
Kurvits et al. 
European Journal of Medical Research          (2023) 28:133  
https://doi.org/10.1186/s40001-023-01087-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

European Journal
of Medical Research

Common clinical blood and urine 
biomarkers for ischemic stroke: an Estonian 
Electronic Health Records database study
Siim Kurvits1†, Ainika Harro1†, Anu Reigo1, Anne Ott2,3, Sven Laur2,3, Dage Särg2,3, Ardi Tampuu2Kaur Alasoo2, 
Jaak Vilo2,3, Lili Milani1 and Toomas Haller1* on behalf of the Estonian Biobank Research Teamthe PRECISE4Q 
consortium 

Abstract 

Background  Ischemic stroke (IS) is a major health risk without generally usable effective measures of primary pre-
vention. Early warning signals that are easy to detect and widely available can save lives. Estonia has one nation-wide 
Electronic Health Record (EHR) database for the storage of medical information of patients from hospitals and primary 
care providers.

Methods  We extracted structured and unstructured data from the EHRs of participants of the Estonian Biobank 
(EstBB) and evaluated different formats of input data to understand how this continuously growing dataset should be 
prepared for best prediction. The utility of the EHR database for finding blood- and urine-based biomarkers for IS was 
demonstrated by applying different analytical and machine learning (ML) methods.

Results  Several early trends in common clinical laboratory parameter changes (set of red blood indices, lymphocyte/
neutrophil ratio, etc.) were established for IS prediction. The developed ML models predicted the future occurrence of 
IS with very high accuracy and Random Forests was proved as the most applicable method to EHR data.

Conclusions  We conclude that the EHR database and the risk factors uncovered are valuable resources in screening 
the population for risk of IS as well as constructing disease risk scores and refining prediction models for IS by ML.
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Introduction
Stroke is playing a major role in affecting not only the 
people’s health but also the economy. With a worldwide 
incidence of 12.2 million, and 6.55 million deaths in 
2019, it is the second leading cause of death [1]. Stroke 
survivors often face long hospitalization and rehabilita-
tion programs and many are unable to return to normal 
lifestyles. Ischemic stroke (IS, abbreviations in Addi-
tional file 1: Table S1) is the main form of stroke (62.4% 
of all cases) resulting from cerebral ischemia (insuf-
ficient blood flow, frequently with blockage of blood 
vessels) [1]. IS can be classified into 5 subtypes: large-
artery atherosclerosis, cardioembolism, small-vessel 
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occlusion, stroke of other determined etiology, and 
stroke of undetermined etiology [2].

The leading known risk factors for stroke are high 
systolic blood pressure and body mass index, high 
fasting plasma glucose concentration, and ambient 
particulate matter pollution [1]. The heritability of 
stroke is estimated to be 30–40% [3], and a list of 
IS-associated genomic markers has been identified [4–
6]. Several blood parameters are associated with stroke, 
such as creatinine, lymphocyte, and monocyte counts 
[7, 8]; hematocrit and hemoglobin [9]; platelet count 
and mean volume [10], and eGFR [11]. More recently, 
proteinuria [12] and urine pH [13, 14] have been shown 
to play a role in stroke.

Many biomarkers are routinely measured from blood 
or urine for a large number of individuals and could be 
used in prevention efforts with only a relatively small 
additional cost. Although the population-level markers 
may not be optimal for predicting a disease for a specific 
individual, their abundance makes them valuable for 
population-level screening programs, as even small 
effects add up to significant differences. Stroke incidence 
is rising and early warning markers that are easy to detect 
and readily available can save lives [15].

The clinical parameters (CPs) from nation-wide 
healthcare facilities were not retrievable for research 
until the advent of digitizing the medical system. 
Estonia’s Electronic Health Records (EHR) database 
stores medical information for the procedures, carried 
out in the hospitals and primary care facilities, and the 
corresponding epicrises data [16, 17]. As all Estonian 
hospitals use the EHR system this database has 
population-wide coverage.

The Estonian Biobank (EstBB) encompasses genetic 
and medical data for 20% of Estonia’s adult population 
and represents well the whole Estonian population [16]. 
The work of EstBB is governed by The Human Gene 
Research Act (HGRA) [18]. All participants of EstBB 
have consented to using their data anonymously for 
research purposes and to enrich their health records 
using national health registries and databases. This task is 
performed regularly, including updates from the central 
EHR database [19]. As a result, the available number 
of data layers from EHR increases significantly when 
combined with the rich dataset of EstBB which includes 
traits, such as medications used, ICD-10 codes, diet, 
physical activity, self-reported health issues, different 
molecular phenotypes, and many more.

We and others have developed methods not only for 
extracting medical data from numerical fields of EHRs 
but also to mine them from free text fields while follow-
ing all ethical guidelines [20, 21]. Not only can it be used 

in conjunction with other data layers but also large-scale 
longitudinal studies can be planned to reveal trends.

Here, we present our research on CPs from blood and 
urine, as recorded in the EHRs, together with additional 
medical data from EstBB with the intent to evaluate them 
as early warnings for IS (Additional file 1: Table S2). We 
are targeting the following issues:

(a)	 applicability of a general country-wide medical 
database (EHR) for studying IS: determining the 
optimal ways to curate and present the data for 
analysis, establishing analytical pipelines;

(b)	 screening the EHR dataset for new medical markers 
for IS or validating known markers as predictors;

(c)	 comparing different ways to prepare data for 
analysis and evaluating this with ML algorithms: 
logistic regression (LR), K-nearest neighbors 
(KNN), and random forests (RF);

(d)	 testing whether modern deep neural network 
(DNN) methods (TabNet, FastAI tabular) 
outperform a benchmark RF in predicting IS [22, 
23] (Fig. 1).

