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1 Introduction
As the Banach contraction principle (BCP) is a power tool for solving many problems in
applied mathematics and sciences, it has been improved and extended in many ways. In
particular, Geraghty proved in  [] an interesting generalization of BCP which has had
a lot of applications.

The notion of a coupled fixed point was firstly introduced and studied by Opoitsev [,
] and then by Guo and Lakshmikantham in []. In , Bhaskar and Lakshmikantham
[] were the first to introduce the notion of mixed monotone property. They also studied
and proved the following classical coupled fixed point theorems for mappings by using
this property under contractive type conditions.

Theorem . ([]) Let (X, d,�) be a partially ordered complete metric space and let F :
X × X → X be a continuous mapping having the mixed monotone property, i.e., for any
x, y ∈ X,

x, x ∈ X, x � x ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, y � y ⇒ F(x, y) � F(x, y)

hold. Assume that there exists k ∈ [, ) such that

d
(
F(x, y), F(u, v)

) ≤ k

[
d(x, u) + d(y, v)

]
(.)
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holds for all x, y, u, v ∈ X with x � u and y � v. If there exist x, y ∈ X such that

x � F(x, y), y � F(y, x),

then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x), i.e., F has a coupled fixed point.

Theorem . ([]) If the continuity assumption for the mapping F is replaced by the as-
sumption that the space (X, d,�) has the following properties:

. if {xn} is a non-decreasing sequence with {xn} → x, then xn � x for all n ≥ ,
. if {yn} is a non-increasing sequence with {yn} → y, then yn � y for all n ≥ .

Then the same conclusion as in the previous theorem holds.

Due to the important role of Theorems . and . for the investigation of solutions of
nonlinear differential and integral equations, several authors have studied various gener-
alizations of these results (see, e.g., papers [–] and the references cited therein). Al-
most all of them used the mixed monotone property or, in the case of additional mapping
g : X → X, the so-called g-mixed monotone property.

Recently, in [–], the author established common coupled fixed point theorems by
using (g-)monotone property instead of (g-)mixed monotone property. These kinds of
results can be applied in another type of situations, so they give an opportunity to widen
the field of applications. In particular the so-called tripled fixed point results (and, more
generally, n-tupled results) can be more easily handled using monotone property instead
of mixed monotone property (see, e.g., [–]).

The aim of this work is to prove some common coupled fixed point theorems for
Geraghty-type contraction mappings by using monotone and g-monotone property in-
stead of mixed monotone and g-mixed monotone property. An illustrative example is
presented in this work showing how our results can be used in proving the existence of a
common coupled fixed point, while the results of many other papers cannot.

2 Preliminaries
In this section, we give some definitions that are useful for our main results in this paper.
Throughout this paper (X,�) denotes a partially ordered set. By x � y, we mean y � x.
Let f , g : X → X be mappings. A mapping f is said to be g-non-decreasing (resp., g-non-
increasing) if, for all x, y ∈ X, gx � gy implies fx � fy (resp., fy � fx). If g is an identity
mapping, then f is said to be non-decreasing (resp., non-increasing).

Definition . Let (X,�) be a partially ordered set and let F : X × X → X and g : X → X
be two mappings. The mapping F is said to have the g-monotone property if F is monotone
g-non-decreasing in both of its arguments, that is, for any x, y ∈ X,

x, x ∈ X, gx � gx ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, gy � gy ⇒ F(x, y) � F(x, y)

hold. If in the previous relations g is the identity mapping, then F is said to have the mono-
tone property.
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Definition . ([, ]) Let X be a nonempty set and F : X × X → X, g : X → X be two
mappings. An element (x, y) ∈ X × X is called:

(C) a coupled fixed point of F if x = F(x, y) and y = F(y, x);
(C) a coupled coincidence point of mappings g and F if

gx = F(x, y) and gy = F(y, x),

and in this case (gx, gy) is called a coupled point of coincidence;
(C) a common coupled fixed point of mappings g and F if

x = gx = F(x, y) and y = gy = F(y, x).

Definition . ([]) Let (X, d) be a metric space and let g : X → X, F : X × X → X. The
mappings g and F are said to be compatible if

lim
n→∞ d

(
gF(xn, yn), F(gxn, gyn)

)
=  and lim

n→∞ d
(
gF(yn, xn), F(gyn, gxn)

)
= 

hold whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ gxn

and limn→∞ F(yn, xn) = limn→∞ gyn.

