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Abstract

Background: Micro-grid (MG) can be described as a group of controllable loads and distributed energy resources
that can be connected and disconnected from the main grid and utilized in grid-connected or islanded modes
considering certain electrical constraints.

Methods: The objective of this article are as follows: (1) predict the uncertainties through the hybrid method of
WT-ANN-ICA and (2) determine the optimal generation strategy of a MG containing wind farms (WFs), photovoltaic
(PV), fuel cell (FC), combined heat and power (CHP) units, tidal steam turbine (TST), and also boiler and energy
storage devices (ESDs). The uncertainties include wind speed, tidal steam speed, photovoltaic power generation
(PVPG), market price, power, and thermal load demand. For modeling uncertainties, an effort has been made to
predict uncertainties through the hybrid method of wavelet transform (WT) in order to reduce fluctuations in the
historical input data. An improved artificial neural network (ANN) based on the nonlinear structure is applied for
better training and learning. Furthermore, the imperialist competitive algorithm (ICA) is applied to find the best
weights and biases for minimizing the mean square error of predictions.

Result: The scenario-based stochastic optimization problem is proposed to determine the optimal points for the energy
resources generation and to maximize the expected profit considering demand response (DR) programs and uncertainties.

Conclusions: In this study, three cases are assessed to confirm the performance of the proposed method. In the first case
study programming, MG is isolated from grid. In the second case study, which is grid-connected mode, the WT-ANN-ICA
and WT-ANN uncertainty prediction methods are compared. In the third case, which is grid-connected mode, the effect of

DR programs on the expected profit of energy resources is assessed.

Keywords: Micro-grid, Wind farm, Photovoltaic, Combined heat and power, Tidal steam turbine, Expected profit

Background

The micro-grid (MG) concept has recently attracted signifi-
cant public attention. Integration of renewable sources,
combined heat and power (CHP) systems, and energy
storage technologies in the MGs will result in environmen-
tal friendly, low cost, and reliable energy. Recently, using
CHP systems in MGs has attracted more attention. The
primary motivation for incorporating CHP units is providing
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electrical and thermal energy, simultaneously. During
electricity generation process of CHP systems, waste heat is
employed to provide thermal energy. This process will result
in the improvement of overall system efficiency as well as a
significant reduction in the cost of thermal energy gener-
ation. It should be mentioned that, in a CHP unit, the power
generation boundaries depend upon the heat generation of
unit and the heat generation boundaries depend on the
power generation of the unit [1].

Owners of renewable resources need to predict the
uncertainties for optimal planning such as photovoltaic
voltage/power generation [2], market price [3], and load
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forecasting [4], wind farm power generation/wind speed
(WS) [5-9]. In [7], firstly, historical data of WF is
decomposed using wavelet transform (WT) and then
WEFE power generation is predicted by artificial neural
network (ANN). This method is tested in two regions of
china. Afterwards, comparing WT-ANN, ANN, and auto
regressive moving average (ARMA) methods revealed
that WT-ANN can significantly reduce the error in spite
of ANN and ARMA methods. In [8], the optimal
weights and biases of ANN are determined by genetic
algorithm (GA), imperialist competitive algorithm (ICA),
and ICA-GA methods; then, they are tested on six speci-
fied databases. In the end, the obtained results con-
firmed that ICA has higher capabilities. Similarly, ANN
is employed to predict WF power generation, and then,
ICA, GA, and particle swarm optimization (PSO) are
chosen to determine the optimal weights and biases [9].
The prediction results were more satisfactory when ICA
algorithm was utilized.

The second solution for uncertainty reduction in re-
newable units including renewable resources is to coord-
inate other energy resources which are quite expensive,
but available and more reliable, such as pump-storage
unit, hydro unit, gas turbines, combined cycle power
plants, and energy storage batteries [10-21]. However,
the share of these energy sources should diminish for
many reasons [10]. In [11], the coordinated planning of
WE, pump-storage unit, and thermal units is presented
by the multi-stage stochastic planning and solved by sce-
nario decreasing algorithm of PSO. In [12], the required
reserve level is estimated in the presence of high-level
WEF penetration. In [13], the optimal strategy of WF is
determined in the real-time market. The wind speed and
market price are predicted by ARMA. Moreover, the
expected profit is limited by FR and the required reserve
is determined due to the error prediction in WF power
generation. In [14], the coordinated planning problem of
WEF and thermal power plants are solved by artificial
immune optimization method. This optimization
method is implemented on a system including ten ther-
mal power plants and two wind farms (WFs). A mixed
integer programming algorithm is adopted for period
planning of operation startup/shutdown and generating/
pumping mode of pump-storage unit to maximize the
profit in coordinated operation of WF and pump-storage
unit [15]. A scenario-based and chance constrained
optimization method is hired to consider the WF power
generation prediction error. A rolling optimization
method for WF coordination with the energy-storage
systems in the day-ahead market is presented to increase
the profit of these power plants.

