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Abstract

In this paper, a novel approach for head pose estimation in gray-level images is
presented. In the proposed algorithm, two techniques were employed. In order to
deal with the large set of training data, the method of Random Forests was employed;
this is a state-of-the-art classification algorithm in the field of computer vision. In order
to make this system robust in terms of illumination, a Binary Pattern Run Length matrix
was employed; this matrix is combination of Binary Pattern and a Run Length matrix.
The binary pattern was calculated by randomly selected operator. In order to extract
feature of training patch, we calculate statistical texture features from the Binary Pattern
Run Length matrix. Moreover we perform some techniques to real-time operation, such
as control the number of binary test. Experimental results show that our algorithm is
efficient and robust against illumination change.

Keywords: Head pose estimation; Random forests; Binary pattern; Run Length matrix;
Illumination-invariant
Introduction
Determining head pose is one of the most important topics in the field of computer

vision. There are many applications with accurate and robust head pose estimation

algorithms, such as human-computing interfaces (HCI), driver surveillance systems,

entertainment systems, and so on. For this reason, many applications would benefit

from automatic and robust head pose estimation systems. Accurately localizing the

head and its orientation is either the explicit goal of systems like human computer in-

terfaces or a necessary preprocessing step for further analysis, such as identification or

facial expression recognition. Due to its relevance and to the challenges posed by the

problem, there has been considerable effort in the computer vision community to de-

velop fast and reliable algorithms for head pose estimation [1]. The several approaches

to head pose estimation can be briefly divided into two categories: appearance-based

and model-based approaches, depending on whether they analyze the face as a whole

or instead rely on the localization of some specific facial features.

The model-based approaches combine the location of facial features (e.g. eyes, mouth,

and nose tip) and a geometrical face model to calculate precise angles of head orientation

[2]. In general, these approaches can provide accurate estimation results for a limited range

of poses. However, these approaches have difficulty dealing with low-resolution images due
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to invisible or undetectable facial points. Moreover, these approaches depend on the

accurate detection of facial points. Hence, these approaches are typically more sensi-

tive to occlusion than appearance-based methods, which use information from the

entire facial region [3].

The appearance-based approaches discretize the head poses and learn a separate de-

tector for each pose using machine learning techniques that determine the head poses

from entire face images [3]. These approaches include multi-detector methods, mani-

fold embedding methods, and non-linear regression methods. Generally, multi-detector

methods train a series of head detectors each attuned to a specific pose and assign a

discrete pose to the detector with the greatest support [1,4]. Manifold embedding based

methods seek low-dimensional manifolds that model the continuous variation in head

pose. These methods are either linear or nonlinear approaches. The linear techniques

have an advantage in that embedding can be performed by matrix multiplication; however,

these techniques lack the representational ability of the nonlinear techniques [1,5]. Non-

linear regression methods use nonlinear regression tools (e.g. Support Vector Regression,

neural networks) to develop a functional mapping from the image or feature data to a head

pose measurement. These approaches are very fast, work well in the near-field, and give

some of the most accurate head pose estimates in practice. However, they are prone to error

from poor head localization [1,6].

Recently, random forests have become a popular method in computer vision given

their capability to handle large training datasets, their high generalization power and

speed, and the relative ease of implementation. Decision trees can map complex input

spaces into simpler, discrete or continuous output spaces, depending on whether they are

used for classification of regression purposes. A tree splits the original problem into smaller

ones, solvable with simple predictors, thus achieving complex, highly non-linear mappings

in a very simple manner. A non-leaf node in the tree contains a binary test, guiding a data

sample towards the left or right child node. The tests are chosen in a supervised-learning

framework, and training a tree boils down to selecting the tests which cluster the training

such as to allow good predictions using simpler models. Random forests are collections of

decision trees, each trained on a randomly sampled subset of the available data; this reduces

over-fitting in comparison to trees trained on the whole dataset, as shown by Breiman.

Randomness is introduced by the subset of training examples provided to each tree, but

also by a random subset of tests available for optimization at each node [7,8].

The proposed approach can be summarized as follows.

1. Random Forests is employed for classifier. Due to this classifier, system can be

operated in real time and deal with the large set of training data.

2. The binary pattern run length matrix is proposed for binary test. This method is a

combination of a binary pattern and a run length matrix. The binary pattern was

calculated by randomly selected operator, such as Local Binary Pattern, Centralized

Binary Pattern and Local Directional Pattern. The statistical texture features, such as

Short Run Emphasis and Long Run Emphasis, is employed. Due to this strategy, system

can be robust to illumination variance and classification performance is improved.