3 Main results
Let � denote the class of all functions θ : [,∞) × [,∞) → [, ) which satisfy the follow-
ing conditions:

(θ) θ (s, t) = θ (t, s) for all s, t ∈ [,∞);
(θ) for any two sequences {sn} and {tn} of nonnegative real numbers,

θ (sn, tn) →  ⇒ sn, tn → .

The following are examples of some functions belonging to �.
() θ (s, t) = k for s, t ∈ [,∞), where k ∈ [, ).
() θ (s, t) =

{ ln(+ks+lt)
ks+lt , s >  or t > ,

r ∈ [, ), s = , t = ,
where k, l ∈ (, ).

() θ (s, t) =
{ ln(+max{s,t})

max{s,t} , s >  or t > ,
r ∈ [, ), s = , t = .

Now, we will prove our main result.

Theorem . Let (X, d,�) be a complete partially ordered metric space and let g : X → X
and F : X × X → X be such that F has the g-monotone property. Suppose that the following
hold:

(i) g is continuous and g(X) is closed;
(ii) F(X × X) ⊂ g(X) and g and F are compatible;

(iii) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y, x);
(iv) there exists θ ∈ � such that for all x, y, u, v ∈ X satisfying gx � gu and gy � gv or

gx � gu and gy � gv,

d
(
F(x, y), F(u, v)

) ≤ θ
(
d(gx, gu), d(gy, gv)

)
max

{
d(gx, gu), d(gy, gv)

}
(.)

holds true;
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(v) (a) F is continuous or (b) if, for an increasing sequence {xn} in X , xn → x ∈ X as
n → ∞, then xn � x for all n ∈N.

Then there exist u, v ∈ X such that gu = F(u, v) and gv = F(v, u), i.e., g and F have a cou-
pled coincidence point.

Proof Starting from x, y (condition (iii)) and using that F(X × X) ⊂ g(X) (condition (ii)),
we can construct sequences {xn} and {yn} in X such that

gxn = F(xn–, yn–) and gyn = F(yn–, xn–) for n = , , . . . .

If gxn = gxn– and gyn = gyn– for some n ∈ N, then (gxn–, gyn–) is a coupled point
of coincidence for g and F . Therefore, in what follows, we will assume that for each n ∈N,
gxn �= gxn– or gyn �= gyn– holds.

By (iii), gx � F(x, y) = gx and gy � F(y, x) = gy, hence the g-monotone property
of F implies that gx = F(x, y) � F(x, y) = gx and gy = F(y, x) � F(y, x) = gy. Pro-
ceeding by induction we get that gxn– � gxn and gyn– � gyn hold for each n ∈ N. Hence,
the contractive condition (.) can be used to conclude that

d(gxn, gxn+) = d
(
F(xn–, yn–), F(xn, yn)

)

≤ θ
(
d(gxn–, gxn), d(gyn–, gyn)

)
max

{
d(gxn–, gxn), d(gyn–, gyn)

}
(.)

and

d(gyn, gyn+) = d
(
F(yn–, xn–), F(yn, xn)

)

≤ θ
(
d(gyn–, gyn), d(gxn–, gxn)

)
max

{
d(gyn–, gyn), d(gxn–, gxn)

}

= θ
(
d(gxn–, gxn), d(gyn–, gyn)

)
max

{
d(gxn–, gxn), d(gyn–, gyn)

}
(.)

for all n ∈N. From (.) and (.), we get

max
{

d(gxn, gxn+), d(gyn, gyn+)
}

≤ θ
(
d(gxn–, gxn), d(gyn–, gyn)

)
max

{
d(gxn–, gxn), d(gyn–, gyn)

}

≤ max
{

d(gxn–, gxn), d(gyn–, gyn)
}

(.)

for all n ∈ N. Thus the sequence dn := max{d(gxn–, gxn), d(gyn–, gyn)} is decreasing. It fol-
lows that dn → d as n → ∞ for some d ≥ . Next, we claim that d = .

Assume on the contrary that d > ; then from (.) we obtain that

max{d(gxn, gxn+), d(gyn, gyn+)}
max{d(gxn–, gxn), d(gyn–, gyn)} ≤ θ

(
d(gxn–, gxn), d(gyn–, gyn)

)
< .

On taking limit as n → ∞, we get

θ
(
d(gxn–, gxn), d(gyn–, gyn)

) →  as n → ∞.