The optimal scenario-based operation management of
MG including WEF, photovoltaic, micro-turbine/fuel cell,
and energy storage devices are studied in [16]. In this
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paper, the considered uncertainties are load, WF power
generation, photovoltaic power generation, and market
price. In [17], the optimal biding strategy model in an
electricity distributed company is considered in order to
make the maximum profit in the day-ahead market. In
[18], the modified particle swarm optimization algorithm
is used to optimize energy in MG. Moreover, in this
study, uncertainty of data is checked using Hong
method. In [19], like [18], Hong method is applied for
covering uncertainties; however, the modified firefly
algorithm is utilized for optimization. In [20], studies on
utilization of micro-network are made in the presence of
generating resources of thermal and electrical energy
and also Proton Exchange Membrane Fuel cell power
plant along with the hydrogen storage. The modified
algorithm of self-adaptive charge search algorithm is
applied for optimization. In [21], the objective function
is considered to maximize the profit of wind farm, fuel
cell, boiler, CHP units, electrical power generation unit,
and energy storage devices (ESDs) connecting to a MG
regarding uncertainties. The uncertainties are predicted
by time series methods.

In this paper, the presented issue can be shortly
explained as follows:

1. Prediction of uncertainties via hybrid method
(HM) of WT-ANN-ICA. According to the studies
in [7-9], prediction of uncertainties using the
proposed method can lessen errors of prediction
of WS in comparison to ARMA, ANN, WT-ANN,
WT-ANN-PSO, and WT-ANN-GA methods.
Therefore, this approach may generate scenarios
closer to reality and lead to the optimal
programming.

2. Generating the scenarios of WS, tidal steam
speed (TSS), photovoltaic power generation
(PVPG), market price, and power/thermal load
demand, decreasing the scenarios with the
scenario-reduction backward method, and
modeling them through the tree scenario
method.

3. The programming of MG, including WFs,
photovoltaic (PV), tidal steam turbine (TST), fuel
cell (FC), CHP units, boiler, and electrical and
thermal ESDs, considering constraints and the
uncertainties of WS, TSS, PVG, market price, and
power/thermal load demand.

4. Studying the expected profit of energy resources
with and without DR program.

Methods

An algorithm is proposed for programming gener-
ation and unit commitment of an MG including
three WFs, PV, TST, FC, two CHP units, boiler, and
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ESDs with and without considering DR program
shown in Fig. 1.

Scenario-based stochastic modeling

As a result of extending renewable resources and uncer-
tainty in the nature of such resources, the modern com-
plicated power systems should be analyzed in uncertain
environment so that operating point and reliability of
energy supply occur in approximation with the optimal
point in reality. Therefore, having access to powerful
tools is necessary for transition from uncertain environ-
ments with random variables, including their probability
contributions, to the certain problems with certain vari-
ables. In the modern deregulated power supply markets,
the most important random variables are load demands,
wind speed, PVPG, and market price. The origin of the
abovementioned uncertainties are found in issues like
weather conditions, temperature variations, and govern-
ment decision.
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This proposed method for prediction of uncertainties
is proposed in Fig. 1 as a flowchart. As observe here, it
is assumed that the prediction for dth day can be made
and the historical data extracted for every single hour of
24 h beginning 100 days ago.

Stage 1: data homogenization
The historical data are recalled and normalized to im-
prove data homogenization.

Stage 2: data processing using wavelet theory

The components and features of data can be ex-
tracted through mathematical equations. More specif-
ically, the components and features of time and
frequency domain of data signal can be extracted
through wavelet technique. The basic equations of
WT are Egs. (1 and 2) [22].

Recalling the Historical Data of Uncertainties Signals
and Normalize Them
Prediction Appling WT in Order to Decompose the Input Data to
stage Detail and Approximation Series
Using Trained ANN
Based on Input Data ICA
and ICA
Prediction of Prediction of Prediction of Prediction of Prediction of
Market Price WS Loads Demand TSS PVPG
Scenario Generation of WS, TSS, PVPG, Loads Demand and Market Price
Scenarios ¢
Generation -
stage Scenario
Reduction
Will be the DR Program
Considered?
Objective function and constraints Objective Function and Constraints
with DR Program without DR Program
Computing i i
it
stage ‘ Computing the Expected Profit ‘
Result Get the Optimal Bidding
Extracting Strat
stage ategy
Fig. 1 The flowchart of the proposed method
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where y (a, D) is the wavelet function and f (¢) is the in-
put signal on which wavelet function is implemented
until the WT (a, b) signal is yield. Furthermore, 2 and b
are the parameters related to the WT which depend on
the type of wavelet function. The approximated values
are decomposed once more after some iterations; there-
fore, the signal is decomposed into smaller parts [7, 23].
WT is essential here to suppress the disturbances in his-
torical data and to alleviate the fluctuation of input data.
The input data is decomposed into three approximated
components of (Dhl, Dh2, and Dh3) with lower accur-
acy together with a more precise component (Ah) which
plays the most important role in prediction process [23].