Our results confirm several previous findings and sug-
gest that EHRs together with the proposed methodolo-
gies have a clear potential for assessing the risk of IS. We 
expect this to advance population-wide prediction of IS 
in Estonia and elsewhere  (Additional file 1: Supplemen-
tary figures, tables and text).

Methods
Part A: EHR data extraction and cleaning
We define ischemic stroke as ICD-10 code I63 (cerebral 
infarction) diagnosed by medical specialists and available 
through EHR or EstBB databases. The clinical chemistry 
and other laboratory data used originate from EHRs—
a data repository coordinated by the Estonian Health 
and Welfare Information Systems Centre [24]. These 
records are retrieved from multiple independent labora-
tory information systems, but a universal LOINC coding 
system is used [25]. The EHR database was compiled in 
batches. The current batch (spanning February 2004–
March 2020) was prepared specifically for IS (both cases 
and controls) and it contained data from tabular fields 
and free text fields for 2250 case and 8296 control candi-
dates with 1540 different LOINC codes (Additional file 1: 
Text S3). It contained 2.02 million clinical blood or urine 
measurement entries with attributable LOINC codes 
[each LOINC represented on average 1309 times (median 
12)], ranging from 1 to 64,160; each person had on aver-
age 191 LOINC codes (median 96), ranging from 1 to 
6166. Several additional steps ensured the quality of the 
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final dataset before subjecting it to downstream analysis 
(Additional file 1: Text S4).

Four healthy controls were found for each case (by 
a custom C++ script) to meet the following criteria: 
(a) matching sex, (b) same or closest possible birth 
year, (c) no I63  diagnosis in any available database, and 
(d) no mention of the following ICD-10 diagnoses–– 
I60 (subarachnoid hemorrhage), I61 (intracerebral 
hemorrhage), I62 (other non-traumatic intracranial 
hemorrhage), I64 (stroke, not specified as hemorrhage 
or infarction)––and/or the following medications (ATC 
codes)–– B01 (antithrombotic agents), M01A (anti-
inflammatory and antirheumatic products, non-steroids), 
M01BA03 (acetylsalicylic acid and corticosteroids), 
N02BA (salicylic acid and derivatives).

In case of multiple incidences only the first IS episode 
was considered and only the CP measurements before the 
first IS were incorporated (for controls this was the time 
of the first IS of their matched cases) unless otherwise 
specified. After all quality control steps 950 I63 cases, 
3800 controls, and 145 high quality CPs (defined via 
LOINC codes) remained. Some CPs had multiple units—
these were treated as separate CPs for downstream 
analyses as no unit conversions were performed to 
reduce batch effects and technical uncertainties. The 
less common units typically accounted for 0.1–2.7% of 
all entries and they never turned out significant in any 
analyses.

Five different data subsets were constructed from 
among the total group of matched cases and controls by 
transferring each case (1): control (4) quintuplex to new 
sub-groups (n_total in parentheses)––(a) all individuals 

(n = 4750), (b) men (n = 1925), (c) women (n = 2824), (d) 
young (≤ 60  years old, n = 850), (e) old (> 60  years old, 
n = 3900). The CP values were adjusted for sex and age 
using the z-scores unless otherwise specified. For experi-
ments utilizing the 1000-day window before IS the cases 
and controls were used in a 1:3 ratio because of the limi-
tations imposed by the smaller number of young subjects. 
For the ML models the cases and controls needed to have 
at least 10 different LOINC code CP measurements avail-
able, with the measurement date within 1000 days before 
the occurrence of IS, thus resulting in 749 cases and 2033 
controls. The cleaning process produced a tabular data-
set used for ML models such that every column was a CP 
and its value the most recent measurement.

The EstBB database has been described elsewhere [16, 
19]. Briefly, it is a general population-based biobank 
(University of Tartu) containing many layers of data 
for 200,000 inhabitants of Estonia (20% of the adult 
population) over 18  years of age. A comprehensive 
questionnaire (objective information, physical activity, 
diet, etc.) is filled in together with a primary agreement 
and renewed when joining additional research 
projects. EstBB also stores DNA, plasma, and white 
blood cell samples for the participants. The database 
is updated by regular linking to the national health 
databases (Additional file  1: Fig. S5). This has enabled 
us to complement the primary data layers with a list of 
additional datasets, including molecular parameters.

Part B: Screening for IS markers
Association Rule Mining (ARM) was performed with an 
a priori approach making use of FP Growth Algorithm 

Fig. 1  Workflow of the article highlighting the main deliverables. The steps A to D correspond to paragraphs in the Methods and Results sections
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(custom implementation in C++) [26]. Only the latest 
data point was used for each CP for each individual. The 
values were adjusted for sex and age and represented as 
the residuals of the linear model in z-scores. Only the 
high values (z-score > 1) and low values (z-score < − 1) 
were used to code all items as “low” or “high.” ARM was 
performed for each cases group of size N. Then ARM 
was performed 20 times for each controls group of size 
N compiled randomly from selection size M, where 
M ≈ 5 × N. Association rules (ARs) that had a higher 
support for cases than any of the 20 controls iteration 
were selected for further filtering and testing (Additional 
file 1: Text S6).

For locally weighted scatterplot smoothing (lowess) 
analysis the values were adjusted for sex (unless sexes 
analyzed separately) and age and represented as the 
residuals of the linear model in z-scores. These z-score 
values were used by R function lowess (default values) 
to generate the curves. The curves were evaluated 
visually for the following parameters: trend start time 
(defined as the time from which the cases’ z-score value 
had continuously the opposite sign as compared to that 
of the controls’), trend direction (positive or negative 
with respect to approaching IS diagnosis or observation 
stop time), overall assignment confidence (as a binary 
value: lower 50% or higher 50%). Trend was considered 
significant if the z-score change over the observed length 
of the trend was larger than 0.1 units and the lowess 
curve was monotonous throughout the trend length.