Since θ ∈ �, we have

d(gxn–, gxn) →  and d(gyn–, gyn) → 
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as n → ∞ and hence

dn = max
{

d(gxn–, gxn), d(gyn–, gyn)
} →  as n → ∞, (.)

which contradicts the assumption d > . Therefore, we can conclude that dn =max{d(gxn–,
gxn), d(gyn–, gyn)} →  as n → ∞.

Next, we show that {gxn} and {gyn} are Cauchy sequences. On the contrary, assume that
at least one of {gxn} or {gyn} is not a Cauchy sequence. Then there is ε >  for which we
can find subsequences {gxnk }, {gxmk } of {gxn} and {gynk }, {gymk } of {gyn} with nk > mk ≥ k
such that

max
{

d(gxnk , gxmk ), d(gynk , gymk )
} ≥ ε (.)

and

max
{

d(gxnk –, gxmk ), d(gynk –, gymk )
}

< ε. (.)

Using (.), (.) and the triangle inequality, we have

ε ≤ rk := max
{

d(gxnk , gxmk ), d(gynk , gymk )
}

≤ max
{

d(gxnk , gxnk –), d(gynk , gynk –)
}

+ max
{

d(gxnk –, gxmk ), d(gynk –, gymk )
}

< max
{

d(gxnk , gxnk –), d(gynk , gynk –)
}

+ ε.

On taking limit as k → ∞, we have

rk = max
{

d(gxnk , gxmk ), d(gynk , gymk )
} → ε. (.)

By the triangle inequality, we get

rk = max
{

d(gxnk , gxmk ), d(gynk , gymk )
}

≤ max
{

d(gxnk , gxnk +), d(gynk , gynk +)
}

+ max
{

d(gxnk +, gxmk +), d(gynk +, gymk +)
}

+ max
{

d(gxmk +, gxmk ), d(gymk +, gymk )
}

= max
{

d(gxnk , gxnk +), d(gynk , gynk +)
}

+ max
{

d(gxmk +, gxmk ), d(gymk +, gymk )
}

+ max
{

d(gxnk +, gxmk+), d(gynk +, gymk +)
}

≤ max
{

d(gxnk , gxnk +), d(gynk , gynk +)
}

+ max
{

d(gxmk +, gxmk ), d(gymk +, gymk )
}

+ θ
(
d(gxnk , gxmk ), d(gynk , gymk )

)
max

{
d(gxnk , gxmk ), d(gynk , gymk )

}

= dnk + + dmk + + θ
(
d(gxnk , gxmk ), d(gynk , gymk )

)
rk

≤ dnk + + dmk + + rk

(the usage of contractive condition (.) was possible since the sequences {gxn} and {gyn}
are increasing). Now, we have

rk ≤ dnk + + dmk + + θ
(
d(gxnk , gxmk ), d(gynk , gymk )

)
rk ≤ dnk + + dmk + + rk .
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On taking limit as k → ∞ and using (.) and (.), we get

θ
(
d(gxnk , gxmk ), d(gynk , gymk )

) → .

Using the properties of function θ , we obtain

d(gxnk , gxmk ) →  and d(gynk , gymk ) → 

as k → ∞, which imply that

lim
k→∞

rk = lim
k→∞

(
max

{
d(gxnk , gxmk ), d(gynk , gymk )

})
= ,

which contradicts with ε > .
Therefore, we get that {gxn} and {gyn} are Cauchy sequences. Since g(X) is a closed subset

of a complete metric space, there exist u, v ∈ g(X) such that

lim
n→∞ gxn = lim

n→∞ F(xn, yn) = u and lim
n→∞ gyn = lim

n→∞ F(yn, xn) = v.

By condition (ii), the compatibility of g and F implies that

lim
n→∞ d

(
gF(xn, yn), F(gxn, gyn)

)
=  and lim

n→∞ d
(
gF(yn, xn), F(gyn, gxn)

)
= . (.)

Consider the two possibilities given in condition (v).
(a) Suppose that F is continuous. Using the triangle inequality we get that

d
(
gu, F(gxn, gyn)

) ≤ d
(
gu, gF(xn, yn)

)
+ d

(
gF(xn, yn), F(gxn, gyn)

)
.

Passing to the limit as n → ∞ and using (.) and the continuity of g and F , we get that
d(gu, F(u, v)) = , i.e., gu = F(u, v). In a similar way, gv = F(v, u) is obtained.

