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Abstract
In this work, the Chebyshev collocation scheme is extended for the Volterra
integro-differential equations of pantograph type. First, we construct the operational
matrices of pantograph and derivative based on Chebyshev polynomials. Also, the
obtained operational matrices are utilized to approximate the derivatives of unknown
functions. Furthermore, a detailed analysis of convergence is discussed in the
weighted square norm. We conduct some numerical experiments to verify the high
performance of the suggested numerical approach. The results show that the
computational scheme is accurate.
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1 Introduction
The main object of this current study is to extend a Chebyshev collocation scheme to
calculate the following Volterra integro-differential equation of pantograph type:

y′(t) = a1(t)y(t) + a2(t)y(qt) + b(t)

+
∫ t

0
k1(t, s)y(s) ds +

∫ qt

0
k2(t, s)y(s) ds, t ∈ [0, T],

(1)

with y(0) = y0, where 0 < q < 1. The kernel functions k1(t, s), k2(t, s) are defined in D =
{(t, s) : 0 ≤ t ≤ T , 0 ≤ s ≤ t} and Dq = {(t, s) : 0 ≤ t ≤ T , 0 ≤ s ≤ qt}, respectively. Assume
the known functions a1(t), a2(t), b(t) ∈ Cm([0, T]), k1(t, s) ∈ Cm(D), and k2(t, s) ∈ Cm(Dq)
for m ≥ 0. Then, for each initial value y0, the considered problems have a unique solution
y(t) ∈ Cm+1([0, T]) [1].

These equations appear in many fields of science, including biology, physics, finance, and
so on [2]. In the past few decades, integro-differential equations have attracted widespread
attention. In general, it is impossible to obtain analytical solutions to integro-differential
equations. Therefore, many scholars are devoted to searching an effective approximate
method to solve this class of problems. In view of numerical method, several types of
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integro-differential equations have been treated recently by different techniques. In [3, 4]
the authors developed classic Runge–Kutta methods for the considered problems. The
author of [5, 6] researched the discussed problems by means of finite element meth-
ods. Furthermore, there are a major number of research works on the spectral method
for the aforementioned problem, we can refer to the works [7] and [8]. The authors of
[9, 10] proposed a Legendre collocation method for multiple delays differential and in-
tegral equations. Meanwhile, Wei and Chen [11] extended successfully this method to
handle the proportional delays-type Volterra integro-differential equations in detail. In
addition, Zhao et al. [12] worked with a similar technique based on Legendre polynomi-
als for nonlinear Volterra integro-differential equations with nonvanishing delays. In [13]
the authors applied the sinc function and collocation method to deal with proportional
delay Volterra integro-differential equation. Recently, many researchers used the opera-
tional matrix methods to solve these types of integral equations [14–16]. Furthermore,
the authors in [17, 18] developed the above numerical scheme for fractional order partial
integro-differential equations. More recently, the operational matrix together with the tau
method was utilized to deal with the Volterra integro-differential equation with panto-
graph delay in [19]. Yang [20] and Deng [21] employed Jacobi polynomials and Galerkin
methods to calculate this type of equations with singular and noncompact kernels, re-
spectively. In [22] the mapped Laguerre collocation methods have been implemented for
solving the types of problems with noncompact kernels.

In this paper, we develop an improved Chebyshev operational matrix method to han-
dle the considered problem described in (1). First, we formulate the operational matrices
of pantograph based on shifted Chebyshev polynomial. Then, we construct the discrete
computational scheme that the variable coefficients are not approximated. We provide
convergence analysis in L2-norm in detail.

2 Shifted Chebyshev operational matrix of derivative
T∗

n (t) denotes the shifted Chebyshev polynomials which are defined as follows:

T∗
n (t) = Tn(2t/T – 1), n ∈N0; t ∈ [0, T],

where Tn(t) are the standard Chebyshev polynomials, N0 = N
⋃{0}, and N denotes a set

of positive integers. Also, T∗
n (t) can be derived by the following recursive relationship:

T∗
n+1(t) = 2(2t/T – 1)T∗

n (t) – T∗
n–1(t), n ∈ N,

where T∗
0 (t) = 1, T∗

1 (t) = 2t/T – 1. Moreover, the system of T∗
n (t), n ∈N0 satisfies a discrete

orthogonality property as follows:

