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Abstract

Background: Several climatologists and experts in the renewable energy field agree that GHI and DNI calculation
models must be revised because of the increasingly unpredictable and powerful climatic disturbances. The
construction of analytical mathematical models for the prediction of these disturbances is almost impossible
because the physical phenomena relating to the climate are often complex. We raise the question over the current
and future PV system's sustainable energy production and whether climate disturbances will be affecting this
sustainability and resulting in supply decline.

Methods: In this paper, we tried to use deep learning as a tool to predict the evolution of the future production of
any geographic site. This approach can allow for improvements in decision-making concerning the implantation of
solar PV or CSP plants. To reach this aim, we have deployed the databases of NASA and the Tunisian National
Institute of Meteorology relating to the climatic parameters of the case study region of El Akarit, Gabes, Tunisia. In
spite of the colossal amount of processed data that dates back to 1985, the use of deep learning algorithms
allowed for the validation of the previously made estimates of the energy potential in the studied region.

Results: The calculation results suggested an increase in production as it was confirmed by the 2019 measures. The
findings obtained from the case study region were reliable and seemed to be very promising. The results obtained
using deep learning algorithms were similar to those produced by conventional calculation methods. However,
while conventional approaches based on measurements obtained using hardware solutions (ground sensors) are
expensive and very difficult to implement, the suggested new approach is cheaper and more convenient.

Conclusions: In the existence of a protracted controversy over the hypothetical effects of climate change, making
advances in artificial intelligence and using new deep learning algorithms are critical procedures to strengthening
conventional assessment tools of the production sites of photovoltaic energy and CSP plants.

Keywords: GHI estimation, Deep learning, PV production prediction, ANN modeling and greenhouse effect

* Correspondence: afef@benothman.de

'National School of Engineers of Carthage, University of Carthage, Tunis,
Tunisia

“Laboratory of Robotics, Informatics and Complex Systems, University Tunis
El Manar, Tunis, Tunisia

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13705-020-00266-1&domain=pdf
http://orcid.org/0000-0003-0953-356X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:afef@benothman.de

Ben Othman et al. Energy, Sustainability and Society (2020) 10:34

Background
Introduction
For over a century, energy deficiency has become one of
the major universal challenges. The global industry and
commerce demand for energy has been urgently increas-
ing. Meeting this demand with conventional resources
as fossil fuels is no longer an option because of dimin-
ishing resources and global economic growth. Therefore,
renewable energy is now an alternative means to sustain
energy supply. Indeed, unlike fossil fuels, renewable en-
ergy resources are safe, unlimited, and easily exploitable.
Reliance on solar energy as one of the most significant re-
newable resources is mandatory to cope with this rapidly
growing demand. Solar energy efficiency depends highly on
wise decisions of where to locate a PV plant that puts solar
radiation availability into consideration. This availability is
corroborated by the estimation of the highest Global Hori-
zontal Irradiation (GHI), i.e., the total amount of direct and
diffuse solar radiation at a given location. Therefore, to
choose an optimal location for a photovoltaic or CSP power
plant, the following parameters must be considered [1]:

e Solar resource.

In this stage, as a study case area, we must indicate the
area with the highest DNI (Direct Normal Irradiation)
and GHI incidence or the area whose features meet the
formal tender requirements.

e Transmission lines and electrical substations.

The proximity of electrical transmission lines and sub-
stations to the chosen area will reduce additional costs
of connecting the station to the electricity transmission
and distribution network.

e Adequate spatial location.

A third basic requirement is a geographically suitable
area for the site. Vast, relatively flat but not floodplain
wetlands, and less densely populated areas can be the
most appropriate option. For example, the land area re-
quired by a 50-MW solar plant with a 6-h storage cap-
acity is about 300 ha. Parabolic troughs and power tower
plants require a piece of land with a slope of less than
2% (50 meters altitude difference).

e Other factors.