(b) In this case gxn � u = gx and gyn � v = gy for some x, y ∈ X and each n ∈ N. Using
(.) we get

d
(
F(x, y), gx

) ≤ d
(
F(x, y), gxn+

)
+ d(gxn+, gx)

= d
(
F(x, y), F(xn, yn)

)
+ d(gxn+, gx)

≤ θ
(
d(gx, gxn), d(gy, gyn)

)
max

{
d(gx, gxn), d(gy, gyn)

}
+ d(gxn+, gx)

→ 

as n → ∞. Hence, gx = F(x, y) and similarly gy = F(y, x).
Note that in this case continuity and compatibility assumptions were not needed in the

proof. �

Remark . In Theorem ., the condition that F has the g-monotone property is a substi-
tution for the g-mixed monotone property that was used in most of the coupled fixed point
results so far. Note that this condition is maybe more natural than the mixed g-monotone
property and can be used in various examples.
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Putting g = IX , where IX is an identity mapping on X in Theorem ., we obtain the
following.

Corollary . Let (X, d,�) be a partially ordered complete metric space and let F : X ×
X → X have the monotone property. Suppose that the following hold:

(i) there exist x, y ∈ X such that x � F(x, y) and y � F(y, x);
(ii) there exists θ ∈ � such that for all x, y, u, v ∈ X satisfying (x � u and y � v) or (u � x

and v � y),

d
(
F(x, y), F(u, v)

) ≤ θ
(
d(x, u), d(y, v)

)
max

{
d(x, u), d(y, v)

}

holds true;
(iii) (a) F is continuous or (b) if {xn} is an increasing sequence in X and xn → x as

n → ∞, then xn � x for all n.
Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x), i.e., F has a coupled fixed
point.

Taking θ (t, t) = k with k ∈ [, ) for all t, t ∈ [,∞) in Theorem . and Corollary .,
we obtain the following corollary.

Corollary . Let (X, d,�) be a complete partially ordered metric space and let g : X → X
and F : X × X → X be such that F has the g-monotone property. Suppose that the following
hold:

(i) g is continuous and g(X) is closed;
(ii) F(X × X) ⊂ g(X) and g and F are compatible;

(iii) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y, x);
(iv) there exists k ∈ [, ) such that for all x, y, u, v ∈ X satisfying (gx � gu and gy � gv) or

(gu � gx and gv � gy),

d
(
F(x, y), F(u, v)

) ≤ k max
{

d(gx, gu), d(gy, gv)
}

(.)

holds true;
(v) (a) F is continuous or (b) if {xn} is an increasing sequence in X and xn → x as

n → ∞, then xn � x for all n.
Then there exist u, v ∈ X such that gu = F(u, v) and gv = F(v, u), i.e., g and F have a coupled
coincidence point.

Corollary . Let (X, d,�) be a partially ordered complete metric space and let F : X ×
X → X. Suppose that the following hold:

(i) F satisfies the monotone property;
(ii) there exist x, y ∈ X such that x � F(x, y) and y � F(y, x);

(iii) there exists k ∈ [, ) such that for all x, y, u, v ∈ X satisfying (x � u and y � v) or
(u � x and v � y),

d
(
F(x, y), F(u, v)

) ≤ k max
{

d(x, u), d(y, v)
}

holds true;
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(iv) (a) F is continuous or (b) if {xn} is an increasing sequence in X and xn → x as
n → ∞, then xn � x for all n.

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x), i.e., F has a coupled fixed
point.

Remark . Since, for k, l ≥ , k + l ≤ ,

kd(gx, gu) + ld(gy, gv) ≤ max
{

d(gx, gu), d(gy, gv)
}

,

Corollary . remains valid if the right-hand side of condition (.) is replaced by kd(gx,
gu) + ld(gy, gv) for some k, l ≥ , k + l < .

Now, reasoning on Theorem ., some questions arise naturally. To be precise, one can
ask the following.

Question Is it possible to find a sufficient condition for the existence and uniqueness of
the coupled common fixed point of g and F?

Motivated by the interest in this research, we give a positive answer to this question
adding to Theorem . some hypotheses.

For the given partial order � on the set X, we shall denote also by � the order on X × X
given by

(x, y) � (x, y) ⇔ x � x and y � y.