N∑′′

k=0

T∗
i (tk)T∗

j (tk) =

⎧⎪⎪⎨
⎪⎪⎩

0, i �= j;

N , i = j = 0;

N/2, i = j �= 0,

(2)

where tk = T
2 (1 – cos(kπ/N)), k = 0, 1, . . . , N .
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For any function y(t) ∈ C[0, T] can be approximated as

yN (t) =
N∑′′

k=0

ckT∗
k (t). (3)

According to the discrete orthogonality property in (2), we can denote the coefficient ck

as

ck =
2
N

N∑′′

i=0

y(ti)T∗
k (ti), k = 0, 1, . . . , N . (4)

Applying (3) and (4), we can rewrite yN (t) in the matrix form

yN (t) = T(t) · P · Y, (5)

in which

T(t) =
[

T∗
0 (t), T∗

1 (t), . . . , T∗
N–1(t), T∗

N (t)
]

,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2N T∗

0 (t0) 2
2N T∗

0 (t1) 2
2N T∗

0 (t2) · · · 1
2N T∗

0 (tN )
1
N T∗

1 (t0) 2
N T∗

1 (t1) 2
N T∗

1 (t2) · · · 1
N T∗

1 (tN )
1
N T∗

2 (t0) 2
N T∗

2 (t1) 2
N T∗

2 (t2) · · · 1
N T∗

2 (tN )
...

...
...

. . .
...

1
2N T∗

N (t0) 2
2N T∗

N (t1) 2
2N T∗

N (t2) · · · 1
2N T∗

N (tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and

Y =
[
y(t0), y(t1), y(t2), . . . , y(tN )

]T
.

So, the values of derivatives of yN (t) are simply computed by

Y (1) = D(1) · Y, (6)

where

Y (1) =
[
y′(t0), y′(t1), y′(t2), . . . , y′(tN )

]T
,

D(1) is the operational matrix of derivative (see [23]).

3 Operational matrix of pantograph
In a similar manner with the operational matrix of derivative, we have

Yq = QY, (7)

where

Yq =
[
y(qt0), y(qt1), y(qt2), . . . , y(qtN )

]T
,
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Q = Rq · P,

and

Rq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T∗
0 (qt0) T∗

1 (qt0) T∗
2 (qt0) · · · T∗

N (qt0)
T∗

0 (qt1) T∗
1 (qt1) T∗

2 (qt1) · · · T∗
N (qt1)

T∗
0 (qt2) T∗

1 (qt2) T∗
2 (qt2) · · · T∗

N (qt2)
...

...
...

. . .
...

T∗
0 (qtN ) T∗

1 (qtN ) T∗
2 (qtN ) · · · T∗

N (qtN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, Q denotes the operational matrix of pantograph based on shifted Chebyshev poly-
nomials.

Now, we consider handling the part of integral term in (1):

∫ t

0
k1(t, s)y(s) ds ≈

∫ t

0
k1(t, s)yN (s) ds.

Then, applying (5), we get

∫ t

0
k1(t, s)yN (s) ds =

∫ t

0
k1(t, s)T(s)PY ds.

So, we approximate the first integral term

K1 = FY , (8)

where

K1 =
[∫ t0

0
k1(t, s)yN (s) ds,

∫ t1

0
k1(t, s)yN (s) ds, . . . ,

∫ tN

0
k1(t, s)yN (s) ds

]T

and

F = GPY,

where

G =

⎡
⎢⎢⎢⎢⎣

∫ t0
0 k1(t, s)T∗

0 (s) ds
∫ t0

0 k1(t, s)T∗
1 (s) ds · · · ∫ t0

0 k1(t, s)T∗
N (s) ds∫ t1

0 k1(t, s)T∗
0 (s) ds

∫ t1
0 k1(t, s)T∗

1 (s) ds · · · ∫ t1
0 k1(t, s)T∗

N (s) ds
...

...
. . .