For logistic regression (LR) the values were transformed 
to achieve normal distribution and remove outliers 
(Additional file 1: Text S7). LR was carried out with R glm 
function glm(IS ~ value + sex + age). Adjustment for sex 
was not done when sexes were analyzed separately.

Cox Proportional Hazards (CPH) analysis was carried 
out with R. Only the last data point was used for each 
CP for each individual. Sex and age adjusted values were 
divided into three intervals based on z-scores: (− ∞, 
− 1), [− 1, 1], (1, ∞). Kaplan–Meier (K–M) graphs were 
created with R (Additional file 1: Text S8).

When assessing the CP ratios the individual parameters 
(to be used in ratios) were automatically selected so that 
their dates were as close to one another as possible.

Part C: Comparing different data representation types
The LR, KNN, and RF were used to evaluate different 
input data preparation methods. The prediction models 
were compared to baseline models involving only sex 
and age as the inputs. All methods were performed 
with Python 3.7 using Pandas [27], NumPy [28], and 
scikit-learn [29] libraries. The search for optimal 
hyperparameters was done on a separate dataset that 
was not used in training or testing of ML methods. In 

total 79,000 CP measurements were available for cases 
and 144,000 for controls. The separate dataset for search 
of hyperparameters represented 5% of the total CP 
measurements, leaving 95% of the cleaned dataset (final 
dataset) for training and testing sets. The final dataset 
was divided into training set of 95% and test set of 5%. 
For cases, only the CPs within a 1000-day window prior 
to the first IS were used for input.

Part D: Constructing prediction models
TabNet is a state-of-the-art DNN for tabular data 
modeling which uses sequential attention to choose 
features at each decision step and enables both local 
and global interpretability [23]. FastAI tabular learner 
is the default neural network architecture proposed by 
the FastAI library for analyzing tabular data. Both of the 
DNNs were implemented using Python’s FastAI library 
(version 2.3.1) [22] (Additional file  1: Text S9). RF was 
implemented using Python (v. 3.7.10) sklearn library (v. 
0.22.1) [30].

For the comparison of RF and DNN performance, the 
last observation carried forward approach was used: the 
latest available LOINC and ICD-10 values were used 
for every person. Similarly to the previous analysis only 
analytes within 1000 days prior to the first IS were used 
for input. The ICD-10 predictive feature could be any 
ICD-10 code except for I60, I61, I62, I63, and I64. These 
codes were removed from the ICD-10 predictive feature.

In addition to measuring the predictive ability, also 
the feature importance for all 3 models were found 
with methods appropriate for each model type. For the 
RF model and TabNet the built-in feature importance 
methods were utilized. The Gini importance for the RF 
and sparse features selection-based method for TabNet 
were used. Because the FastAI tabular has no built-in 
feature importance methods, a permutation importance 
method was implemented.

All computations and file manipulations if not 
otherwise specified were carried out with R (v. 4.0.3), 
Python (v. 3.7.10) or C++/Qt (v. 4.3 or higher). All 
p-values were calculated through two-tailed testing.

Personal-level data were available for research only in 
the pseudonymized form to protect the privacy of the 
participants. Best practices were used throughout the 
project to ensure no ethical compromises. This study 
has been approved by the Research Ethics Committee 
of the University of Tartu, and Estonian Committee on 
Bioethics and Human Research.

Results
Part A: EHR data collection, preprocessing, cleaning
Our first goal was to establish a sequence of steps to 
retrieve pseudonymized EHR data for research. This 



Page 5 of 14Kurvits et al. European Journal of Medical Research          (2023) 28:133 	

included obtaining the necessary ethics committee 
permits and ensuring that all work followed the HGRA 
[18]. Data retrieval was an elaborate process consisting 
of multiple stages (Additional file  1: Text S3). We 
initially aimed to demonstrate the usability and quality 
of the EHR dataset for studying IS, a representative of a 
common disease, to pave the road for using these data 
in future projects as well. As the EHRs are mined from 
sources of various structure and quality, we needed to 
establish a semi-automatic pipeline for its quality control 
(QC) and formatting (Additional file 1: Text S4, Fig. S1). 
We performed cross-checking between EHR and EstBB 
databases and retained only the individuals whose IS 
status was the same in both. Additionally, the EstBB 
provided lifestyle information and data about other 
comorbidities for the merged final dataset.

We started with 950 IS cases (40.5% men) and matched 
4 controls to each from among 7398 healthy individuals, 
achieving a 100% perfect fit between cases and controls 
for sex and a 98.8% fit for age. The mean age of cases 
(71.32 ± 12.79 SD) was very similar to that of controls 
(71.34 ± 12.74 SD). An age split at 60/61 was used to sep-
arate young individuals from old due to the small number 
of available young IS cases (Table 1).

The median number of CPs for each subject varied 
between 26 and 32, while the age of IS patients varied 
between 23 and 99 across all sub-groups. The median 
age difference between the young and old was 21  years 
(55 vs. 76). The age-specific stroke incidence and mortal-
ity rates are known to be higher in men than in women, 
yet stroke affects a greater number of women because 
of various comorbidities and sociodemographic factors 
(e.g., increased longevity) [31, 32]. We also observe that 
31.4% of males in our study were classified as young cases 
of IS compared with 25.3% of females. The average age 
of male IS patients was 69.7 (median = 72) as opposed to 
72.5 (median = 75) for women (Table 1, Fig. 2).

Part B: Screening markers for IS
In the first set of experiments we used standard meth-
ods to establish associations between IS and CPs: ARM, 
lowess, LR, CPH (Fig.  1). ARM was performed for the 
1000-day window before the incidence of IS to detect 
combinations of CPs that might associate with IS. This 
yielded 5 relevant ARs after applying stringent filtering 
criteria (Additional file 1: Text S6), all consisting of two 
items. Of these rules only one was not obvious and could 
be detected in all sub-groups: B.Lymph.%_LOW + B.

