correlation. The rest of the associa-
tions between protein modules and phenotypes that
passed Bonferroni correction are presented in Figure
S§10. The protein module membership was plotted
against the protein-phenotype correlations that passed
Bonferroni correction (Fig. S11).

Association between lipid modules and protein modules

The relationship between lipid modules and protein
modules associated with AD phenotypes was also inves-
tigated. The greenyellow lipid module was positively
correlated with the lightcyan protein module after cor-
recting for multiple testing (Fig. 4a). The darkturquoise
lipid module was positively correlated with the light-
green protein module. We further investigated the
correlations between lipid and protein modules in AD
and controls separately, but not in the MCI group due
to the small size of MCI participants in both modalities.
Interestingly, the high correlations between lipids and
protein modules were mainly observed in AD patients
rather than in controls (Fig. S12). The summary of
associations among five lipid modules, five protein
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Fig. 3 Correlations between protein modules and AD phenotypes. a Protein modules were clustered to assess module relatedness based on the
correlations of protein network eigenprotein (top). Heat map showing the correlation between protein module eigenproteins and phenotypes
(bottom). b Association of eigenprotein with diagnosis and hub proteins in the lightgreen module. ¢ Association of eigenprotein with the left
hippocampal volume and hub proteins in the red module. d Association of eigenprotein with the left hippocampal volume and hub proteins in
the yellow module. e Association of eigenprotein with the right hippocampal volume and hub proteins in the cyan module. f Association of
eigenprotein with the left entorhinal cortical volume and hub proteins in the lightcyan module

modules and six phenotypes is illustrated by the circus
plot in Fig. 4b. It can be seen that the lipid greenyellow
module and the protein lightcyan module, which were
correlated with each other, were also associated with
greater brain atrophy (both negatively correlated with
the right hippocampal volume and the left entorhinal
cortical volume).

The correlations between individual lipids in the
greenyellow module and proteins in the lightcyan
module, as well as between lipids in the darkturquoise
module and proteins in the lightgreen module, were
further investigated at two different thresholds (Figs. S13
and 14). To obtain an overview, the first threshold of
correlation coefficient within the range of [- 1, - 0.1] &
[0.1, 1] was applied, where some evident correlations
between a number of proteins and lipids features were
observed. To assess the strength of correlations, the
second more strict threshold of [-1, —0.2] & [0.2, 1]
was employed. The ApoB, PAFAH, and P-cadherin in
the protein lightcyan module were strongly correlated
with a group of lipids including DG (38:2) and some top
drivers as listed in Table S2 from the greenyellow
module. Similarly, both apoE3 and apoE4 in the protein
lightgreen module showed strong correlation with some
top lipid drivers in the lipid darkturquoise module.

Association between AD genetic variants and selected
lipid modules/protein modules

The five lipid modules (darkturquoise, green, greenyel-
low, midnightblue and orange modules) associated with
more than 1 AD phenotype, and all five protein modules
(lightgreen, red, yellow, cyan and lightcyan modules)
associated with AD phenotypes were further analyzed
for the associations with 34 AD genetic variants.

Four of the five lipid modules that are enriched in PEs,
PCs, TGs, DGs and CEs showed association with six gen-
etic variants including L34, FERMT2, MEF2C, ABCA7,
PLCG2, ANKRD31 and CRI. In addition, four out of five
protein modules demonstrated association with nine gen-
etic variants (/L34, APOE, HLA-DRBI, PTK2B, CASS4,
MS4A6A, PICALM, IQCK and NDUFAF6). However, all
of these associations were at the P < 0.05 level and none of
them passed correction for multiple testing with Bonfer-
roni corrected threshold of P<1.5e-04 (listed in Table
S6). For the APOE gene, both rs429358 and the APOE &4
genotype were nominally associated with increased levels

of cyan and lightcyan protein modules. The summarized
associations between lipid modules and AD risk loci, as
well as between protein modules and AD risk loci are
shown in Fig. 5.

Discussion

In this study, we employed a multi-omic network ap-
proach on data available for a total of 586 participants:
415 with lipidomics data, 411 with proteomics data, and
249 with proteomics validation data from three
prospective cohorts. Overall, we identified modules of
tightly regulated lipids and proteins that were strongly
associated with AD phenotypes. The lipid modules had
more abundant associations, mostly with ROD, followed
by the brain volume. Conversely, most protein modules
demonstrated associations with brain atrophy, particu-
larly with the hippocampal volume. A number of lipid
and protein clusters were also observed to be correlated
with each other, especially in AD patients. Finally, the
AD-associated modules demonstrated modest associations
with AD genes involved in lipid and immune processes.
Individual lipids/proteins were grouped into clusters/mod-
ules using network analysis and the associations with
relevant clinical parameters were investigated [44].

The lipid co-expression network analysis revealed
strong correlations of 11 lipid modules with AD diagnosis,
ROD and brain atrophy measurements. These modules
were preserved amongst AD, MCI and control groups;
thus, the clustering of lipid features was not affected by
clinical diagnosis. Not all modules showed associations
across the spectrum of tested phenotypes with some being
restricted to brain atrophy or ROD, suggesting distinct
biological mechanisms. In addition, the five lipid modules
associated with more than one phenotype were enriched
in PCs, TGs and ChEs, which have been shown to be
linked with AD in our studies including analyses on this
cohort [12—-14]. For example, the green module, which is
enriched in TGs, is reduced in MCI and healthy control
groups compared to AD cases, and positively correlated
with entorhinal and hippocampal volumes. We also ob-
served that a lipid feature annotated as TG (60:11), with a
mass-to-charge ratio of 970.79, was previously associated
with AD diagnosis and hippocampal volume by machine
learning on overlapping samples [14]. This was one of the
top drivers in the lipid green module, highlighting the im-
portance of big TGs as possible drivers in AD processes.
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A recent study using the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) cohort highlighted the asso-
ciation of TGs, especially poly-unsaturated fatty acid-
containing TGs, with AD and AD biomarkers [45].
TGs are also associated with AP, and longitudinal
studies have shown that midlife TGs are associated

with amyloidosis and tau pathology 20 years later in
cognitively healthy individuals [46].