Theorem . In addition to the hypotheses of Theorem . assume that
(vi) for any two elements (x, y), (u, v) ∈ X × X , there exists (w, z) ∈ X × X such that

(F(w, z), F(z, w)) is comparable to both (F(x, y), F(y, x)) and (F(u, v), F(v, u)).
Then g and F have a unique common coupled fixed point, i.e., there exists unique (p, q) ∈
X × X such that p = gp = F(p, q) and q = gq = F(q, p).

Proof Theorem . implies that there exists a coupled coincidence point (x, y) ∈ X × X,
that is, gx = F(x, y) and gy = F(y, x). Suppose that there exists another coupled coincidence
point (u, v) ∈ X × X and hence gu = F(u, v) and gv = F(v, u). We will prove that gx = gu and
gy = gv.

From condition (vi) we get that there exists (w, z) ∈ X × X such that (F(w, z), F(z, w))
is comparable to both (F(x, y), F(y, x)) and (F(u, v), F(v, u)). Put w = w, z = z and, analo-
gously to the proof of Theorem ., choose sequences {wn}, {zn} in X satisfying

gwn = F(wn–, zn–) and gzn = F(zn–, wn–)

for n ∈ N. Starting from x = x, y = y and u = u, v = v, choose sequences {xn}, {yn}
and {un}, {vn} satisfying gxn = F(xn–, yn–), gyn = F(yn–, xn–) and gun = F(un–, vn–), gvn =
F(vn–, un–) for n ∈N. Taking into account the properties of coincidence points, it is easy
to see that it can be done so that xn = x, yn = y and un = u, vn = v, i.e.,

gxn = F(x, y), gyn = F(y, x) and gun = F(u, v), gvn = F(v, u) for all n ∈N.
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Since (F(x, y), F(y, x)) = (gx, gy) and (F(w, z), F(z, v)) = (gw, gz) are comparable, then, for
example, gx � gw, gy � gz and in a similar way, gx � gwn, gy � gzn. Thus, we can apply
the contractive condition (.) to obtain

d(gx, gwn+) = d
(
F(x, y), F(wn, zn)

)

≤ θ
(
d(gx, gwn), d(gy, gzn)

)
max

{
d(gx, gwn), d(gy, gzn)

}

and

d(gy, gzn+) = d
(
F(zn, wn), F(y, x)

)

≤ θ
(
d(gy, gzn), d(gx, gwn)

)
max

{
d(gy, gzn), d(gx, gwn)

}

= θ
(
d(gx, gwn), d(gy, gzn)

)
max

{
d(gx, gwn), d(gy, gzn)

}
.

This implies that

max
{

d(gx, gwn+), d(gy, gzn+)
}

≤ θ
(
d(gx, gwn), d(gy, gzn)

)
max

{
d(gx, gwn), d(gy, gzn)

}

< max
{

d(gx, gwn), d(gy, gzn)
}

. (.)

Therefore, we get that the sequence dn := max{d(gx, gwn), d(gy, gzn)} is decreasing and
hence dn → d as n → ∞ for some d ≥ . Now, we prove that d = . Assume to the contrary
that d > ; then from (.) we have

max{d(gx, gwn+), d(gy, gzn+)}
max{d(gx, gwn), d(gy, gzn)} ≤ θ

(
d(gx, gwn), d(gy, gzn)

)
< .

Taking the limit as n → ∞ in the above inequality, we have

θ
(
d(gx, gwn), d(gy, gzn)

) →  as n → ∞.

By the property (θ) of θ ∈ �, we get

d(gx, gwn) →  and d(gy, gzn) → 

as n → ∞. Now we have

dn := max
{

d(gx, gwn), d(gy, gzn)
} →  as n → ∞,

which contradicts with d > . Therefore, we conclude that dn = max{d(gx, gwn), d(gy,
gzn)} →  as n → ∞ and then

lim
n→∞ d(gx, gwn) =  and lim

n→∞ d(gy, gzn) = .

In a similar way, we have

lim
n→∞ d(gu, gwn) =  and lim

n→∞ d(gv, gzn) = .
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By the triangle inequality, we have

d(gx, gu) ≤ d(gx, gwn) + d(gwn, gu) and d(gy, gv) ≤ d(gy, gzn) + d(gzn, gv)

for all n ∈ N. Taking n → ∞ in the above two inequalities, we get that d(gx, gu) =  and
d(gy, gv) = . Therefore, we have gx = gu and gy = gv.