Table 1  Overview of the 5 sub-groups studied. The lowest value on each row is highlighted in blue, the highest value in red

All Men Women Young Old

Total (N) 4750 1925 2824 850 3900

Cases (N) 950 385 565 170 780

Controls (N) 3800 1540 2259 680 3120

Age (mean) 71.3±12.8 69.7±12.7 72.5±12.7 50.7±9.1 75.8±8.2

Age (median) 73 72 75 55 76

Age (range) 23–99 28–99 23–99 23–60 61–99

Men (%) 40.5 100 0 47.6 39

Women (%) 59.5 0 100 52.4 61

Young (%) 27.7 31.4 25.3 100 0

Old (%) 72.3 68.6 74.7 0 100

Measurements per person (mean) 79.9 89.4 67.4 59.7 84.3

Measurements per person (median) 45 50 37.5 33 48

Measurements per person (range) 9–1913 10–1304 4–1675 9–1913 9–1349

CPs per person (mean) 32.7 34.4 28 28.8 33.5

CPs per person (median) 30 32 27 26 31

CPs per person (range) 2–99 3–94 1–81 5–92 2–99



Page 6 of 14Kurvits et al. European Journal of Medical Research          (2023) 28:133 

Neut.%_HIGH (full names of CPs in Additional file  1: 
Table  S2). We further tested this rule to show that the 
support ratio of observed/predicted was always signifi-
cantly over 1 and ranged between 2.2 (young) and 5.97 
(women). Thus, for all groups the association between 
the two individual items was at least two times higher 
than expected if these items were associated by chance 
(Additional file 1: Table S10).

We studied the CPs by combining all individual meas-
urements (adjusted for sex and/or age and as z-scores) 
for each CP and constructing lowess curves (Additional 
file  1: Fig. S11). The trends in lowess curves before the 
onset of IS can be used to pinpoint predictive changes 
in CPs. Several CPs showed trends 500–3500 (most 
commonly 2000) days before the onset of IS. Overall 
hemoglobin, cholesterol, and blood clotting param-
eters stood out. The highest confidence positive trends 
with respect to IS for all sub-groups were B.RDW.CV, 
B.MPV, B.Neut.#, S.P.Urea, and B.RDW.SD, and negative 
trends were B.Hct, B.Hb, and B.Lymph.%. The S.P.Crea 
had a clear positive trend for all but the young. Inter-
estingly all observed cholesterol parameters (S.P.Chol, 
S.P.LDL.Chol, S.P.HDL.Chol) appeared protective for all 
sub-groups (only S.P.Chol not so for the young). How-
ever, tracking the more informative cholesterol ratios 
we observed a clear trend (negative) with respect to IS 
only for the S.P.HDL.Chol/S.P.Chol ratio and only so for 
men. The ratio of B.Lymph.%/B.Neut.% discovered with 
ARM correlated negatively with IS. The lowess curves did 
not show this only for the young. However, some of the 
potential trends may not have been detected due to the 
smaller sample size of the young sub-group (Additional 
file 1: Table S12, Table 2).

We ranked the CPs for a 1000-day time frame before 
the initial episode of IS by LR. After Bonferroni 

correction for multiple testing 9 parameters were signifi-
cant in at least one sub-group: B.RDW.SD, B.Lymph.#, 
B.RDW.CV, B.Mono.%, S.P.HDL.Chol, P.PT.%, B.MCHC, 
B.Ret.%, B.Hb. The total cohort shared most similarity 
with the old sub-group (probably due to the predomi-
nantly advanced age of typical cases) with only B.Ret.% 
barely not showing significance in the old sub-group. The 
S.P.HDL.Chol appeared protective against IS and met 
the significance threshold for men but not for women. 
Its effect size was among the highest out of all significant 
hits. We detected 3 more CPs as significant for women 
but not for men: B.RDW.CV, B.Mono.%, P.PT.%. The 
young sub-group showed an entirely different signature 
with the B.Hb as the only significant hit. Again, this high-
lights the underlying differences between the young age 
and advanced age IS [33]. We performed LR on three CP 
ratios (S.P.HDL.Chol/S.P.Chol, S.P.LDL.Chol/S.P.Chol, 
B.Lymph.%/B.Neut.%). None of them passed the Bonfer-
roni threshold (Additional file 1: Table S13, Table 2).

CPH was performed using the most recent measure-
ment for each parameter for each individual. Three inter-
vals were created based on z-score: (− ∞, − 1), [− 1, 1], 
(1, ∞). The Kaplan–Meier (K–M) curves indicate major 
differences between the tested sub-groups. It is noted 
that Hazard Ratio (HR) is meaningful only if the propor-
tional hazards assumption is met, i.e., the curve for the 
middle group according to the z-score also appears in the 
middle in the K–M graphs (Additional file  1: Fig. S14). 
These parameters showed significant p-values (Bonfer-
roni-corrected threshold 3.4 × 10–4 at the significance 
level of 0.5) together with proportionality of hazards: 
B.RDW.CV (for all, men and old), B.Ret.# [for women 
and old (p-value 5.4 × 10–4)], B.MCHC (for women) 
(Additional file  1: Table  S15). The first two were asso-
ciated with an increased risk for IS (HR of B.Ret.# for 

Fig. 2  Summary of findings corresponding to the steps A to D explained in Fig. 1
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women was as high as 5.6), while B.MCHC had the oppo-
site trend. The S.P.Chol exhibited a protective HR of 0.75, 
but the hazards were proportional only for old and the 
p-value was just outside of the Bonferroni threshold. The 

p-values for B.Plt and B.MCH were very low but the haz-
ards were never proportional. The corresponding K–M 
graphs suggest bimodal behavior for these CPs as both 
the higher and lower concentrations associated with the 

Table 2  Summary of lowess, LR, and CPH
All Men Women Young Old

LR CPH
Low
ess LR CPH

Low
ess LR CPH

Low
ess LR CPH

Low
ess LR CPH

Low
ess

B.Hb . . 2000 . . 2000 . . 2000
3.04E
−04 . 4000 . . 2000

B.Hct . . 2000 . . 3500 . . 2000 . . 3500 . . 2000

B.Lymph.#
3.76E
−10 . .