Stage 3: ANN

McCulloch and Pitts tried to simulate the ANN by a logical
model for the first time which now is widely applied in
many fields. Here, the chosen ANN consist of three percep-
tion layers: the output layer with one neuron, the input layer
with five neurons, and the hidden layer with three neurons.
This ANN can predict the information of hours d (¢ + 1,...,t
+ 24) for the output signals of WT as the initial data.

Stage 4: ICA

ICA is a new optimization strategy based on political
and social evolution of human. Basically, to determine
the best solution, GA and PSO are inspired with bio-
logical evolutions, chromosomes, and particles. However,
the source of inspiration in ICA is the social-political
evolution, and it applies colonies (countries) as the vari-
able for finding the optimal solution [8, 9]. The steps of
ICA are briefed as follows:

1. Developing initial colonies: the ANN consist of input
signals (Ah, Dh1, Dh2, and Dh3), the five neurons in the
input layer (IL), the three neurons in hidden layer (HL),
and the one neuron in output layer (OL). The matrixes of
wrights (W) and biases (B) consist of ILW = [5 x 4], ILB
=[5x1], HLW =[5 x 3], HLB = [3 x 1], OLW = [3 x 1],
and OLB = [1 x 1]. Hence, each colony constitutes 47
variables. Initial colonies are selected through specific
range based on initial training of ANN on a random basis.
Regarding the cost function based on decreasing the
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prediction error, the optimization of weights and biases
are performed within the neural network for better
training. The cost function here is the mean square error
which is proposed as Eq. (3).

‘ . LN ,
min FunctionCost MSE = mmz:; |90 =Yinl (3)

where y,, and y;, are predicted and real value for inth
input.

2. Selecting the imperialist: in this stage, the colonies
with minimum cost are selected as the imperialists.
3. Allocating the other countries as the colony to the
imperialists: in this step, some colonies are allocated to
each of imperialists and empires. This allocation is done
according to imperialists fitness (fewer cost) by
stochastic universal sampling method. The stages of 1-3
are the initialization stages of ICA.

4. Performing the act of assimilation or absorption
policy: in this stage, each of the colonies is moved
towards the imperialist in each empire. This stage
proceeds to improve the exploitation of algorithm.

5. Performing the act of revolution: in this stage, the
random changes are applied on each of the colonies.
This action can improve the exploration of algorithm
and prevent from involving the optimization in the
local optimal points.

6. Computing the cost of colonies and imperialists.

7. Comparing the cost of colonies with imperialist in
each empire: if a colony holds a lower cost than the
imperialist, it will take its place.

8. Evaluating the empires: the cost for each empire is
computed according to Eq. (4).

0 Ncor

COStempire = COStimperialist + NCOL ; (COStn) (4)

where N¢i o is the number of colonies.

9. Decreasing the colonies: in this stage, a colony is
omitted from the weakest empire and transmitted to
another empire by roulette wheel method. According
to this method, the empire with the lower cost has
more chance to seize the colony.

10. Omitting the empire: if the weakest empire has no
colony, the related imperialist will be transmitted to
another empire as a colony.
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Stage 5

Studying the termination condition, the stop condition is
set based on the number of iterations obtained by trial
and error method. If the stop condition of program is sat-
isfactory, the results are moved to the scenario generation
stage; otherwise, the algorithm returns to (4) to generate
new colonies. ICA flowchart is illustrated in Fig. 2. The
uncertainty prediction curves are shown in Fig. 3a—f. The
comparison of mean square error of proposed method
with ARMA, WT-ANN, and WT-ANN-PSO methods are
listed in Table 1.

Generating scenarios and backward method scenarios
reduction

According to the stated issues, the determination of optimal
strategy for resources connected to the MG is analyzed

A\

Initialize empires

L]

Assimilate colonies

L]

Revolve some colonies

y

v

Is there a colony in an
empire which has lower

cost than of the
imperialist?

Yes

Exchange the position of the
imperialist and colony

v

Computing the function cost of
all colonies and imperialists

v

Imperialist competition

No
Is there an empire with no

colony?

Eliminate this
empire

Studying termination
condition

Fig. 2 Flowchart of ICA
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randomly. To reach this goal, at first, a probability density
function is defined for each variable. In this study, the
applied probability density function is adopted for power/
thermal load demand, TSS, PVPG, and market price with
normal distributed functions. In the case of WS, the statis-
tical model is not coordinated with the normal distribution
but more harmonized with Weibull distribution function.