...∫ tN
0 k1(t, s)T∗

0 (s) ds
∫ tN

0 k1(t, s)T∗
1 (s) ds · · · ∫ tN

0 k1(t, s)T∗
N (s) ds

⎤
⎥⎥⎥⎥⎦ .
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Now we consider to calculate the element Gij =
∫ ti

0 k1(ti, s)T∗
j (s) ds of the matrix G. With

the help of Gaussian quadrature formulas, we have

Gij =
∫ ti

0
k1(ti, s)T∗

j (s) ds

=
ti

2

∫ 1

–1
k1

(
ti,

tix + ti

2

)
T∗

j

(
tix + ti

2

)
dx

≈ ti

2

N∑
r=0

k1

(
ti,

tixr + ti

2

)
T∗

j

(
tixr + ti

2

)
ωr ,

where {ωr}N
r=0 are the Chebyshev weights. Using a similar process, the second part of in-

tegral term in (1) can be approximated

∫ qt

0
k2(t, s)y(s) ds ≈

∫ qt

0
k2(t, s)yN (s) ds.

By (5) and Gauss quadrature formulas, the following operational matrix Fq is obtained:

K2 = FqY, (9)

where

K2 =
[∫ qt0

0
k2(t, s)yN (s) ds,

∫ qt1

0
k2(t, s)yN (s) ds, . . . ,

∫ qtN

0
k2(t, s)yN (s) ds

]T

and

Fq = GqPY,

where

Gq = (Gq)ij =
∫ qti

0
k1(ti, s)T∗

j (s) ds, i, j = 0, 1, 2, . . . , N ,

and

(Gq)ij ≈ qti

2

N∑
r=0

k2

(
qti,

qtixr + qti

2

)
T∗

j

(
qtixr + ti

2

)
ωr .

4 Proposed numerical scheme
In this section, we are devoted to solving the considered problem (1) by previously derived
operational matrix. First, substituting matrix relations (6), (7), (8), and (9) into (1), we have

(
D(1) – A1 – A2Q – F – Fq

)
Y = B, (10)

where

A1 = diag
[
a1(x0), a1(x1), a1(x2), . . . , a1(xN )

]
,
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A2 = diag
[
a2(x0), a2(x1), a2(x2), . . . , a2(xN )

]
,

B =
[
b(x0), b(x1), . . . , b(xN )

]T .

Denoting the expression in parenthesis of (10) by C, the above system of equations (10)
can be written as

CY = B,

where

C = [cij] i, j = 0, 1, 2, . . . , N .

Then we incorporate the initial value condition y(0) = y0 in (10) and obtain

y(0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c01

c02

c03
...

c0N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 · · · c1N

c21 c22 c23 · · · c2N

c31 c32 c33 · · · c3N
...

...
...

. . .
...

cN1 cN2 cN3 · · · cNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y(t1)
y(t2)
y(t3)

...
y(tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(t1)
b(t2)
b(t3)

...
b(tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, we can get the unknown vector Y and yN (t) by solving the above equations.

5 Some useful notations and lemmas
First, we present some lemmas and notations, which are necessary for the error analysis.
L2

ωα,β (I) denotes a space of functions u for which ‖u‖L2
ωα,β

< ∞ with

‖u‖L2
ωα,β

=

√∫ 1

–1

∣∣u(x)
∣∣2ωα,β (x) dx,

where ωα,β (x) is the weight function on I := (–1, 1). For m ≥ 0, m ∈N0, define

Hm
ωα,β , =

{
v : ∂k

x v ∈ L2
ωα,β (I), 0 ≤ k ≤ m

}

and

|v|Hm;N
ωα,β

=

( m∑
k=min(m,N+1)

∥∥∂k
x v
∥∥2

L2
ωα,β

) 1
2

.

Particularly, let ω(x) denote the Chebyshev weight function when α = β = –1/2.
For given N ∈N, PN denotes the set of all real polynomials of degree less than N . Given

any function u ∈ C[–1, 1], the Lagrange interpolation polynomial of u is

IN u =
N∑

i=0

u(xi)Fi(x),
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which satisfies

IN u(xi) = u(xi),

where Fi(x) and {xi}N
i=0 are the Lagrange polynomials and Chebyshev Gauss–Lobatto

points, respectively.

Lemma 1 ([24]) For any function u ∈ Hm
ω (I) with m ≥ 1, IN u is its interpolation polyno-

mial. Then we have the estimates

‖u – IN u‖L2
ω(I) ≤ CN–m|u|Hm;N

ω (I).