2.15E
−04 . .

1.30E
−05 . . . . .

6.99E
−09 . .

B.Lymph.% . . 2500 . . 1500 . . 2500 . . 3500 . . 2000

B.Lymph.% / 
B.Neut.% .

< 
1.00E−

04 2000 .

< 
1.00E−

04 1500 .

< 
1.00E−

04 1000 .

< 
1.00E−

04 . .

< 
1.00E−

04 2000

B.MCH .

< 
1.00E−

04 . .
3.40E−

04 . . . . . . . .

< 
1.00E−

04 .

B.MCHC
2.02E
−05 . . . . . .

2.00E−
04 . . . .

1.21E
−04 . .

B.Mono.%
5.39E
−07 . . . . .

4.86E
−05 . . . . .

1.21E
−06 . .

B.MPV . . 3500 . . 3500 . . 3500 . . 1000 . . 3500

B.Neut.# . . 3500 . . 500 . . 3500 . . 3000 . . 3500

B.Plt .

< 
1.00E−

04 . . . . . . . .

< 
1.00E−

04 . . . .

B.RDW.CV
4.54E
−08

< 
1.00E−

04 3000 .

< 
1.00E−

04 3000
4.97E
−07

< 
1.00E−

04 3500 . . 3500
1.13E
−06

< 
1.00E−

04 3000

B.RDW.SD
3.26E
−14 . 2000

1.22E
−04 . 750

4.91E
−11 . 1750 . . 750

1.51E
−11 . 1750

B.Ret.# .
1.60E−

04 . . . . .

< 
1.00E−

04 . . . . . . .

B.Ret.%
2.95E
−04 . . . . . . . . . . . . . .

P.PT.%
1.03E
−05 . . . . .

8.04E
−05 . . . . .

1.91E
−05 . .

P.PT.INR . . . . . . .

< 
1.00E−

04 . .

< 
1.00E−

04 . .
1.60E−

04 .

S.P.ALAT . . 1500 . . 1500 . . 1000 . . . . . 1500

S.P.Alb . . 1000 . . . . . 1500 . . . . . 500

S.P.ASAT . . . . . . . . . . . . .

< 
1.00E−

04 .

S.P.Chol . . 3000 .

< 
1.00E−

04 3500 . . 2500 . . . . 3500

S.P.Crea . . 3000 . . 3000 . . 2500 . . . . . 2500

S.P.CRP . . 500 . . 500 . . 500 . . . . . 500

S.P.cTnT.hs . . 1000 . . 400 . . 750 . . . . . 1000

S.P.HDL.Chol
2.11E
−06

2.20E−
04 2500

4.23E
−05 . 2500 . . 2500 . . 750

6.25E
−05 . 2500

S.P.HDL.Chol / 
S.P.Chol . . . . . 2000 . . . .

< 
1.00E−

04 . . . .

S.P.LDL.Chol . . 2500 . . 3500 . . 2000 . . 500 . . 2500

S.P.UA . . 1500 . . 2000 . . . . . . . . 1250

S.P.Urea . . 2000 . . 2000 . . 2000 . . 1500 . . 2000

Table is showing statistically significant p-values (LR, CPH) or trend length in days (lowess) in alphabetical order. Pink highlight = positive association with IS, blue 
highlight = negative association with IS, gray highlight = bimodal association with IS (both low and high concentrations associate with IS better than intermediate 
values). Bold numbers indicate corresponding absolute effect sizes larger than 0.5 (LR), whether the proportionality of hazards was confirmed (CPH) or higher than 
average certainty of assigning the trend (lowess)
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increased risk for IS (Additional file 1: Figs. S16 and S17). 
Only B.Hb qualified as having proportional hazards for 
the young sub-group. Its p-value of 2.2 × 10–3 was, how-
ever, outside of the Bonferroni threshold. It is still note-
worthy that B.Hb was also the only significant hit for this 
group based on LR.

We analyzed the same 3 CP ratios by CPH as was 
done by LR (Additional file  1: Table  S15). The S.P.HDL.
Chol/S.P.Chol showed significant p-value for the 
young; however, the K–M graph did not confirm the 
proportionality of hazards (Additional file  1: Fig. S18). 
This ratio had a nominal significance for the all and men 
sub-groups, but notably not so for women. Interestingly, 
the B.Lymph.%/B.Neut.% showed the highest detectable 
level of significance for all groups. The corresponding 
K–M graphs all confirmed proportionality of hazards 
(borderline for the men sub-group) with the HR values 
ranging from 0.59 to 0.81 (Additional file 1: Fig. S19).

Summary of the tests carried out (Fig.  2) outlines 
the most significant CPs for all cohort sub-groups. 
All analytical methods always showed the same effect 
direction for all CPs (Table 2).

Part C: Comparing different data representation types
In the second set of experiments we tested several input 
representation methods to examine the predictive value 
of EHR data for IS (Fig. 1). We wished to determine: (1) 
if the fact of the measurement itself was informative 
regardless of the numerical value, (2) whether the use 
of existing clinical reference values could improve 
predictions, (3) the effect of adjusting the values for sex 
and age, and (4) whether the data should be treated as 
measurement based or patient based. LR was selected as 
the benchmark method to test the applicability of linear 
models to these data. KNN with Euclidean distance was 
the second model where the value for K was chosen by 
multiple pretests. RF was selected because it has been 
effective on various medical datasets, especially in 
handling noise [34]. The number of trees was found by 
examining various options on a separate dataset that 
was not used for training or testing. The rest of the 
hyperparameters for KNN and RF were not tuned further 
and the default values of the scikit-learn version were 
used.