Many environmental, societal, economic, and political
issues such as landownership, water resources, benefits
and costs, and policy making should be taken account of
before a photovoltaic or CSP power plant project
implementation.
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Unfortunately, although the aforementioned conditions
can be met, it is still globally difficult to obtain radiation
measurement data due to equipment high costs. In
Tunisia, reliable radiation data are always collected over
short periods of time and are only available at few me-
teorological stations. This can create a severe limitation
for solar model application. Moreover, most of the classic
mathematical models were developed to operate only
under clear sky conditions. Therefore, this makes of them
an inaccurate tool to predict global radiation data [2].

The increase in greenhouse gasses has already resulted
in significant climate changes. By absorbing infra-red ra-
diation, these gasses control how natural energy flows
through the climate system [3]. As a result of anthropo-
genic emissions, the climate has started to adapt to a
“thicker layer” of greenhouse gasses to maintain the bal-
ance between energy from the sun and that which is sent
back into space.

Observations showed that global temperatures rose by
about 0.6 °C during the twentieth century. Unfortunately,
it is becoming increasingly evident that most of the heat-
ing of Earth’s climate system observed over the past 50
years is due to human activities. Climate models expect
that the planet’s temperature to rise up from 1.4°C to
5.8°C by 2100. This will be a significant atmospheric
warming, if compared to the temperature degrees experi-
enced in the last 10,000 years. Climate models are based
on a wide range of assumptions that take into account fac-
tors such as population growth and technological change
that may result in future gas emissions. Nevertheless,
those future climate projections have not reflected any
measures to reduce gas emissions that threaten the cli-
mate. As a result, many uncertainties regarding the mag-
nitude and the impact of climate change still persist,
particularly at regional levels. Due to the delaying effect of
the oceans, surface temperatures do not respond immedi-
ately to greenhouse gas emissions. As a result, climate
change might continue to exist for centuries even after at-
mospheric concentrations stabilize.

Climate change is likely to have significant impacts on
the planet’s environment. In general, the faster climate
change progresses, the greater the risk of damage will
be. An average sea level rise of 9 to 88 cm is expected by
2100 [4], which would result in the flooding of low-lying
areas and other major damages [5, 6]. Other effects
would include increased global precipitation and
changes in the severity or the frequency of extreme
events. Climate zones could move vertically (instead of
being belt-shaped and circular around the Poles) to-
wards the Earth’s poles, disrupting forests, deserts, grass-
lands, and other unmanaged ecosystems. This would
lead to the decline or disintegration of some of these
ecosystems and the extinction of certain species. In spite
of these assertions, current knowledge on the assessment
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and formal representation of the impacts of climate change
remains extremely modest. This results in great uncertainty
about the results of modeled approaches based on the
evaluation of potential economic and social costs.

Scientific research suggests four sources of uncertainty
related to the representation of impacts:

e Assessment scarcity and lack of data on significant,
long-term global warming in the presence of serious
climate disasters and triggered environmental crises
in developing regions;

e The incompleteness of assessments along with the
persistent present uncertainties in developing
countries;

e Developing country’s geographic aggregation, with a
masking effect concealing large heterogeneities,
including potential very localized ruptures with
serious socio-economic consequences;

e The difficulties of monetary valuation, the
extrapolation of the response functions is therefore
based on general hypotheses concerning their shape
and amplitude;

Recurrently, the literature postulates simple functional
forms of the power or a polynomial type of order 2,
which rule out the possibility of non-linearity. However,
apart from questions of technical feasibility, nothing
seems to justify their use.

Accordingly, in the absence of feasible solutions to
cope with global warming and while waiting for these
currently inaccessible functions, our work suggests to
build integrated models by means of relatively simple
functions. The efficiency of this approach can only be
translated in the functions’ ability to satisfy the analytical
and numerical requirement of global warming’s impacts
and respect the previously acquired data in this field.
Therefore, we suggest that artificial neural networks
(ANN) and deep learning (DL), which can use many me-
teorological and geographical parameters as input, can
be a more efficient method to predict GHI using [7]. In
this study, we aim to reassess global solar radiation inci-
dence using deep learning software and re-investigating
big data record parameters collected by NASA’s me-
teorological data over 34 years (from 1985 to 2018 and
available at the Power Data Access Viewer Application).
The case study area is El-Akarit, Gabes, which lies (34°
10" 80" North, 9° 97" 28" East) in the Middle East of
Tunisia.