To accomplish this, first, a probability density function is
defined for each variable. In this study, the applied prob-
ability density function is adopted for power/thermal load
demand, TSS, PVPG, and market price with normal distrib-
uted functions. In case of WS, the statistical model is not
coordinated with normal distribution but more harmonized
with Weibull distribution function. First, this distribution
function is portioned into N parts with the mean of zero
from the center with the width of a. Next, each portion is
allocated to the occurrence probability and specific error
percentage at each level, Fig. 4, [16]. Then, the probability
of each occurrence is normalized in a sense that their accu-
mulated distribution function is equal to 1. Finally, a num-
ber is selected for each uncertainty variable and each time
interval by roulette wheel method in a random matter;
hence, the intended scenario is yield.

The rate of each scenario is obtained by the sum of
the error and predicted amount of variable [16]. Eq. (5)
shows the amount of scenario for the WS. Consequently,
500 scenarios are generated for each uncertainty.

For modeling, all uncertainty parameters, including WS,
TSS, PVG, market price, and power/thermal load demand,
and many scenarios are generated. However, the huge num-
ber of scenarios makes it burdensome to solve the stochas-
tic problem. In order to solve this problem, the number of
scenarios should be declined by the backward method. The
basis of this method is to merge the scenarios with close
probability into one. This process could continue until
reaching the favorable numbers [16, 21]. In this research,
the number of scenarios abates down to 10 for each state.

w
PG (W’85 t) = Pg/forecasted (5)
+APY (w,s,t)
t=1,....,24, s=1,...... s Sws
w = 1, ...... s WN

Objective function of WFs, PV, TST, FC, CHP units, boiler,
and ESDs

In this study, the optimal scheduling of MG including
WEs, PV, TST, FC, CHP units, boiler, and ESDs is exam-
ined with the 24-hour time horizon as well as considering
uncertainties and DR programs in order to maximize the
expected profit. The multi-stage stochastic programming is
applied to deal with uncertainties. Since the generation
power of units should be determined before applying
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stochastic processes, they are the first stages or here-and-
now decisions and are not dependent to the scenarios.
Other variables such as buy or sell power from the market
and charge or discharge of storage devices are at the second
stage or wait-and-see decisions. This mixed integer nonlin-
ear optimization problem is solved through GAMS/COU-
ENNE software. GAMS/COUENNE is a GAMS solver that
allows users to combine the high level modeling capabilities
of GAMS with the power of COUENNE optimizers which
are designed to solve large and difficult problems quickly
and with minimal user intervention. This solver is a general
one which can be used to solve all scheduling problems. In
these conditions, COUENNE solver can be used to solve
the proposed optimization problem. COUENNE uses a
branch and cut algorithm which solves a series of linear
programming and sub-problems [24].

Problem modeling

In this section, an optimal bidding strategy is modeled and
analyzed. The objective function of this optimization prob-
lem utilized for the first time is as Eq. (6). where, py is the

Table 1 Mean square error of four prediction method of WS

probability of scenario s. Pue(s,f) and Pyy(s,2) are the
amount of power sold and bought to/from the market,
respectively. According to Eq. (7), the probability of sth sce-
nario is obtained by multiplying the probabilities of WS,
TSS, PVPG, market price, power, and thermal load demand
in each other. The function Cr is the total operation cost of
units defined in Eq. (9). The objective is to maximize the
expected profit of units considering constraints related to
unit usages; the difference between selling excess energy to
the market in grid-connected mode and costs. The costs
include buying energy from the market in grid-connected
mode, the expenditure of operation, startup and shutdown
cost, the cost of charge of electrical ESD, and batteries of
PV resource proposed as Egs. (9-12). Eq. (15) is the power
balancing constraint of MG.

P14

P2

P34

Level2

Leveld

Method 1 h ahead(m/s) 3 h ahead(m/s)
ARMA 0.61 0.995
WT-ANN 0.585 0.981
WT-ANN-PSO 0.570 0.975
WT-ANN-ICA 0.540 0.968
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Fig. 4 The probability density function of uncertainties
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+{(1-DR(s, t).Lo(s, t) + Leni(s, £)}
(15)