The EHR dataset can be transformed into the tabu-
lar form in two ways: measurement based or individual 
based. For the first, all CP measurements were treated as 
independent data points, allowing multiple data instances 
for each person. For the individual-based structure only 
the latest CP value was used for each individual. Thus, 
each individual was represented in the dataset only once.

Five different approaches were tested for the LR, KNN, 
and RF comparison:

(a)	 using binary statement of measurements (the ML 
input consisted only of the statements of 1 and 0; 
whether CP was measured or not),

(b)	 using binary statements balanced by selecting 
entries with comparable number of statements in 
controls and cases to limit the CP bias,

(c)	 using the medical reference values: the CP values 
categorization (categorical feature) based on 
whether they fell below, within or above the 
reference range provided by the CP measuring 
laboratories,

(d)	 using the raw values of CP concentrations,
(e)	 using the z-scores of step (d) raw values adjusted for 

sex and age.

RF yielded the best results (Table  3). The sex and age 
only baseline yielded maximum accuracy of 0.72 and 
precision of 0.66. Medical reference values yielded 0.9 
precision and 0.9 accuracy. The binary statement of 
measurements yielded 0.93 precision and accuracy. 
The AUC scores for binary statement of measurements 
and medical reference values approaches were 0.93. No 
approach resulted in AUC below 0.9. This suggests that 
the fact of having certain analytes measured by medi-
cal personnel contains enough information for a good 
prediction. However, since the medical reference values 
approach yielded similar results, it is possible that ML 
methods perform better if optimized further.

Part D: IS prediction models
In recent years, several feed-forward networks have 
been claimed to outperform tree-based methods when 
analyzing certain types of tabular data [23]. Here, we 
selected two promising feed-forward neural networks 
(TabNet, FastAI tabular learner) and tested whether they 
outperform the baseline RF model in our IS prediction 
task (Fig.  1). In this analysis, we proceed with CPs 
represented by the raw numerical values (Additional 
file  1: Table  S20). This data representation yielded 
the second best results in Part C but contained more 
information than the binary observations. Also, the 
non-stroke ICD-10 codes from previous epicrises were 
added to the model. As the controls had no I60, I61, I62, 
I63, and I64 ICD-10 codes, the same codes were also 
removed from any cases before carrying forward the 
last observations for features. The codes were one-hot 
encoded for the RF model, while both DNN methods 
used an embedding layer for ICD-10 codes. For all three 
models a grid search algorithm was used to find the 
best hyperparameters (Additional file  1: Text S9). This 
hyperparameter search was conducted on the training 
dataset composed of 90% of the available data using 
tenfold cross-validation. The hyperparameters yielding 
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the greatest mean AUC value were determined. The final 
model was then trained on the entirety of the training 
set (90% of data) using these best hyperparameters and 
evaluated on the held out set (10% of data) (Additional 
file 1: Fig. S21).

For RF the mean AUC score for the best set of hyper-
parameters on the tenfold cross-validation was 0.92 
(SD 0.02), which translated to AUC = 0.94 of the final 
model. The FastAI tabular model achieved AUC of 0.86 
(SD 0.04) in cross-validation and an AUC of 0.88 on the 
test data with the final model. TabNet mean AUC score 
for the tenfold cross-validation was 0.93 (SD = 0.01) and 
the AUC of the final model was 0.90 on the test dataset 
(Table  4). Hence, the highest predictive ability on the 
test dataset was achieved by the RF model (AUC = 0.94). 
This was surprising given that the DNN approaches were 
reported as superior for tabular data [23].

The error analysis revealed that the DNN and RF mod-
els made mistakes on different test dataset instances, 
revealing that their decision process was different. 
Ensembling is particularly useful when combining 
models with uncorrelated mistakes [35]. We manually 
designed a simple set of ensemble models that, how-
ever, offered only minimal improvement (AUC = 0.95) 
over the stand-alone RF model (AUC = 0.94) (Additional 
file 1: Table S22).

The feature importance analysis of the ML models 
agreed with the current knowledge of IS risk factors. The 
most important features according to our models have 
been previously associated with stroke. Five features (the 
year of birth, B.Hct, U.pH.strip, B.MPV, and B.RDW.SD) 
were among the top 20 most important features for all 3 
models developed (Fig. 3).