Now we let p := gx and q := gy. Hence we have

gp = g(gx) = gF(x, y) and gq = g(gy) = gF(y, x).

By the definition of sequences {xn} and {yn} we have

gxn = F(x, y) = F(xn–, yn–) and gyn = F(y, x) = F(yn–, xn–)

for all n ∈N. So we have

lim
n→∞ F(xn, yn) = lim

n→∞ gxn = F(x, y) and lim
n→∞ F(yn, xn) = lim

n→∞ gyn = F(y, x).

Since g and F are compatible, we have

lim
n→∞ d

(
gF(xn, yn), F(gxn, gyn)

)
= ,

that is, gF(x, y) = F(gx, gy). Therefore, we get

gp = gF(x, y) = F(gx, gy) = F(p, q)

and in a similar way

gq = gF(y, x) = F(gy, gx) = F(q, p).

This implies that (p, q) is another coincidence point. By the property we have just proved,
it follows that gp = gx = p and gq = gy = q. So,

p = gp = F(p, q) and q = gq = F(q, p),

and (p, q) is a common coupled fixed point of g and F . For the uniqueness of the common
coupled fixed point, we can proceed easily. �

Corollary . In addition to the hypotheses of Corollary . assume that
(vi) for any two elements (x, y), (u, v) ∈ X × X , there exists (w, z) ∈ X × X such that

(F(w, z), F(z, w)) is comparable to both (F(x, y), F(y, x)) and (F(u, v), F(v, u)).
Then g and F have a unique common coupled fixed point.

Theorem . In addition to the hypotheses of Corollary ., let the condition (vi) of Theo-
rem . be satisfied. Then the coupled fixed point of F is unique. Moreover, if for the terms
of sequences {xn}, {yn} defined by xn = F(xn–, yn–) and yn = F(xn–, yn–), xn � yn holds for
n sufficiently large, then the coupled fixed point of F has the form (x, x).
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Proof We have only to prove the last statement. Suppose that for n sufficiently large,
xn � yn. Then, by (.) (with g = IX ), we get

d(xn+, yn+) = d
(
F(xn, yn), F(yn, xn)

)

≤ θ
(
d(xn, yn), d(xn, yn)

)
d(xn, yn). (.)

This implies that

d(xn+, yn+) < d(xn, yn),

that is, the sequence dn := d(xn, yn) is decreasing. Hence dn → d as n → ∞ for some d ≥ .
Next, we prove that d = . Assume to the contrary that d > ; then from (.) we have

d(xn+, yn+)
d(xn, yn)

≤ θ
(
d(xn, yn), d(xn, yn)

)
< .

Letting n → ∞, we get θ (d(xn, yn), d(xn, yn)) → . Since θ ∈ �, we have d(xn, yn) →  as
n → ∞, which contradicts with d > . Therefore, we have d(xn, yn) →  as n → ∞.

By the triangle inequality, we have

d(x, y) ≤ d(x, xn+) + d(xn+, yn+) + d(yn+, y)

= d(x, xn+) + d
(
F(xn, yn), F(yn, xn)

)
+ d(yn+, y)

≤ d(x, xn+) + θ
(
d(xn, yn), d(xn, yn)

)
d(xn, yn) + d(yn+, y)

< d(x, xn+) + d(xn, yn) + d(yn+, y).

Passing to the limit as n → ∞, since xn → x, yn → y and d(xn, yn) → , we get that d(x, y) ≤
 and thus x = y. This completes the proof. �

Corollary . In addition to the hypotheses of Corollary ., let the condition (vi) of The-
orem . be satisfied. Then the coupled fixed point of F is unique. Moreover, if for the terms
of sequences {xn}, {yn} defined by xn = F(xn–, yn–) and yn = F(xn–, yn–), xn � yn holds for
all n, then the coupled fixed point of F has the form (x, x).

Finally, we give an example showing that our theorem can be used when many results
in this field cannot.

Example . Let X = [, ] ⊆R with the usual metric and order. Consider the mappings
g : X → X and F : X × X → X defined by

gx = x, F(x, y) = ln

(
 +

x


+

y



)
.

Note that F does not satisfy the mixed g-monotone property of [] and []. Indeed, for
y = 

 ∈ X and y = 
 ∈ X, we have gy � gy. But for x =  ∈ X, we get

F(x, y) = ln



� ln



= F(x, y).
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Hence a lot of results in literature that used the g-mixed monotone property cannot be
applied in this example. Moreover, g and F do not commute as in [].