3. The key parameters of the binary test of each node are optimized using information

gain. The resulting optimum binary test improves the discriminative power of

individual trees in the forest.
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4. In order to achieve a more efficient data split, we increase the number of iteration

for parameter generation. By this strategy, the patches are split roughly at the

beginning depths, and are divided more finely at deeper depths.

The remainder of this paper is organized as follows. We describe several binary pat-

terns and gray-level run length matrix in Section Related work. In section Proposed

head pose estimation algorithm, the proposed method is introduced in detailed. Experi-

ments results and a discussion of those results are reported in Section Experiments. Finally,

we offer our conclusions in Section Future works.

Related work
Head pose estimation

The model-based approach

In the feature-based methods, the head pose is inferred from the extracted features,

which include the common feature visible in all poses, the pose-dependent feature, and

the discriminant feature together with the appearance information.

Vatahska et al. [9] use a face detector to roughly classify the pose as frontal, left, or right

profile. After his, they detect the eyes and nose tip using AdaBoost classifiers, and the detec-

tions are fed into a neural network which estimates the head orientation. Whitehill et al.

[10] present a discriminative approach to frame-by-frame head pose estimation. Their algo-

rithm relies on the detection of the nose tip and both eyes, thereby limiting the recognizable

poses to the ones where both eyes are visible. Yao and Cham [11] propose an efficient

method that estimates the motion parameters of a human head from a video sequence by

using a three-layer linear iterative process. Morency et al. [12] propose a probabilistic frame-

work called Generalized Adaptive View-based Appearance Model integrating frame-by-

frame head pose estimation, differential registration, and keyframe tracking.

The appearance-based approach

In the appearance-based methods, the entire face region is analyzed. The repre-sentative

methods of this type include the manifold embedding method, the flexible-model-based

method, and the machine-learning-based method. The performance of both kinds of

methods may deteriorate as a consequence of feature occlusion and the variation of

illumination, owing to the intrinsic shortcoming of 2D data. Generally, the appearance-

based methods outperform the feature-based methods, because the latter rely on the

error-prone facial feature extraction.

Balasubramanian et al. [13] propose the Biased Manifold Embedding (BME) frame-

work, which uses the pose angle information of the face images to compute a biased

neighborhood of each point in the feature space, before determining the low-dimensional

embedding. Huang et al. [14] present Supervised Local Subspace Learning (SL2), a

method that learns a local linear model from a sparse and non-uniformly sampled training

set. SL2 learns a mixture of local tangent spaces that is robust to under-sampled regions,

and due to its regularization properties it is also robust to over-fitting. Osadchy et al. [15]

describe a method for simultaneously detecting faces and estimating their pose in real

time. The method employs a convolutional network to map images of faces to points on a

low-dimensional manifold parameterized by pose, and images of non-faces to points far

away from that manifold.
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Random forests

Random Forests have become a popular method in computer vision because of their

capability to handle large training datasets, their high generalization power and speed,

and the relative ease of implementation. In the context of real time pose estimation,

multi-class random forests have been proposed for the real time determination of head

pose from 2D video data.

Li et al. [3] propose person-independent head pose estimation method. The half-face

and tree structured classifiers with cascaded-Adaboost algorithm to detect face with

various head poses. After localization, the random forest regression is trained and ap-

plied to estimate head orientation. Huang et al. [16] propose Gabor feature based

multi-class random forest method for head pose estimation. In order to enhance the

discriminative power, they employed LDA technique for nodetests.

Binary pattern

The local binary pattern

Recently, the Local Binary Pattern (LBP) has been extensively exploited for facial image

analysis, including face detection, face recognition, facial expression analysis, gender/

age classification, and so on [17]. The Original LBP operator labels the pixels of an

image by thresholding a 3×3 neighborhood of each pixel with the center value and con-

sidering the results as a binary number, of which the corresponding decimal number is

used for labeling. Formally, given a pixel at (xc, yc), the resulting LBP can be derived by:

LBP xc; ycð Þ ¼
X7
n¼0

s in−icð Þ2n; ð1Þ

where n runs over the 8 neighbors of the central pixel, ic and in are gray-level values of

the central pixel and the surrounding pixels, respectively, and the sign function s(x) is

defined as:

s xð Þ ¼ 1 if x≥0
0 otherwise

;

�
ð2Þ

According to the definition above, the LBP operator is invariant to the monotonic
gray-scale transformations that preserve the pixel intensity order in local neighbor-

hoods. The histogram of LBP labels calculated over a region can be exploited as a

texture descriptor.