where i is the index of each energy resources; W, CHP,
PV, FC, TST, K, and B are the index of wind farm, com-
bined heat and power, photovoltaic, fuel cell, tidal steam
turbine, electrical energy storage device, and boiler; Ay,
ATS’B pr ACHP - FCHB Apc, and BFC are the cost coeffi-
cients of wind farm, tidal steam turbine, photovoltaic,
combined heat and power, and fuel cell; 7/t is the total
number/index of time intervals; Sp Srss, Sws Spy Spr,
and Sy are the index of scenarios for market price, tidal
steam speed, wind speed, photovoltaic power generation,
power, and thermal load demand, respectively; Y is the
sufficient large number; Ucost(i,t) and Dcost(i, £) are
the startup/shutdown cost of ith generation unit at hour
t; M(i, t) is the commitment state of ith generation unit
at hour £ p; is the probability of the syth wind speed;
stssth is the tidal steam speed; spyth is the photovoltaic
generation; s,th is the scenario of market price; sp,th is
the scenario of power load demand; sy;th is the scenario
of thermal load demand; C4{(i, £) is the value of total gen-
eration cost of ith generation unit at hour £ Ep(s,, t) is
the price of the market ($/MW) for energy for s,th sce-
nario of price at hour ¢, respectively; Psye(s, £) and Ppyy(s,
t) are the amount of power sold and bought to/from the
market at hour ¢ in MW; PY (sw,t), PET (srss,t), Pg,
cup(t), and PEC(¢) are the power generation of wind
farm, tidal steam turbine, heat and power, and fuel cell
at hour ¢ in MW, respectively; SU(i, £)/SD(i, t) is the
startup/shutdown status of ith unit at hour ¢.

Demand response program constrains

The aim of demand response programs is shifting the load
of MG from high consumption hours (where the energy
prices are high) to the low consumption hours. It should
be noted that planning for load shifting is just able to
change a part or percentage of load from an hour to an-
other [21].

The final load after applying DR program:

L(s,t) = (1-DR(s,t)) x Lo(s,t) + Lenite (s, ) (16)

The maximum amount of movable load:
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DR(s, ) < DRinax (17)
Maximum limit of load in each of the intervals:

0= Lincreased (8; £) < €increased (S, £) X Lo (s t) (18)
Load in hour ¢ after applying DR program:

Lincreased (8, t) = Lenite (s, £)—(DR(s, £) X Lo(s,2))  (19)
Coefficient limit of increasing load:

Eincreased (S, 1) < Emax (20)

Since in day-ahead markets, in general, clearing is per-
formed for 24 h ahead, it is assumed that the daily energy
expenditure of M@ is fixed based on Eq. (21).

T

T
> Lincreasea(s,t) = Y _(DR(s, t) x Lo(s, t))

t=1 t=1

(21)

where Lo(s, £)/L(s, ), DR(s, £), DRmaxs Lshite(S; £); Eincreased(s,
1), €max are load before/after applying demand response
program, percentage of load shifting from hour ¢, max-
imum load which can be shifted, shifted load from other
hours to hour ¢ for sth scenario, amount of increased load
at hour ¢, maximum amount of load which can be in-
creased at hour ¢, respectively.

CHP units constraints

As observed in Fig. 5, the electrical power generations of
CHP units are not independent of their thermal power and
these two powers cannot be controlled in a separate man-
ner [25]. The electrical-thermal characteristics of CHP units
are shown Fig. 5. The operation constraints of CHP units
can be extracted from Fig. 5. The area under curve is for-
mulated through Eq. (22). Egs. (23 and 24) represent the
models for areas above and curves, respectively. Both elec-
trical and thermal powers are equal zero in the case of
non-participating CHP units in energy generation accord-
ing to Egs. (25 and 26), respectively [26].

P(MW)
A

247 &
2.05

0.99
0.81

| -
03 T H(MWth)

Fig. 5 The electrical-thermal characteristic of CHP units
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He cup(0)-Hg cup(A)

(He.cup(t)-Hg crp(6)) 2
~(1-M(CHP. t)) X Y

Pg cup(t)—Pg,crp(0)-

(24)
OSHQCHp(t) SHG,CHP(ﬁ) X M(CHP, t) (25)
0<Pg cup(t)<Pg cup(B) x M(CHP, t) (26)

where a, f5, 6, and A are the four marginal points of the
electrical-thermal characteristic of combined heat and
power.

Heat energy storage device constraints

n general, the heat buffer tank is added to CHP units and
boiler and serves as thermal storage. The total amount of
generated thermal energy is obtained from Eq. (27). The
delivered thermal energy to the buffer tank influenced is
by losses (#710ss) and generated excess heat (744in), respect-
ively. The shutdown and startup modes of CHP units and
boiler at hour ¢ can be extracted through Eq. (28) [21].
Therefore, the thermal power available for buffer tank at
hour ¢ is computed through Eq. (29). In Eq. (30), the heat
storage capacity of buffer tank is calculated. The gradient
rate of increasing and decreasing thermal energy are cal-
culated through Egs. (31 and 32), respectively. The heat
capacity limits of boiler are expressed as Eq. (33).

CHPy

Z Hecnp(t) + He(t) (27)
CHP=1
HT(t) = H%(t)_ﬂlosssu(iv t)
+ lygamSD(i, t) ieCHP,B (28)
AH(t) = (1-0)AH(t-1) + H7(¢t)-Hpy () (29)
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AH yin SAH (£) <AH oy (30)
AH(£)-AH(t-1) SAHR (31)
AH(t_l)_AH(t) <AH$2§hage (32)
Hgmm( )M(B’ t) (B t)<HGmax(B)'M(B’t)

(33)

where H (¢), H(¢), AH(t), and o are the total produced heat
in combined heat and power and boiler at hour ¢, real heat
which the buffer tank could be supplied at hour ¢, avail-
able heat in the buffer tank, and heat loss rate for heat
buffer tank, respectively.