Next, we show that Theorem . can be used in this example.
Let θ ∈ � be defined by

θ (s, t) =

⎧
⎨

⎩

ln(+ s
 + t

 )
s
 + t


, s >  or t > ,

, s =  and t = .

We will show that condition (.) holds with the function θ . Let x, y, u, v be arbitrary points
in X. We obtain that

d
(
F(x, y), F(u, v)

)
= d

(
ln

(
 +

x


+

y



)
, ln

(
 +

u


+

v



))

=
∣
∣∣
∣ln

(
 +

x


+

y



)
– ln

(
 +

u


+

v



)∣
∣∣
∣

=
∣
∣∣
∣ln

 + x

 + y



 + u
 + v



∣
∣∣
∣

=
∣
∣∣
∣ln

(
 +

( x

 + y

 ) – ( u

 + v

 )

 + u
 + v



)∣
∣∣
∣

≤ ln

(
 +

∣∣
∣∣

(
x


+

y



)
–

(
u


+

v



)∣∣
∣∣

)

≤ ln

(
 +



∣∣x – u∣∣ +



∣∣y – v∣∣

)

=
ln( + 

 |x – u| + 
 |y – v|)

( 
 |x – u| + 

 |y – v|)
(



∣
∣x – u∣∣ +



∣
∣y – v∣∣

)

=
ln( + 

 d(gx, gu) + 
 d(gy, gv))

( 
 d(gx, gu) + 

 d(gy, gv))

(



d(gx, gu) +



d(gy, gv)
)

= θ
(
d(gx, gu), d(gy, gv)

)
(




d(gx, gu) +



d(gy, gv)
)

≤ θ
(
d(gx, gu), d(gy, gv)

)
max

{
d(gx, gu), d(gy, gv)

}
.

This shows that condition (.) holds with the function θ .
Next, we check that g and F are compatible. Let {xn} and {yn} be two sequences in X

such that

lim
n→∞ gxn = lim

n→∞ F(xn, yn) = a and lim
n→∞ gyn = lim

n→∞ F(yn, xn) = b.

Then ln( + a
 + b

 ) = a and ln( + a
 + b

 ) = b, wherefrom it follows that a = b = . Then

d
(
gF(xn, yn), F(gxn, gyn)

)
=

∣∣
∣∣

(
ln

(
 +

x
n


+

y
n



))

– ln

(
 +

x
n


+

y
n



)∣∣
∣∣ →  (n → ∞),

and similarly d(gF(yn, xn), F(gyn, gxn)) → .
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We can easily check that all other conditions of Theorem . hold. Therefore, g and
F have a unique common coupled fixed point. In this example, we can see that a point
(, ) ∈ X × X is a unique common coupled fixed point of g and F .

Remark . We conclude remarking that the approach used in this paper (i.e., using
g-monotone instead of g-mixed monotone mappings) has the advantage when considering
n-tupled common fixed points for odd n. For example, one can consider mappings F :
X → X and g : X → X and say that the mapping F is g-monotone if F(x, y, z) is g-non-
decreasing in all three variables, that is, for all x, y, z ∈ X,

x, x ∈ X, g(x) � g(x) ⇒ F(x, y, z) � F(x, y, z),

y, y ∈ X, g(y) � g(y) ⇒ F(x, y, z) � F(x, y, z),

z, z ∈ X, g(z) � g(z) ⇒ F(x, y, z) � F(x, y, z).

In particular, if g = IX , F is said to be monotone. An element (x, y, z) ∈ X is called a tripled
coincidence point of F and g if F(x, y, z) = gx, F(y, z, x) = gy and F(z, x, y) = gz. Moreover,
(x, y, z) is called a tripled common fixed point of F and g if

F(x, y, z) = gx = x, F(y, z, x) = gy = y and F(z, x, y) = gz = z.

In particular, for g = IX , the element (x, y, z) is called a tripled fixed point of F .
Results concerning these notions can be found, e.g., in []. Such an approach is not

possible for mixed monotone mappings when n =  (see []).

Open problems
• In Theorem ., can the set {d(gx, gu), d(gy, gv)} be replaced by other sets?
• Can Theorem . be improved by replacing the control function θ by other functions?
• Can Theorem . be extended and generalized replacing condition (.) by other

conditions?
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