According to Lemma 1, the following inequality can be proved. For the Gauss-type
quadrature formulas, we have

∣∣∣∣
∫ 1

–1
u(x)φ(x)ω(x) – (u,φ)N

∣∣∣∣≤ CN–m|u|Hm;N
ω (I)‖φ‖L2

ω(I), (11)

where u ∈ Hm
ω (I), φ ∈ PN , and (u,φ)N is the discrete inner product associated with a Gauss-

type quadrature.

Lemma 2 ([25]) For a bounded function u(x), we have the following inequality:

sup
N

∥∥∥∥∥
N∑

i=0

u(xi)Fi(x)

∥∥∥∥∥
L2
ω(I)

≤ C max
x∈[–1,1]

∣∣u(x)
∣∣,

where {Fi(x)}N
i=0 are the Lagrange interpolation polynomials.

Lemma 3 ([9, 11]) Suppose 0 ≤ M1, M2 < +∞ and

E(x) ≤ M1

∫ x

–1
E(s) ds + M2

∫ x

–1
E(qs + q – 1) ds + H(x).

Assume more that E(x) and H(x) are nonnegative integrable functions, then

‖E‖Lp ≤ C‖H‖Lp , p ≥ 1.

6 Convergence analysis
Consider (1) again. By using t = T(1+x)/2, the interval [0, T] can be transformed to [–1, 1].
So (1) can be rewritten as follows:

u′(x) = A1(x)u(x) + A2(x)u(qx + q – 1) + B(x)

+
T
2

∫ T
2 (1+x)

0
k1

(
T
2

(1 + x), s
)

y(s) ds

+
T
2

∫ qT
2 (1+x)

0
k2

(
T
2

(1 + x), τ
)

y(τ ) dτ ,

(12)

u(–1) = u–1 = y0, (13)



Ji et al. Advances in Continuous and Discrete Models         (2022) 2022:57 Page 8 of 16

where

u(x) = y
(

T
2

(1 + x)
)

, A1(x) =
T
2

a1

(
T
2

(1 + x)
)

,

A2(x) =
T
2

a2

(
T
2

(1 + x)
)

, B(x) =
T
2

b
(

T
2

(1 + x)
)

,

where x ∈ [–1, 1]. Furthermore, by using the following linear transformations:

s =
T
2

(1 + θ ), θ ∈ [–1, x],

τ =
T
2

(1 + η), η ∈ [–1, qx + q – 1],

equation (12) can be written as follows:

u′(x) = A1(x)u(x) + A2(x)u(qx + q – 1) + B(x)

+
∫ x

–1
K1(x, θ )u(θ ) dθ +

∫ qx+q–1

–1
K2(x,η)u(η) dη,

(14)

where

K1(x, θ ) =
T2

4
k1

(
T
2

(1 + x),
T
2

(1 + θ )
)

,

K2(x,η) =
T2

4
k1

(
T
2

(1 + x),
T
2

(1 + η)
)

.

Theorem 4 If uN (x) and u(x) are the approximate and analytical solutions of (12) with
(13), respectively, assume that u(x) is sufficiently smooth, then

‖u – uN‖L2
ω(I) ≤ CN–m(M‖u‖L2

ω(I) +
∣∣u′∣∣

Hm;N
ω (I) + |u|Hm;N

ω (I)
)
,

for N sufficiently large, where M = maxx∈[–1,1] |K1(x, t)|Hm;N
ω (I) + maxx∈[–1,1] |K2(x, t)|Hm;N

ω (I).

Proof First, we insert the Gauss–Lobatto collocation points {xi}N
i=0 into (14) and obtain

u′(xi) = A(xi)u(xi) + B(xi)u(qxi + q – 1) + G(xi)

+
∫ xi

–1
K1(x, θ )u(θ ) dθ +

∫ qxi+q–1

–1
K2(x,η)u(η) dη

(15)

and

u(xi) =
∫ xi

–1
u′(θ ) dθ + u–1. (16)

We use uN (xi) to approximate u(xi) and

uN (x) =
N∑

i=0

u(xi)Fi(x), i = 0, 1, 2, . . . , N ,
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where Fi(x) is the Lagrange interpolation polynomials. Next, we consider the integral
terms involved in (15)

∫ xi

–1
K1(xi, θ )uN (θ ) dθ =

1 + xi

2

∫ 1

–1
K1(xi, τ )uN (τ ) dτ

≈ 1 + xi

2

N∑
r=0

K1(xi, τr)uN (τr)ωr ,

where {τr}N
r=0 coincides with the collocation points {xi}N

i=0. In a similar way we deal with

∫ qxi+q–1

–1
K2(xi, θ )uN (θ ) dθ ≈ q(1 + xi)

2

N∑
r=0

K2(xi, τr)uN (τr)ωr .