Fuel cell constraints
The power capacity limits of boiler:
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WFs constraints
Characteristics of power generation for wind farms are
nonlinear according to the wind speed which varies under
the influence of type, dimension, and design of turbine.
Generally speaking, the generation power of wind unit can
be obtained by Eq. (39).

Moreover, A and B are determined by Egs. (40 and 41)
[23].

1

AV = 5w -wssw) (%0)
_wsi(w)
BY) = Sussw)-wss(w) ()

where WS(sw, W, t), Pya(W), WS.(W), WS,(W), and
WS.o(W) are the amounts of wind speed of Wth

PFCmm( C)-M(FC, t)<PFC(FC t)SPF «(FC).M(FC, 1) wind farm for syth wind speed scenario at time ¢,
(34) rated power of Wth wind farm, the minimum wind
Minimum up time constraint: speed required to start power efficiency in wind
’ farm (cut-in speed), rated speed, and the cut-out
[ton (FC, (t-1))~Umin(FC)] x [U(EC, (t-1)-U(FC, )]0  Wwind speed (the wind speed by which turbine puts
(35) the blades parallel to wind to prevent damages),
respectively.
Minimum down time constraint:
[torr(FC, (8-1))=Dmin(FC)] x [U(FC,t)-U(FC,(¢-1))]=0 PV constraints
(36) Limits on the ESD of the PV unit while getting charged
and discharged:
Generation rate constraints: [14].
R*(FC,t) = min{R® (FC, P, (FC)-PE(FC,t)} 0<Piirr < (BV,spv, ) <P (PV)Zcn PV sspv,0)
(37) (42)
R©"™(FC,t) = min{R¥¥"(FC), PE (FC,t)-PEC, .. (FC)}
(38) 0<PRHY <(PV,spv, ) <Paary (PV)Zpcu (PV, spv,£)  (43)
where o (FC,t)/toft(FC,t), Umin/Dmin, R (FC, t) /R
(FC,t),and R /R .o are the duration for which fuel Charge/discharge switching constraint:
cell had been continuously up/down till period ¢, mini-
mum up/down time of fuel cell, ramp up/down capacity 0<Zcy(PV,t) + Zpcu(PV,t)<1 (44)
of fuel cell at hour ¢, and maximum ramp up/down rate
of fuel cell, respectively. Initial/terminal energy of the battery:
PY (sw, W,t) =
0 0<WS(sw, W,t) < WSu(W)
Pyn(W).(A(w).WS?(sw, W,£)-B(W))  WSu(W)<WS(sw, W, t) < WS,(W) (39)

Pyn (W)

WS, (W) < WS(sw, W, £) < WSeo(W)

0 WSeo (W) < WS (s, W, 1)
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ENR(PV,t = 1) = ENRyy(PV), ENR(PV , t = 24)2ENReng
(45)

Amount of saved energy in the battery:

E]\[R(S[)V,P‘/7 t) = ENR(Spv, PV7 t—l) + PgIIZTT(Spv,PV, t—l)
—PRSH (spv, PV, t-1)
(46)

The power generation of the PV unit:

pﬂlep\/(Sp\/7 PV, t) = ng(Spv,PV7 t)—szITT(Spv, PV tﬁ47)
+0PLH (spv, PV, £)

where Zci(PV; )/ Zpcr(PV;t), BATTcoss PSi+(PV,t),
PR (PV), PRG(PV. 1), PEe™(PV), ENR(PV;2),
and § are the charge/discharge state of energy saving device
of photovoltaic unit at hour ¢, the cost of buying energy for
battery charging, the amount of charging power of PVth
photovoltaic unit at hour ¢ and its maximum limit, the
amount of power delivered while discharging energy-saving
device of photovoltaic unit at hour ¢ and its maximum
limit, the amount of saved energy in PVth energy-saving
device of photovoltaic unit at hour ¢, efficiency factor of
electrical energy-saving device, respectively.

Electrical energy storage device constraints

The constraints of electrical energy storage devices
correspond to Eq. (42-47). This difference is in
charging and discharging of these devices and other
constraints depend on scenarios pertaining to WS,
PVPG, power/thermal load demand, while the PV
constraints are just affected by PVPG.

PgST(STss, TST, t) =
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Tidal turbine
In order to extract the tidal energy and generate power
electricity, the following two systems are applied:

1. Tidal stream system where kinetic energy of the
free-flowing water is consumed and

2. Tidal barrage system that consumes potential
energy of the ocean at ebb and flow. Usually,
this method is not adopted due to the
environmental conditions [27].