The protein modules identified were highly preserved
through internal validation, as well as in an independent
proteomic cohort. Five of these modules were strongly
associated with AD phenotypes. With the development
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of analytical platforms, increasing numbers of studies
have attempted to find AD biomarkers in blood. From
the nominated biomarkers, only some have been repli-
cated. The reason for such imbalance might be caused
by the heterogeneity of the disease itself as well as the
complexity of blood analysis [3]. Meta-analyses can help
translate discovery findings to reproducible and useful
biomarkers. In this study, we observed that some of the
top drivers of the 5 AD-associated modules (Table S4)
were linked to AD pathology in regression and random
forest analyses on the same cohort; these included C-C
motif chemokines from the red module associated with
left hippocampal atrophy; carbonic anhydrase III and
peptidoglycan recognition protein 1 from the lightgreen
module correlated with AD diagnosis [27]. In addition,
matrix metallopeptidase 9 [47, 48] and ApoE [48-52]
from the lightgreen module, and complement component
C6 [53] from the lightcyan module, had been highlighted
in other AD biomarker studies. These findings underline

the importance of these proteins as drivers of networks
and pathways associated with AD.

Over-representation analysis of the 5 AD-related protein
modules highlighted immune responses as the main
biological process. KEGG pathways also highlighted the in-
volvement of the complement, cytokine, MAPK signalling
and the JAK-STAK pathways. Further, we observed corre-
lations between lipid and protein modules that were associ-
ated with AD phenotypes, such as the association between
the lightcyan protein module (enriched in complement
proteins) and the greenyellow lipid module, suggesting
important relationships and pathways that warrant further
investigation. One of the GO biological terms revealed for
the lightcyan protein module was the regulation of plasma
lipoprotein particle levels. Molecular and cellular processes
also highlighted the protein-lipid complex and phospho-
lipid binding and KEGG pathways including glycopho-
spholipid biosynthesis (although these were associated at
FDR <0.1). We also observed that the correlation between
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lipids and proteins was more pronounced in AD patients
than in controls. This result is of great interest as it
highlights that in addition to the changes in the level of
each modality in AD (and AD endophenotypes), their
interplay seems to be also disease-specific. These findings
warrant further investigation.

Finally, we observed that the AD risk loci CRI, PLCG2,
MEF2C, IL34 and ABCA7 were associated with several
AD-related lipid modules. These loci are involved in
immune and complement system [54], lipid metabolism
and immune system [55], immune response and inflam-
mation [41, 56], cytokine signalling in immune system
[57], cholesterol/lipid metabolism, and immune and
complement systems [58]. We also found that the protein
modules highlighting immune response as the main bio-
logical process were nominally associated with variations
of the PTK2B, IL34, HLA-DRBI and MS4A6A (gene clus-
ter) risk loci, which are all related to immune response
and the immune and complement systems [41, 58, 59].
Finally, the lightcyan and cyan modules were nominally
associated with APOE e4. As mentioned above, one of the
GO biological terms for lightcyan is the regulation of
plasma lipoprotein particle levels, and this was additionally
associated with the lipid greenyellow module. However,
none of these associations passed correction for multiple
testing, which might be due to the small sample size of
the study. Therefore, these findings merit further investi-
gation, and need to be replicated in larger independent
cohorts with available omics information. In addition,
approaches such as Mendelian Randomization will help to
probe the causal links between lipids, proteins and AD.

A limitation of our study is that the sample size was
small. Further replication is therefore warranted, espe-
cially for genetic association analyses. In addition, we
were not able to identify a good proxy for two genetic
variants in two genes (BINI, proxy r*=0.5; INPP5D,
proxy 1 = 0.75; Table S1). Although we had overlapping
lipidomics and proteomics data, these were available for
only a subset of the study participants. Further, although
we had information for ROD, this calculation was based
on the MMSE, which is only one measure of cognition.
Another limitation of the present study is that the MCI
cohort included did not convert to AD within 1-3 year
(stable MCIs) and therefore, we did not know whether
these features are associated with the conversion from
MCI to AD. Indeed, the module profile of the MCI
group was closer to that of controls (Figs. 2b and 3b). In
addition, the neuroimaging data of MCI participants
were only available from 8 individuals. Our study was
also limited inherently by the AD case-control design, in
which some of the elderly controls may have already car-
ried pathology, and that some of the clinically diagnosed
AD may be pathologically non-AD dementias. However,
although there was no information on B-amyloid or tau
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biomarkers (A/T biomarkers), this study provided neu-
roimaging data (an N biomarker, neuroimaging to meas-
ure brain atrophy) including volumes of hippocampi and
entorhinal cortices, as well as data on the ROD in AD,
which captured different stages of disease pathology in-
cluding the early preclinical stages. Additionally, diagnosis
was confirmed by pathologic examination for 20 AD cases.
Finally, through the longitudinal nature of these cohorts,
we know that all AD patients, individuals with MCI and
healthy controls employed in our analysis maintained their
baseline diagnosis throughout the follow-up period, which
lasted between 1 and 5 years.

Conclusions

Our study highlights that the interpretation of multi-
omics data such as lipidomics, proteomics and genomics
can be boosted by deploying systems biology approaches.
Our integrative approach highlights tightly regulated and
inter-connected networks of lipids and proteins associated
with AD and AD phenotypes, with lipid and immunity
pathways at the centre.
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