This paper is divided into three parts in addition to
the introduction and the conclusion. The first part de-
tails the conditions and criteria for choosing a PV pro-
duction site. We emphasize the digital evaluation
methods, the data collection, and the expected results.
We discuss the methods’ scope and limitations.
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We devote the second part to explain ANN’s princi-
ples of functioning and terms and conditions of use as
well as the possible horizons of the generated solutions.

In the third part, we propose a case study to illustrate
ANN'’s potential and provide a comprehensive discus-
sion of the future possible scenarios of climate change
and global warming.

Site assessment methodology

Choosing the appropriate solar plant site is a priority for
interested companies. Many criteria should be met in
order to determine the optimal solar power plant location.
Some of these criteria that might allow optimal exploit-
ation of solar resources are the availability of high solar ra-
diation and the possibility of predicting its spatial and
temporal distribution [8, 9]. In this research, we chose El
Akarit, Gabes, as a case study area to conduct our estima-
tion of PV power potential (see Fig. 1). The area is located
in the middle east of Tunisia which, according to Solar
GIS maps [10], receives a huge amount of solar radiation
[11].

Another reason behind our choice was that the same area
was chosen by the National Company of Electricity and
Gas (STEG) to install the first CSP-type solar power plant
in Tunisia. Preliminary studies yielded evidence that the site
had enormous energy potential. As a result, we predicted
that any future installation of power plants in the same site
might be highly profitable (see Fig. 2 and Table 1). More-
over, the site has additional advantages such as flatness, a
rocky nature that does not produce high amounts of dust,
and its proximity to power lines. Several published studies
have given strong evidence of the appropriateness of deter-
mining the power plant location based on calculations gen-
erated using theoretical numerical models from the laws of
physics [12, 13]. However, previous works provided 1-year
measurements instead of providing robust measurements
based on empirical studies. This limitation could not allow
the validation of a certain site choice which normally re-
quires more than 11 years of confirmed measurements with
an energy production rate higher than 1.1 kW/m?.

Climatic condition integration in numerical models
designed to predict a site’s production stands as a signifi-
cant constraint and is likely to complicate the calcula-
tions. This limitation generates an additional problem
with this approach since it does not consider the cli-
matic conditions which might affect the state of the sky
(clear, clouds...) [13—-15].

To cope with this limitation, we combine solar radi-
ation measurements collected by satellites and the differ-
ent climatic parameters (wind, temperature, humidity...)
with those of the results generated by the models and
the corrected data made by the available ground mea-
surements [16—18].
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We realized that if our work aims to provide accur-
ate and thorough data, it should not rely just on sat-
ellite images because they will not be sufficient since
both snow cover and altitude errors caused by 2D im-
ages might distort the measurements. Moreover, re-
search has highly emphasized the importance of the

geographical location of the site as a basic criterion
for efficient energy production. Nevertheless, the pro-
duction is inevitably dependent on the cloud cover
which is determined by global climatic conditions
(wind, humidity, snowmelt, Gulf Stream..) [19].
Therefore, our objective will be to analyze the effect
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Table 1 Values measured by NASA satellites
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Year GHI (kWh/m?) Titax (°O) Twiin (°O) Tave (O Wind (m/s) SKY Clear (%) SKYpartly cioudy %) SKY Cloudy (%)
1985 178546 34.18 469 19.54 413 31.25 6193 6.82
1986 1778.50 3242 6.82 19.56 4.14 3097 62.50 6.53
1987 1700.50 34.46 4.65 19.69 4.09 23.53 68.63 7.84
2015 1950.51 34.68 533 19.92 3.98 60.66 36.64 2.70
2016 1922.98 34.67 7.59 21.04 4.16 5292 43.38 3.69
2017 1943.06 3544 560 19.64 424 6042 36.86 272
2018 1898.71 36.23 794 20.18 4.07 52.60 43.12 4.28

of climate change and global warming on PV produc-
tion in the study area. We will realize this through
studying the effects of the variations in both cloud
cover and temperature [20]. Considering KT a clear-
sky index, we assume that the sky clarity can be clas-
sified as follows:

« KT €[0 0,35]° Cloudy;» KT €[0,36 0,65] = partly

climatic feature in the observed 10-year period (2008—
2018). This validates the assumption that there was
increase in solar radiation values in the same period.