So, our numerical scheme can be reformulated as

u′
N (xi) = A1(xi)uN (xi) + A2(xi)uN (qxi + q – 1) + B(xi)

+
1 + xi

2

N∑
r=0

K1(xi, τr)uN (τr)ωr +
q(1 + xi)

2

N∑
r=0

K2(xi, τr)uN (τr)ωr ,

uN (xi) =
∫ xi

–1
u′

N (θ ) dθ + u–1. (17)

For ease of analysis, the above numerical scheme can be rewritten as follows:

u′
N (xi) = A1(xi)uN (xi) + A2(xi)uN (qxi + q – 1) + B(xi)

+
∫ xi

–1
K1(x, θ )uN (θ ) dθ +

∫ qxi+q–1

–1
K2(x,η)uN (η) dη – I1(xi) – I2(xi),

(18)

where

I1(xi) =
∫ xi

–1
K1(xi, θ )uN (θ ) dθ –

1 + xi

2

N∑
j=0

K1(xi, τj)uN (τj)ωj

and

I2(xi) =
∫ qxi+q–1

–1
K2(xi, θ )u(θ ) dθ –

q(1 + xi)
2

N∑
j=0

K2(xi, τj)uN (τj)ωj.

Applying the Lagrange interpolation operator to (18) yields

u′
N (x) = IN

(
A1(x)uN (x)

)
+ IN

(
A2(x)uN (qx + q – 1)

)

+ IN
(
B(x)

)
+ IN

(∫ x

–1
K1(x, θ )uN (θ ) dθ

)

+ IN

(∫ qx+q–1

–1
K2(x,η)uN (η) dη

)
– J1(x) – J2(x),

(19)
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where

J1(x) =
N∑

i=0

I1(xi)Fi(x), J2(x) =
N∑

i=0

I2(xi)Fi(x).

Obviously, by (14),

IN
(
u′(x)

)
= IN

(
A1(x)u(x)

)
+ IN

(
A2(x)u(qx + q – 1)

)

+ IN
(
B(x)

)
+ IN

(∫ x

–1
K1(x, θ )u(θ ) dθ

)

+ IN

(∫ qx+q–1

–1
K2(x,η)u(η) dη

)
.

(20)

By subtracting (19) from (20), we can obtain

e′
N (x) = u′(x) – IN

(
u′(x)

)
+ IN

(
A1(x)eN (x)

)

+ IN
(
A2(x)eN (qx + q – 1)

)
+ IN

(∫ x

–1
K1(x, θ )eN (θ ) dθ

)

+ IN

(∫ qx+q–1

–1
K2(x,η)eN (η) dη

)
+ J1(x) + J2(x),

(21)

where e′
N (x) = u′(x) – u′

N (x). Meanwhile, subtracting (17) from(16) yields

u(xi) – uN (xi) =
∫ xi

–1
e′

N (θ ) dθ . (22)

Similarly, applying the Lagrange interpolation operator to (22) yields

u(x) – uN (x) = u(x) – IN
(
u(x)

)
+ IN

(∫ x

–1
e′

N (θ ) dθ

)
. (23)

Consequently, we rewrite (21) as

e′
N (x) = A1(x)eN (x) + A2(x)eN (qx + q – 1) +

∫ x

–1
K1(x, θ )eN (θ ) dθ

+
∫ qx+q–1

–1
K2(x,η)eN (η) dη +

7∑
i=1

Ji(x),
(24)

eN (x) =
(∫ x

–1
e′

N (θ ) dθ

)
+ J8(x) + J9(x), (25)

where

J3(x) = u′(x) – IN
(
u′(x)

)
,

J4(x) = IN
(
A1(x)eN (x)