The generation power of tidal stream turbine is
obtained through Eq. (48).

where
PYor(TST) = 0.5.p,400-A-Cp. TSS2(TST)

TSS(srsp TST, t), Py (TST), TSS.(TST), TSS,(TST),
TSSco(TST), pwater A, and Cp are the amounts of
steam speed of TSTth tidal steam turbine for s;grth
steam speed scenario at time ¢, the rated power of
TSTth tidal steam turbine, cut-in steam speed, rated
steam speed, cut-out speed of tidal steam turbine,
fluid density (kg/mz), the cross-sectional area of the
tidal steam turbine (m?), and the power coefficient,
respectively.

Results and discussions

In this part, firstly, the structure of MG and numerical
data concerned with energy resources are studied, and
then, simulation results of optimal operation for the
stochastic problem are analyzed.

0 0<TSS(s7ss, TST,t) < TSS;(TST)
3
TSS(s7ss, TST, t)-TSS;(TST)
PY. (TST). o TSS(TST)<TSS TST,t) < TSS,(TST (48)
157 (TST)-\ 755, (TST)-T85,(1ST) (IST) < TSS(s7ss, TST ) (18T)

ISTN(TST) TSS,(TST)<TSS(stss, TST,t) < TSS.,(TST)

0 TSS.o(TST)<TSS(stss, TST, t)
Table 2 The startup and shutdown cost of units
CHP units ACHP =0.0435 BCHP =36 CCHP =125 DCHP =0.027 ECHP =06 FCHP =0.011
Heat buffer tank Nioss = 0.6 Ngain = 0.3 0=1% AHgischarde " AHppax =7 AHpmin=0

TAHDE, =2

charge
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Configuration of MG
In this article, three case studies will be assessed:

1. Planning isolated MG by predicting uncertainties by
hybrid method of WT-ANN-ICA

2. Planning and determining the optimal strategy of
MG energy resources connected to grid and
comparing hybrid prediction methods of WT-
ANN and WT-ANN-ICA, in order to examine
the influence of predicting uncertainties upon
the profit amount of MG

3. Programming and determining the optimal strategy
of MG connected to the grid and applying hybrid
prediction method of WT-ANN-ICA for predicting
uncertainties and exploring the effect of DR problem
on the profit of MG

The case studies are run on three WFs, two CHP
units, one TST, one PV, one boiler, one low-
temperature fuel cell (PAFC), one electrical energy
storage device, one heat buffer tank together with
the fixed and responsive electrical, and the related
fixed thermal loads. The startup and shutdown costs
of units are tabulated in Table 1. The heat buffer
tank data and cost coefficients of CHP units are
tabulated in Table 2. The heat buffer tank data and
cost coefficients of CHP units are shown in Table 3.
Both DR,.« and é&y.x are assumed 30%. The
electrical-thermal characteristics of CHP units are
displayed in Fig. 5. The parameters of WFs include
WSeo(i) = 25™°, WS,(i) = 11™5, WS,(i) = 2.5™%, and
the rated output power are equal to Py, = 1.5MY,
Pwno, 3=2.4"Y. Historical data pertaining to the
WS, electrical demand and market price, electrical
energy storage devices data, and photovoltaic power
generation are proposed in [21, 28, 29] and [16], re-
spectively. The PV nominal power generation is
pMw :4.68,an4i‘f =0 and §=0.75. Table 4 lists the

max
parameters used for the tidal steam turbine [30].

Case studies

Case study 1: planning of MG in the grid-isolated mode

In this case, P,y =Psae=0 and the objective func-
tion is just concluded in cost terms of energy
resources. The uncertainties are predicted by hybrid
method of WT-ANN-ICA. The simulation results

Table 3 The heat buffer tank data and cost coefficients of CHP units

Unit Ucost Dcost
CHP units 20 20
Fuel cell 0.0207 0.0207

Boiler 9 9
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Table 4 The tidal steam turbine data

Rated speed 2.4(m/s)
Cut-in speed 0.7(m/s)
Cut-out speed 4.2(m/s)
Power coefficient 047
Cross-sectional area 3.006(m?)

obtained from the first case study are listed in
Table 5. According to Table 5, the generation cost is
equal to the amount of objective function and
$2032.76. In this state, the WF, TST, and PV are not
working with their maximum capacity, while the cost
of generating them is zero and this occurs due to
the thermal load of MG. The CHP units produce
heat to provide thermal load. The electrical-thermal
characteristics of CHP units are the generation fac-
tor for both heat and electrical power (Fig. 6).