Table 1 shows that the values of climatic parame-
ters taken in 1980s were different from those recently
received.

Cloudy;s KT €[0,66 1] = Clear. 1. Maximum temperatures increased by about 1.75 °C.
Data visualization (Fig. 3) reveals that GHI had been 2. Minimum temperatures increased by about 1.65 °C.
determined by climate change over the observed years. 3. Average temperatures increased by 0.69 °C.
Findings show that the clear sky had been the dominant 4. Total sunny days increased by 98 days year-round.
N
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Fig. 3 Satellite measurements over the period 1985-2018
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5. The totally cloudy days have decreased by about 13
days throughout the year:
6.

The data presented in the figures show significant
interference of the climatic conditions in PV systems
production. Currently, climatologists argue for the exist-
ence of a global anomaly in temperature degrees which
might result in an increase by 5 °C by 2100.

Atmospheric warming will inevitably lead to snow
cover and glaciers melting in addition to other severe
climatic disturbances. The most frequently raised ques-
tion is:

Will climatic disturbances in areas intended for future
installations of solar power plants affect PV or CSP
production?

Unlike previous research that has provided results re-
lated to answering the question above relying on math-
ematical or numerical models, we aim, in the following
section, to yield estimates of the possible undesirable
fluctuations in power production through using deep
learning tools.

Methods

Deep learning analysis

Deep learning is the process of discovering patterns and
finding anomalies and correlations in large data sets to
predict outcomes [14]. It involves methods at the inter-
section of machine learning, statistics, and database sys-
tems. Using a software and some techniques, it is
possible to use this information to reduce risks, increase
revenues, cut costs, etc. [21-25].

Several advances in business processes and technology
have led to a growing interest in data mining in the private
and public sectors. Computer networks are one of these
innovations which can be used to connect databases and
the development of search related techniques such as
neural networks as well as the spread of the client/server
computing model. This model allows for a user’s access to
centralized data resources from the desktop and a re-
searcher’s increased ability to combine data from disparate
sources into a single search source [26, 27].
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Deep learning is a powerful set of learning techniques
in neural networks. It is a technology in which computa-
tional models that are constructed of multiple process-
ing layers are allowed to learn from the data set relying
on multiple levels of abstraction (see Fig. 4).

There have been major advances in using these models
in different fields such as speech recognition and object
detection [28—-30]. Metaphorically, neural networks repre-
sent a data processing brain, which means that the models
are biologically inspired and are not just an exact replica
of how the brain cells function (see Fig. 5). A full potential
of neural networks might be exploited by using them in
many applications. Thanks to their ability to “learn” from
the data, their non-parametric nature, and their ability to
generalize, they are considered a promising tool to im-
prove data prediction and business classification [31].

Basically, neural networks are tools for modeling non-
linear statistical data. They can be used to search for
patterns in the data or to model complex relationships
between inputs and outputs [32]. Using neural networks
as a data warehousing tool, companies collect informa-
tion from data sets in a process called data mining. The
difference between ordinary databases and these data
warehouses is that there is actual data manipulation and
cross-fertilization that might allow users to make more
informed decisions [33, 34].

Neural networks are more efficacious than mathemat-
ical models in data prediction. In fact, they can predict
various components of solar radiation using some me-
teorological parameters as input [35-38]. Therefore,
their use in many applications has gained increasing
popularity as they proved to be one of the best tools for
non-linear mapping. Research has previously used them
to predict solar radiation properties, such as hourly dif-
fuse, direct and global radiations, and daily global radi-
ation [25, 39, 40].

Hidden layers

Although some feed-forward neural networks might
contain five or six hidden layers, two hidden layers are
often enough to speed up data convergence. Indeed, the
network learns best when mapping is simple. Accord-
ingly, a network designer would almost be able to solve

Data Collection Data Cleaning

Data Integration Feature Extraction

Model Evaluation Model Deployment

Predictive Modeling Feature Selection

Fig. 4 Algorithm, data processing
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any problem with one or two hidden layers. However,
with deep learning, analytic platforms such as Kuime
that deals with complex data sets can deploy up to a
hundred layers of neurons.