)
– A1(x)eN (x),

J5(x) = IN
(
A2(x)eN (qx + q – 1)

)
– A2(x)eN (qx + q – 1),
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J6(x) = IN

(∫ x

–1
K1(x, θ )eN (θ ) dθ

)
–
∫ x

–1
K1(x, θ )eN (θ ) dθ ,

J7(x) = IN

(∫ qx+q–1

–1
K2(x,η)eN (η) dη

)
–
∫ qx+q–1

–1
K2(x,η)eN (η) dη,

J8(x) = u(x) – IN
(
u(x)

)
, J9(x) = IN

(∫ x

–1
e′

N (θ ) dθ

)
–
∫ x

–1
e′

N (θ ) dθ .

Substituting (25) into the first integral part of (24) and applying Dirichlet’s formula that∫ x
–1
∫ τ

–1 φ(τ , s) ds dτ =
∫ x

–1
∫ x

s φ(τ , s) dτ ds, we obtain

∫ x

–1
K1(x, θ )eN (θ ) dθ =

∫ x

–1

(∫ x

θ

K1(x, τ ) dτ

)
e′

N (θ ) dθ

+
∫ x

–1
K1(x, θ )

(
J8(θ ) + J9(θ )

)
dθ .

(26)

Considering the second integral part of (24),

∫ qx+q–1

–1
K2(x,η)eN (η) dη =

∫ qx+q–1

–1
K2(x,η)

(∫ η

–1
e′

N (θ ) dθ

)
dη

+
∫ qx+q–1

–1
K2(x,η)

(
J8(η) + J9(η)

)
dη.

(27)

For the sake of applying Dirichlet’s formula, we transform the above equation to

∫ qx+q–1

–1
K2(x,η)eN (η) dη

= q2
∫ x

–1
K2(x, qη + q – 1)

(∫ η

–1
e′

N (qθ + q – 1) dθ

)
dη

+ q
∫ x

–1
K2(x, qη + q – 1)

(
J8(qη + q – 1) + J9(qη + q – 1)

)
dη

= q2
∫ x

–1

(∫ x

η

K2(x, qη + q – 1) dη

)
e′

N (qθ + q – 1) dθ

+ q
∫ x

–1
K2(x, qη + q – 1)

(
J8(qη + q – 1) + J9(qη + q – 1)

)
dη.

(28)

Substituting (26) and (28) into (24), provided the integral exists, we obtain

∣∣e′
N (x)

∣∣≤ M1
∣∣eN (x)

∣∣ + (M2 + M4)
∫ x

–1

∣∣e′
N (qη + q – 1)

∣∣dη

+ M3

∫ x

–1

∣∣e′
N (θ )

∣∣dθ +
7∑

i=1

∣∣Ji(x)
∣∣

+
∫ x

–1
K1(x, θ )

(∣∣J8(θ )
∣∣ +
∣∣J9(θ )

)∣∣dθ

+ q
∫ x

–1
K2(x, qη + q – 1)

9∑
i=8

∣∣Ji(qη + q – 1)
∣∣dη,

(29)
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where

M1 = max
x∈[–1,1]

∣∣A1(x)
∣∣,

M2 = max
x∈[–1,1]

∣∣A2(x)
∣∣,

M3 = max
x∈D1

∫ x

θ

∣∣K1(x, τ )
∣∣dτ ,

M4 = q2 max
x∈D2

∫ x

η

∣∣K2(x, qη + q – 1)
∣∣dη,

and

D1 =
{

(x, τ ) : –1 ≤ x ≤ 1, –1 ≤ τ ≤ x
}

,

D2 =
{

(x,η) : –1 ≤ x ≤ 1, –1 ≤ η ≤ qx + q – 1
}

.