2. Case study 2
The effect of exchanging electrical energy with grid
in connected mode and also the effect of more ac-
curate prediction of random parameters on MG
planning are studied by comparing the hybrid
methods of WT-ANN-ICA and WT-ANN. The MG
planning problem in the presence of all economic
and technical constraints and the DR problems will
be solved. The results are tabulated in Table 5,
where, by WT-ANN-ICA prediction method, the
generation cost increases by 13.77% in comparison
with the first case. The profit of MG resulted from
taking part in the market is $792.64 and $909.93 for
WT-ANN and WT-ANN-ICA, respectively. This
profit is due to the sale of power to the main grid.

The generated power of resources in the planning
horizon is shown in Fig. 7. The expected amount of buy-
ing and selling powers, WFs, TST, and PV power gener-
ation are illustrated in Fig. 7. According to Fig. 7, WFs,
TST, and PV power generations are readjusted at their
maximum capacity.

Therefore, the excess WFs, TST, and PV power
generations can be saved in devices of electrical en-
ergy storage and shifted to the hours with more

Table 5 Case studies results

State  Prediction Cost of Revenue Generation Value Expected
method buying from the cost ($) of OF profit ($)
energy sale of ()
%) energy
)
Case 1 WT-ANN-ICA - - 2032.76 -2032.76 -
Case 2 WT-ANN 2816 129578 225430 —1240.12 79264
WT-ANN-ICA 26693 145696  2312.86 —1122.83 909.93
Case 3 WT-ANN-ICA 38757 122845 216159 —1320.71 712.05
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Power/Thermal
Loads

Fig. 6 Typical MG under study

demand (higher price) or can be on offer to the mar-
ket. In Fig. 8c, d, the generated thermal power of
CHP units and boiler are shown, respectively. Accord-
ing to Fig. 8¢, d), considering costly expenses of gen-
eration, the boiler is less involved in supplying
thermal demand, as compared to CHP units.

Due to the stochastic nature of WFs, TST and PV
power generations, market price, and power/thermal
load demand, more accurate prediction of these random
parameters led to generating scenarios proximate to
reality and with greater possibility. Consequently, a more
detailed planning can be achievable. In Table 5, the ob-
tained results of MG planning are compared by
prediction hybrid method of WT-ANN and WT-ANN-
ICA. The results indicate 14.79% increased profits of
MG in WT-ANN-ICA method in comparison with WT-
ANN method.
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Case study 3: to explore the effect of DR program on
determination of generation strategy of MG

In the third case, the MG planning is studied without DR
program in order to investigate its effects on the expected
profit of MG by hybrid prediction method of WT-ANN-
ICA. Table 5 shows the results of case study 3 versus 2.
The expected profit decreased while the cost of generation
dropped slightly. According to Table 5, the expected profit
of M@ in the third case study is $712.05 which approxi-
mately decreased 27.7% as compared to the second case
study (applied DR program). This reduction in profit of
MG indicates the efficacy of DR program on the optimal
planning of these units.

Regarding Table 5, the objective function values of
both cases 2 and 3 are negative. That is because of
high energy demand inside the MG and lack of pos-
sibility to offer excess power to the main grid.

The difference between energy generation of
resources with and without DR is illustrated in Fig. 8.
The received and delivered power to grid with and
without DR is depicted in Fig. 8a. Regarding this
figure, the movable loads can be shifted from peak
time to other hours when the energy price is lower
and makes profit.

Conclusions

In this paper, an algorithm was suggested to ascer-
tain optimal strategy of a MG including WFs, PV,
TST, fuel cell, CHP units, boiler, and ESDs, by
considering economic and technical constraints and
DR program. This research aimed to present an
optimization program to maximize the profit of MG
in grid—connected mode, and to minimize the cost
of energy resources in grid- isolated mode. The un-
certainties are WS, TSS, PVPG market price and
power/ thermal load demand which are predicted by
hybrid prediction methods of WT-ANN and WT-

Power (MWh)
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T TsT
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I Exchanged power
OF | N WFs

I CHP units

3 T I

4+

MLMMM (LLLHIRRRITS

2k ||| i

0 5 10

Fig. 7 The generated power of resources in the planning horizon
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Fig. 8 a-e Energy generation of resources with and without DR

ANN-ICA, and related scenarios are generated by
probability density functions appropriate to each un-
certainty and scenario reduction method. The simu-
lation results represent that applying more accurate
prediction method, some scenarios proximate to
reality and with greater possibility are generated.
Hence, a more detailed and precise planning is
achieved and the expected profit of MG might be
increased. If the method of WT-ANN-ICA is used
rather than WT-ANN, the expected profit of MG
will be increased by 14.79%. Furthermore, the ex-
pected profit can be raised by applying DR program.
According to the studied cases, although the DR
program increases the generation cost by 7%, the
expected profit rises more than 27.7% and it goes to
$909.93, while without considering DR program, this
profit would be $712.05.

In addition, the outcome of case studies illustrate that
by implementing this proposed framework, the MG can
obtain a meaningful profit in the grid-connected mode in
comparison with the isolated mode, as well as supplying
total electrical and heat demand.
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