Table 3  Five different approaches for handling input data

Approach|method
All measurements 

separately
All latest measurements 

per person

Precision Accuracy F1 Precision Accuracy F1

1. Binary statement of measurements

Logistic regression 0.69 0.7 0.67 0.85 0.86 0.85

KNN (n = 50) 0.8 0.78 0.75 0.8 0.8 0.77

Random forest 0.88 0.88 0.87 0.93 0.93 0.92

2. Binary measurements with equal controls and cases

Logistic regression 0.86 0.86 0.84 0.78 0.79 0.77

KNN (n = 50) 0.68 0.69 0.6 0.8 0.81 0.79

Random forest 0.86 0.86 0.85 0.88 0.88 0.87

3. Medical reference values

Logistic regression 0.8 0.8 0.79 0.86 0.86 0.84

KNN (n = 50) 0.78 0.77 0.75 0.78 0.82 0.76

Random forest 0.9 0.9 0.9 0.86 0.87 0.83

4. Absolute analysis values

Logistic regression 0.8 0.8 0.8 0.84 0.85 0.84

KNN (n = 50) 0.78 0.77 0.75 0.8 0.8 0.78

Random forest 0.91 0.9 0.9 0.92 0.91 0.91

5. Calculated z-score

Logistic regression 0.69 0.71 0.69 0.75 0.78 0.74

KNN (n = 50) 0.79 0.78 0.76 0.75 0.77 0.68

Random forest 0.89 0.88 0.88 0.89 0.89 0.88

(1) Binary statements whether or not an analyte was measured. (2) Binary statements were equalized within cases and controls. (3) Medical reference values were 
utilized; each value was marked as below, within, or above the reference norm. (4) Absolute values were used. (5) z-scores were used (adjusted for sex and age)
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Discussion
We demonstrated a novel use of an electronic nation-
wide healthcare dataset for scientific research through 
a biobank. Our project served as a successful test for 
several institutions to work together on medical data 
while protecting the subjects’ privacy. The rapidly 
evolving privacy-preserving analysis tools will enable 
increased secondary use of healthcare data for research 
purposes [36].

We showed that the EHR database is a valuable and 
readily usable resource for studying IS risk factors and is 
projected to have a similar value for studying other dis-
eases (Fig. 2). Our pipeline for preparing and cleaning the 
EHR data and combining it with additional information 
from EstBB sets an example for bringing together several 
large electronic data collections to target one goal.

We started with a wide range of data fields consisting 
of serum and whole blood samples along with urine 
and other biofluid analysis results. Treating the CPs 
as z-scores in the association analyses proved very 
comparable to treating those values relative to medically 
set ranges.

Lowess analysis, LR, and CPH modeling all uncovered 
significant hits for IS and confirmed many previous 
findings while ARM directed our attention to the 
association of low B.Lymph.% and high B.Neut.% among 
the IS cases. A meta-view of these results highlights the 
different risk prediction parameters for different sub-
groups (Table 2).

We determined the IS risk factors separately for men 
and women, as well as for younger and older individuals. 
Younger and older patients showed a different molecu-
lar background for IS [33]. More so than in other groups 
the young age is associated with low values of hemo-
globin and high red blood cells distribution width. Young 
IS cases are rare and could not be studied separately in 
depth. The cholesterol parameters exhibited different 
associations in men and women. We suspected that this 
effect could be modulated by the usage of statins, aspi-
rin, or other blood thinners. This does not seem to be 
the case, however, as they show very similar statin usage 
(52.1% of men, 50.5% of women) according to the EstBB 
database. Aspirin data are not reliable enough for conclu-
sions because only 1% of men and 1.3% of women show 
confirmed usage. Individually, the cholesterol parameters 
had negative association with IS. Typically, the ratio of 
HDL over total cholesterol is considered informative. Yet 
this ratio did not confirm the protective nature of HDL 
cholesterol in the LR or CPH tests.

Association rule mining yielded that a low 
lymphocyte to neutrophil ratio could be a risk factor 
for IS. The LR did not confirm this rule after applying 
Bonferroni correction (the p-values were nominally 

Table 4  Comparison of the ML methods by AUC​

Method Random forest FastAI tabular TabNet
Ensemble of RF 
and FastAI

Average AUC 
of 
development 
set (90% of 
data) 0.92 (SD 0.02) 0.86 (SD 0.04) 0.93 (SD 0.01) NA*

Test set AUC 
(10% data) 0.94 0.88 0.90 0.95

Tenfold cross-validation result with the best hyperparameters found. The ensembling was not performed in the hyperparameter search phase

*The ensembling was not performed in hyperparameter search phase

Fig. 3  The overlapping CPs found in the top 20 most important 
features by the 3 models: RF, FastAI tabular, and TabNet
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significant for all groups except the old). However, 
CPH produced significant p-values for this rule for 
all sub-groups and suggested that a high lymphocyte 
to neutrophil ratio is associated with a lower IS risk 
(hazard ratios 0.59–0.81). Interestingly the lymphocyte-
neutrophil balance has been shown to influence the 
degree of COVID-19 severity [37], is known as a 
measure of general inflammation state [38], and has 
been reported as a prognostic marker for IS [39, 40].

Our results suggest that 5 different health aspects 
could be compromised for the individual to develop 
elevated risk for IS: (1) red blood and iron metabolism 
(B.RDW.CV, B.Hct, B.Hb, B.RDW.SD, B.RBC, 
S.P.Fer), (2) thrombocytes and coagulation (B.MPV, 
P.APTT), (3) white blood cells and inflammation 
(B.Neut.#, B.Lymph.%, B.Segmented.Neut.%, S.P.CRP, 
B.Lymph.%/B.Neut.%), (4) lipidomics and liver function 
(S.P.Chol, S.P.LDL.Chol, S.P.HDL.Chol, S.P.ALAT, 
S.P.ALP, S.P.CA.125, S.P.Alb, B.HbA1c, S.P.HDL.Chol/
S.P.Chol), (5) renal function (S.P.Crea, S.P.Urea, S.P.UA, 
S.P.cTnT.hs, S.P.CA.125, eGFR, S.P.CK).

These 5 above-mentioned pathophysiological 
conditions before the IS event have been described in 
literature and can be elaborated further:

1.	 A rise in the erythrocyte indexes B.RDW.CV and 
B.RDW.SD and ferritin levels with lowering trends 
in B.Hb, B.Hct, and B.RBC values before IS diagnosis 
indicate early hidden anemia. This is characterized 
by possible anisocytosis (B.RDW.CV, B.RDW.SD) 
with iron not properly entering the erythrocytes 
(ferritin) and the hemoglobin oxygen carrier function 
(B.Hb, B.Hct) operating below normal levels during a 
prolonged time before the IS onset. The pre-existing 
anemia was previously shown to cause higher risk for 
IS and worse IS outcome [9, 41, 42].