Hidden neurons

For less than five inputs, the used number of network
inputs should approximately double the number of hid-
den neurons. As the number of inputs rises, the ratio of
the hidden-layer neurons to inputs declines. To guaran-
tee a small number of free variables, the weight of hid-
den neurons should be diminished through reducing
their number. As a result, the need for large training sets
will decrease. The regulation of the optimal number of
hidden neurons for a given problem is always carried
through validation set error. Knime can deploy up to a
hundred of hidden neurons.

Transfer function
Almost any transfer function can be used in a feed-
forward neural network. However, to wuse the

backpropagation training method, the transfer function
must be differentiable. The most common transfer func-
tions are the Gaussian, the logistic sigmoid, the linear
transfer function, and the hyperbolic tangent. Linear
neurons require very small learning rates to be properly
trained. Gaussian transfer functions are employed in ra-
dial basis function networks which are often used to per-
form function approximation.

Training process

Supervised machine learning, used in Knime software,
looks to predict a future outcome. For example, predict-
ing the spread of viral diseases is based on the analysis
of models of potentially relevant factors (predictors)
such as virulence of the virus, speed of spread, and wea-
ther in past data.

As indicated in Fig. 6, the inputs of the prediction al-
gorithm are the data collected from 1985 to 2018 con-
cerning the hourly temperature (max, min, and average
values), the wind speed, the value of KT, the value of
GHI, and the values recorded during the tests of PV

Data set (1985-2018)

Horizon of Prediction

Temperatures
(Max, Min, Ave)

Wind Speed (=]

Sky Clarity Index
(Clear, Cloudy, [ )
Partly Cloudy)

Measured GHI @@

Knime Software

N 2020-2030

@D PV Potential Prediction

Fig. 6 Algorithm, inputs, and outputs




Ben Othman et al. Energy, Sustainability and Society (2020) 10:34

Page 8 of 11

Fig. 7 Implementation of data processing
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power production. The objective was to predict an out-
put related to the next 10years values of PV power
production.

The prediction process occurred in 3 phases: the first
phase consisted in formatting and filtering the data that
will be introduced into the algorithm. We opted for a
quadratic, autoregressive adaptive filtering. In the second
phase, we used 60% of the data entered (from 1985
t02005) to launch the prediction process and to compare
the predicted results with the recorded ones (the 40% of
the collected data from 2006 to 2018 was not used). This
was a smoothly conducted training phase which gener-
ated very close results to the recorded ones. The error
rate was 2%. The third and last phase involved using the
entire database to predict production variations from
2020 to 2030. Figure 7 shows the workflow which is the
implementation of the model on the Kuime software
[41, 42]. It is a graphic code.

A workflow is a sequence of nodes; it is the graphic
equivalent of a script as a sequence of instructions.
Nodes can be connected to each other through their in-
put and output ports to form a workflow. It is a pipeline
of the analysis process like read data, clean data, filter
data, and train a model [21].

Node 1: Excel Reader

This node reads and provides a spread sheet at its out-
put port.

Nodel0: Interactive table

Input table to display.

Node 3: Partitioning node

After sampling, the data is usually partitioned before
modeling.

Nodell: Linear correlation

It calculates for each pair of selected columns a correl-
ation coefficient, i.e., a measure of the correlation of the
two variables.

Node 12: Correlation filter

This node uses the model as generated by a correl-
ation node to determine which columns are redundant
(i.e., correlated) and filter them out. The output table
will contain the reduced set of columns.

Node 5: Logistic regression learner

It performs a multinomial logistic regression. The
solver combo box determines the solver that should be
used for the problem.

Node 6: Logistic regression predictor

It predicts the response using a logistic regression
model. The node needs to be connected to a logistic
regression node model and some test data. It is only exe-
cutable if the test data contains the columns that are used
by the learner model. This node appends a new column to
the input table containing the prediction for each row.