The centralized binary pattern

Fu and Wei [18] introduced the Centralized Binary Pattern (CBP) for facial expression

recognition. CBP compares pairs of neighbors which are in the same diameter of the

circle, and also compares the central pixel with the mean of all the pixels (including the

central pixel and the neighboring pixels), given the largest weight to strengthen the effect

of the central pixel. Compared to the original LBP, CBP produces less binary units, and

thus reducing the feature vector length. Formally, given a pixel at (xc, yc), the resulting

CBP can be derived by:

CBP xc; ycð Þ ¼
X3
n¼0

s in−inþ4ð Þ2n þ s ic−iTð Þ24; ð3Þ
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where ic and in are gray-level values of the central pixel and the surrounding pixels, re-

spectively, iT is the mean gray-level value of all the pixel and the sign function s(x) is

just as Equation (2).

From Equation (3) we can see CBP operator considers the center pixel and gives it

the largest weight. This strengthens the effect of center pixel and is beneficial for dis-

crimination of CBP. Moreover, CBP captures better gradient information through com-

paring pairs of neighbors.

The local directional pattern

More recently, a Local Directional Pattern (LDP) method was introduced for a more

robust facial representation [19]. While the binary patterns such as LBP and CBP use

the information of intensity changes around pixels, the LDP uses the edge response

values and encodes the image texture. Given a central pixel in the image, the eight-

directional edge response values are computed by Kirsch masks, and are converted to

absolute values. Then, the most prominent directions of the number with high re-

sponse values are selected to generate the LDP code. In other words, bit responses of

are only set to 1, and the remaining bits are set to 0. Formally, given a pixel at (xc, yc),

the resulting LDP can be derived by:

LDP xc; ycð Þ ¼
X7
n¼0

s in−ikð Þ2n; ð4Þ

where in and ik are gray-level values of the surrounding pixels and k-th most significant

directional response, respectively and the sign function s(x) is just as Equation (2). Figure 1

shows the example of binary pattern containing LBP, CBP and LDP.

Gray level run length matrices

The Gary Level Run Length (GLRL) method is a way of extracting higher order statistical

texture features [20]. This technique has been described and applied by Galloway and by

Chu et al. A set of consecutive pixels with the same gray level, collinear in a given direction,

constitutes a gray level run. The run length is the number of pixels in the run, and the run

length value is the number of times such a run occurs in an image.

A Gray Level Run Length Matrix (GLRLM) is a two-dimensional matrix in which

each element p(i, j|θ) gives the total number of occurrences of runs of length j at gray

level i, in a given direction θ. Figure 2 shows a 4 × 4 picture having four gray levels (0–3)

and the resulting gray level run length matrices for the four principal directions.
Figure 1 Example of binary pattern.



Figure 2 Example of GLRLM for the principal directions.
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Let G be the number of gray levels in the image, R be the longest run and n be the

number of pixels in the image. In order to obtain numerical texture measures from the

matrices, statistical texture features can be extracted from the GLRLM as follows:

1. Short Run Emphasis

SRE pð Þ ¼
XG
i¼1

XR
j¼1

p i; jjθð Þ
j

=
XG
i¼1

XR
j¼1

p i; j θÞjð ð5Þ

Short Runs Emphasis (SRE) divides each run length value by the length of the run
squared. This tends to emphasize short runs. The denominator is the total number of

runs in the image and serves as a normalizing factor.

2. Long Runs Emphasis

LRE pð Þ ¼
XG
i¼1

XR
j¼1

j2p i; jjθð Þ=
XG
i¼1

XR
j¼1

p i; j θÞjð ð6Þ

Long Runs Emphasis (LRE) multiplies each run length value by the length of the

run squared. This should emphasize long runs. The denominator is a normalizing

factor, as above.