2.	 The positive trend of B.MPV with the onset of IS 
indicates platelet activation for increased coagulation. 
Higher B.MPV has been described as a marker of 
proinflammatory condition of the stroke patients, 
observable prior to the acute ischemic event [43]. 
Higher values of B.MPV in the acute phase of stroke 
have been suggested to indicate early neurological 
deterioration [44].

3.	 The lymphocyte–neutrophil imbalance detected 
before IS reflects chronic inflammation. The immune 
system has been implicated in the development and 
progression of common risk factors for stroke [45]. 
The ratio of B.Lymph.%/B.Neut.% could serve as an 
early IS biomarker. This has been suggested as useful 
for assessing acute phase IS and later outcomes [46], 
sepsis [47], and COVID-19 [48].

4.	 Dyslipidemia is known as a major risk factor for 
stroke, including IS [49]. Our dataset provided input 
for total, HDL, and LDL cholesterol but not enough 
data for other relevant markers, such as triglycer-
ides, homocysteine, and apoA. We saw weak cor-
relation of all cholesterol types with IS and attribute 
that to the general frailty due to various comorbidi-
ties or advanced age. Of the cholesterol ratios tested 
only S.P.HDL.Chol/S.P.Chol showed some protective 
effect and only in men (lowess) or young (CPH) IS 
patients.

5.	 High levels of S.P.Crea, S.P.Urea, and S.P.UA together 
with negative trends of eGFR [50] and S.P.CK indicate 
impaired renal function. An increase in the levels of 
S.P.cTnT.hs and S.P.CA.125 also fit in this pattern of 
moderate renal and hepatic failure.

Further research should go into the causal sequences 
and relationships between these 5 interrelated conditions 
preceding IS.

The CP concentration trends were often detectable over 
2000 days before IS (Additional file 1: Table S12). This time-
frame exceeds the 1-year period typical for finding new 
clinical markers for IS [51]. Earlier detection options offer 
advantage because often more serious deviations in CPs 
reflect changes that have already progressed past where 
medical attention can help. Since the predictive markers here 
belong to the commonly administered set of tests, the addi-
tional population screening costs are small.

We showed promising predictive value for IS using the ML 
methods. Sex and age alone showed only weak predictive 
power. Somewhat surprisingly the binary statement of meas-
urements contained a substantial amount of information 
for good prediction models (> 0.9 accuracy and precision). 
This could signify chronic health problems of the future 
IS patients. As many variables of EHR data were missing it 
shows that missingness in the EHR variables is not random, 
but highly associated with patients’ comorbidity data [52]. 
This suggests that the tests ordered by medical personnel 
could be sufficient information for an accurate IS predic-
tion model. A relatively small increase in score values was 
observed when the CP test results were included as input. 
When comparing LR, KNN, and RF we concluded that RF 
outperformed other methods and it did so with different 
data representations. Using raw numeric CP values, the RF 
resulted in scores above 0.9 proving good applicability of RF 
on EHR data (Fig. 2).

We also developed and validated ML models to pre-
dict IS based on combined EHR and EstBB datasets. 
The IS could be predicted with excellent performance 
(AUC was 0.94 for RF and 0.95 for the ensemble model 
of RF and FastAI). Despite positive results reported in 



Page 12 of 14Kurvits et al. European Journal of Medical Research          (2023) 28:133 

the literature, neither of the DNNs improved the pre-
diction accuracy [23, 53]. We therefore report the sim-
pler and more widely used RF approach as the most 
promising method for accurate IS classification. The 
DNN approaches may still prove useful for predicting 
other diseases—the error analysis showed that DNNs 
made mistakes in different stages and the importance 
analysis revealed that DNNs relied more on ICD-10 
values. For predicting another disease the decision-
making logic of the DNNs might be more suitable and 
outperform RF.

This work could be improved in several ways. In 
Estonia, all medical laboratories are obliged to deposit 
their clinical test results to EHR [54]. Over 20 different 
laboratories and hospitals perform these tests and 
they may use different methodologies. Therefore, they 
must provide the norm and reference values for each 
test, but they do not always report them to EHR. This 
may introduce deviations in the standardization steps 
which translates into poorer input for the prediction 
models. Secondly, the EHR dataset contains more 
information for patients who visit doctors more 
frequently. This can have an effect on our results. 
Although we use limited pharmaceutical information 
in our research, this aspect could be improved by 
incorporating more information about medications 
used.

We obtained the best predictive results with the 
most common CPs. With a higher number of rare CPs 
the results would likely have been different since most 
ML methods work optimally with a balanced number 
of parameters. It is possible that with better feature 
engineering the outcome could improve further.

Finally, because a case–control experimental design 
was utilized the results are not straightforward to 
interpret. When developing a clinical risk model one 
usually considers the target population for the model, 
time-at-risk, observation time, etc. These parameters 
would have allowed us to evaluate the applicability of 
the models better. Regardless, the performance sta-
tistics were very encouraging. The focus of this study 
was to measure the discriminative ability of prediction 
models (AUC), but the clinical utility of the models 
still needs to be assessed before the models are ready 
for medical use. Further research toward fine-tuning 
more advanced prospective models for clinical use can 
include our findings as input, while each of these mod-
els requires additional evaluations.

Conclusions
This project has been an introduction to more in-depth 
analysis of predicting IS and also other common 
diseases in the Estonian population. Our study serves 

as an example of how to screen an already existing EHR 
datasets for CPs to be incorporated into general risk 
calculations for IS in the future. We established several 
trends in common clinical parameter changes that can be 
used as early warning signals for IS. Our ML models were 
able to accurately predict future IS. It is of paramount 
importance to compile the current understanding and 
generate new knowledge to proceed to generating multi-
level risk models for predicting IS and other common 
diseases at the population level. Therefore, steady work is 
still required for applying the scientific results to benefit 
public health.
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