Node7: Scorer

It compares two columns by their attribute value pairs
and shows the confusion matrix, i.e., how many rows of
which attribute and their classification match. The dialog
allows the selection of two columns for comparison: the
values from the first selected column are copied in the
confusion matrix’s rows and the values from the second
column by the confusion matrix’s columns. The output
of the node is the confusion matrix with the number of
matches in each cell. Additionally, the second out-port
reports a number of accuracy statistics such as true posi-
tives, false positives, true negatives, false negatives, recall,
precision, sensitivity, specificity, and F-measure, as well
as the overall accuracy and Cohen’s kappa.
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Node 8: Interactive table

It displays data in a table view. In case the number of
rows is unknown, the view counts their number when
they get open. Furthermore, rows can be selected and
highlighted.

Node 9: Lift chart

This node creates a lift chart. Additionally, a chart
for the cumulative percent of responses generated is
shown. A lift chart is used to assets a predictive
model. The higher the lift gets (the difference be-
tween the “lift” line and the base line), the better per-
formance the predictive model provides. The lift is
the ratio between the results obtained with and with-
out the predictive model. It is calculated as number
of positive hits (e.g., responses) divided by the average
number of positives without model.

Results and discussion

The obtained results must be verified using four of
the most important verification criteria below to
prove the accuracy and the reliability of the produced
predictions [25, 41]:

The accuracy indicator

The Cohen’s kappa K indicator

The area between the base line and the [ift curve
The estimated correlations between the different
parameters in the confusion matrix.

B W=

In this study, the accuracy indicator is 72%, a good
percentage which gives the results a high degree of con-
fidence (see Fig. 8c).

Let K be the Cohen’s kappa coefficient used to measure
the percentage of data values in the diagonal of the confusion
matrix table and then adjusts these values to make aleatory
agreement occurring possible. K can be classified as follows:

K 2 [0 0,2]) Poor agreement;

K 2[0,21 0,4]) Fair agreement;

K 2 [0,41 0,6]) Moderate agreement;
K 210,61 0,8]) Good agreement;

K 2 [0,81 1]) Very good agreement.

The correlation matrix (see Fig. 8a) is shown as a red-
white-blue heatmap. Blue values show a high correlation,
white values show correlation zero, and red values show
an inverse correlation between the two columns.

The cumulative gains chart (see Fig. 8b) is a visual aid
used to measure model performances. So, when the area
between the lift curve and the baseline is great, the pre-
dictive model’s performance is higher.

Table 2 shows that the effect of global warming is pre-
ponderant, that the production of a future power plant
will increase by about 11% (see cases d, e, f, g, h, and i),
and that climatic disturbances will not have a significant
effect on its production.

Even in the case of increased climatic disturbances
and temperature degrees decline, power production will
increase by a small percentage (of 4%). This result is ex-
plained by the fact that the neural networks already in-
ternally memorized, which might have increased power
production during the past 34 years. The hypothesis that

Table 2 Prediction of GHI evolution during 2020-2030 (main
results)

KT~ - 2
u Case a Case b Case ¢

1% (18 kWh/m?) 4% (78 kWh/m?) 3% (52 kWh/m?)
- Case d Case e Case f

12% (12 KWh/m?)  11% (197 kWh/m?)  10% (186 kWh/m?)
2 Case g Case h Case i

9% (158 kWh/m?) 1% (194 kWh/m?)  11% (11 kWh/m?)
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future installed PV plants may risk loss of efficiency due
to the climatic disturbances was rejected.

Conclusion

The overall objective of our work was to accurately pre-
dict the PV power potential in the case study area for
the next 10 years, under changing climatic conditions. In
this paper, we suggested the use of deep learning tech-
niques to obtain a good estimate of the PV power which
is often difficult to achieve with analytical models. We
found that by applying this approach, the production
value indicators will increase slightly due to global
warming and that PV electricity production will not be
affected by climate disturbance in Tunisia. The results
generated are credible with an accuracy rate of 72%
based on the assumption that solar activity remains the
same as observed in past years.

In another way, some scientists will be probably
expecting a cooler period in the next following years due
to the sunspot activity. So, it will be judicious to analyze
the variations in PV production in the coming years by
integrating the sun’s activity and the possible variations
it may have on the climate.
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