Proposed head pose estimation algorithm
Random forests framework

A tree T in a forest F = {Ti} is built from the set of annotated patches P = {Pi = (Ii,ci)}

randomly extracted from the training images, where Ii and ci are the intensity of

patches and the annotated head pose class labels, respectively. Starting from the root,

each tree is built recursively by assigning a binary Test ϕ (I)→ {0, 1} to each non-leaf

node. Such test sends each patch either to the left or right child, in this way the training

patches P arriving at the node are split into two sets, PL(ϕ) and PR(ϕ).
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The best test ϕ* is chosen from a pool of randomly generated ones ({ϕ}): all patches

arriving at the node are evaluated by all tests in the pool and a predefined information

gain of the split IG(ϕ) is maximized:

ϕ� ¼ ArgmaxϕIG ϕð Þ ð7Þ

The process continues with the left and the right child using the corresponding train-

ing sets PL(ϕ*) and PR(ϕ*) until a leaf is created when either the maximum tree depth

is reached, or less than a minimum number of training samples are left [21].

Training

All the trees are trained on different training sets. These sets are generated from the

original training set using the bootstrap procedure. For each training set, we randomly

select N data in the original set. The data are chosen with replacement. That is, some

data will occur more than once and some will be absent. Then, we randomly extract M

patches with fixed size.

Our binary tests ϕ f, r, s, τ, type (I) are defined as:

f BPRLM rð Þð Þ−f BPRLM sð Þð Þ > τ; ð8Þ

where f is the statistical texture feature, r and s are pixel coordinate, τ is a threshold, θ

is the direction, type is the type of Binary Pattern, and BPRLM(r) is the Binary Pattern

Run Length Matrix (BPRLM) at gray level I(r). During training, we use the different

statistical texture feature, such as Short Run Emphasis and Long Run Emphasis,

which is introduced in Section Random Forests. Short Run Emphasis tends to

emphasize short runs, i.e., this feature represents the global texture measure. On

the other hand, Long Run Emphasis tends to emphasize long runs, i.e., this feature

represents the local texture measure. Therefore, we use Long Run Emphasis up to

middle depth and then we use Short Run Emphasis.

The Binary Pattern Run Length Matrix is the combination between the Binary Pattern

and Run Length matrix, which can be calculated by the following steps. First, the binary

patterns at I(r) and I(s) using predetermined binary pattern operator, such as LBP, CBP

or LDP operator. Second, construct the Run Length matrices from the binary patterns

in a direction 0°. Figure 3 shows an example of a Binary Pattern Run Length matrix

using LBP operator.
Figure 3 Example of binary pattern run length matrices.
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During training, for each non-leaf node starting from the root, we generate a large

pool of binary tests {ϕk} by randomly choosing f, r, s, τ, type. For efficiency reason, the

number of binary tests is determined depend on the depth of the tree. That is, the

number of the binary test increases with increasing the depth of the tree. The test

which maximizes a specific optimization function is picked. Our information gain IG

(ϕ) is defined as follows:

IG ϕð Þ ¼
X

i∈ L;Rf g μi−μð Þ2−
X

i∈ L;Rf g

ni
ni þ nj

Xni
j¼1

cij−μi
� �2" #

; ð9Þ

where ni and μi are the number of samples and the mean of class at the child node i,

respectively, cij is the head pose class label of the j-th patch contained in child node

i, and μ is the mean of class at the parent node. The information gain IG(ϕ) indicates

the difference between the within variance and weighted between variance.

For each leaf, the class distribution p(ci|T) is stored. The distributions are estimated from

the training patches that arrive at the leaf and are used for estimation the head pose.
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Testing

Given a new gray image of a head, patches that have the same size as the ones used for

training are densely sampled from whole image and passed through all trees in the for-

est. Each patch is guided by the binary tests stored at the nodes. A stride parameter

controls how densely patches are extracted, thus easily steering speed and accuracy of

the classification. At each node of a tree, the stored binary test evaluates a patch, send-

ing it either to the right of left child, all the way down until a leaf. Arriving at a leaf, a

tree outputs the class distribution and the class label c that received the majority of

votes. Because leaves with a low probability are not very informative and mainly add

noise to the estimate, we discard all votes if p(c|T) less than an empiric threshold Pmax. The

final class distribution is generated by arithmetic averaging of each remained distribution of

all trees as follows:

p cijFð Þ ¼ 1
Fj j

XFj j

t¼1

p ci TtÞjð ð11Þ

We choose ci as the final class of an input image if p(ci|F) has the maximum value.

Experiments
We evaluate the performance of our algorithm based on the CMU Multi-PIE database,

which contains more than 750,000 images of 337 people recorded in up to four sessions

over the span of five months. Subject were imaged under 15 view points and 18 illumination

conditions while displaying a range of facial expressions [22]. In our paper, first ses-

sion, 249 person, neutral expression, 18 illuminations and 7 view points, which consist

of 0°, ±15°, ±30°, and ±45°, were employed. All of these face images were cropped to

32 × 32. Among these images, 50% were used for training and the rest for testing. Figure 4

shows an example of the CMU multi-PIE databases.

Training a forest involves the choice of several parameters. A set of values of parame-

ters used for all experiments are given as follows. The patch dimension is 16 × 16 pixels;

the minimum patch number for split is 20 (m); the number of trees in the forest is

100 (Tmax); the maximum tree depth is 10 (Dmax); the number of training images for

each tree is 3,000 (n); the number of patch of each training image is 10; the max-

imum threshold is 0.5 (Pmax); the maximum number of binary test is 4000 tests, i.e.,

200 different combinations of f, r, s, type in Equation (8), each with 20 different

thresholds τ.

In order to evaluate the performance of the proposed head pose estimation, we

employed a combination of several methods. First, the Local Binary Pattern, Centralized
Figure 4 Example of CMU Multi-PIE databases.



Table 1 Comparison of classification accuracies (CA) of different algorithms

Algorithm Raw image LBP image CBP image LDP image

PCA + SVM 64.6% 69.0% 70.3% 75.9%

LDA + SVM 73.9% 76.4% 78.7% 80.0%

Proposed 93.1% - - -
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Binary Patterns, and Local Directional Pattern were employed for preprocessing. Second,

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were

employed for feature extraction. Finally, a Support Vector Machine (SVM) was employed

for the classifiers. In this experiment, 100 principal components are employed for PCA,

Radial basis function (RBF) kernel is used for SVM.

Table 1 shows the comparison results of the classification accuracies (CA) of the

different algorithms. Because of the illumination change, the results of the LBP,

CBP and LDP image were better than those of the raw images. Also, classification

accuracy using LDP image showed better performance compared to other images

transformed by binary pattern operators such as LBP and CBP. Furthermore, the

proposed method has performance better than that of other methods, about 17% higher

than that of LDP + PCA + SVM, and 13% higher than that of LDP + LDA + SVM. Figure 5

shows the comparison results of the classification accuracies of the different class.

Furthermore, we summarized the classification accuracies in Table 2. As a result,

maximum classification accuracies are 90.5%, 92.1%, and 97.2% when PCA + LDP + SVM,

LDA + LDP + SVM, and proposed algorithm, respectively. Here, we can observe that

proposed algorithm shows the less variance of classification accuracy than that of

other algorithm. To further disclose the relationship between the recognition rate and

the number of the trees, we showed the recognition results along with number of trees

in Figure 6.
Figure 5 Classification accuracies of different algorithm as class.



Table 2 Comparison of classification accuracies (CA) of different class

Algorithm Class1 Class2 Class3 Class4 Class5 Class6 Class7

PCA + LDP + SVM 60.4% 70.9% 90.5% 86.4% 70.2% 68.5% 84.3%

LDA + LDP + SVM 62.4% 84.0% 92.1% 74.5% 80.4% 86.7% 80.6%

Proposed 91.3% 90.6% 96.8% 88.7% 92.7 93.9% 97.2%
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Future works
Recently, 3D sensing devices have become available and computer vision researchers

have started to leverage the additional depth information for solving some of the in-

herent limitations of image-based methods. Even though depth sensors can solve

much of the ambiguities inherent of standard video and even if their prices recently

dropped, resolution of depth image is still low. Hence, the future work on head pose

estimation could use color images in addition to depth data, as an RGB camera is

available in the most common depth sensors.
Conclusion
In this paper we proposed to use a Binary Pattern Run Length matrix based on the ran-

dom forests method for head pose estimation. In order to make this method robust in

terms of illumination, the Binary Pattern Run Length matrix was employed; this matrix

is the combination of a Binary Pattern and a Run Length matrix. Binary pattern is

calculated using various operators, such as Local Binary Pattern, Centralized Binary

Patterns, and Local Directional. In order to evaluate the discriminative power of the

random tree method, a novel information gain was employed. Experiments on public

databases show the advantages of this method over other algorithm in terms of ac-

curacy and illumination invariance.
Figure 6 Classification accuracies of different class as number of tree.
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