By Lemma 3,

∥∥e′
N (x)

∥∥
L2
ω(I) ≤ C1

(∥∥eN (x)
∥∥

L2
ω(I) +

9∑
i=1

‖Ji‖L2
ω(I)

)
. (30)

Using (25) gives

∥∥eN (x)
∥∥

L2
ω(I) ≤ C2

(∥∥e′
N (x)

∥∥
L2
ω(I) +

∥∥J8(x)
∥∥

L2
ω(I) +

∥∥J9(x)
∥∥

L2
ω(I)

)
. (31)

Then, by (30), (31), and C1C2 < 1, we have

∥∥eN (x)
∥∥

L2
ω(I) ≤ C

9∑
i=1

‖Ji‖L2
ω(I). (32)

First, using Lemma 2 and (11) yields

‖J1‖L2
ω(I) ≤ C max

x∈[–1,1]

∣∣I1(x)
∣∣

≤ CN–m max
x∈[–1,1]

∣∣K1(x, t)
∣∣
Hm;N

ω (I)

(‖u‖L2
ω(I) + ‖e‖L2

ω(I)
)
,

(33)

‖J2‖L2
ω(I) ≤ C max

x∈[–1,1]

∣∣I2(x)
∣∣

≤ CN–m max
x∈[–1,1]

∣∣K2(x, t)
∣∣
Hm;N

ω (I)

(‖u‖L2
ω(I) + ‖e‖L2

ω(I)
)
.

(34)

Next, by Lemma 1, we have

‖J3‖L2
ω(I) ≤ CN–m∣∣u′∣∣

Hm;N
ω (I), ‖J8‖L2

ω(I) ≤ CN–m|u|Hm;N
ω (I). (35)

In addition, by Lemma 1 for m = 1, we find that

‖J4‖L2
ω(I) ≤ CN–1

∥∥∥∥A′(x)
∫ x

–1
e′(τ ) dτ + A(x)e′(x)

∥∥∥∥
L2
ω(I)

≤ CN–1∥∥e′(x)
∥∥

L2
ω(I),
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‖J5‖L2(I) ≤ CN–1∥∥e′(x)
∥∥

L2
ω(I),

‖Jk‖L2(I) ≤ CN–1∥∥e(x)
∥∥

L2
ω(I), k = 6, 7, 9.

Therefore, a combination of Ji, i = 1, 2, . . . , 9, yields

‖u – uN‖L2
ω(I) ≤ CN–m(M‖u‖L2

ω(I) +
∣∣u′∣∣

Hm;N
ω (I) + |u|Hm;N

ω (I)
)
,

where M = maxx∈[–1,1] |K1(x, t)|Hm;N
ω (I) + maxx∈[–1,1] |K2(x, t)|Hm;N

ω (I). �

7 Numerical experiments
In this section, we carried out the proposed computational scheme for solving the consid-
ered problem in the form of (1).

Example 7.1 First, we investigate the problem as follows:

y′(t) = y(0.5t) +
∫ t

0
y(s) ds +

∫ 0.5t

0
y(s) ds + 1 – 1.5t, t ∈ [0, T],

y(0) = 0.

The analytical solution is y(t) = 1–e–t . We implement the proposed computational scheme
to calculate the problem with various polynomial degree N . Figure 1 illustrates the abso-
lute error function |eN (x)| = |u(x) – uN (x)| for N = 8, 16. Table 1 provides the computa-
tional results on the interval of [0, 10]. From the approximate solution, one can see high
accuracy of the suggested numerical scheme.

Figure 1 Absolute errors for N = 8, 16 on the interval of [0, 1] for Example 7.1
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Table 1 Absolute errors on the interval of [0, 10] for Example 7.1

t N = 16 N = 20 N = 24 N = 28 N = 32

1.0 2.3210e–6 6.5698e–8 1.6732e–12 2.1369e–14 2.2566e–16
2.0 3.6651e–6 8.0412e–8 3.1013e–11 5.7216e–14 3.1234e–16
3.0 2.1021e–6 8.0050e–8 2.5513e–11 6.7125e–14 2.8412e–16
4.0 3.0012e–6 7.5619e–8 3.1015e–11 1.3353e–13 3.1253e–16
5.0 2.0613e–6 8.0216e–8 3.5362e–11 1.7291e–15 2.5278e–16
6.0 2.9832e–6 8.5532e–8 4.0138e–11 1.4879e–14 1.8322e–16
7.0 2.3321e–6 1.4791e–7 3.8368e–11 1.4672e–14 2.8533e–16
8.0 2.8632e–6 7.3560e–8 4.4629e–11 7.8362e–15 3.0061e–16
9.0 1.1532e–5 8.1021e–8 3.2059e–11 1.3876e–14 1.3312e–16

Figure 2 L2– errors obtain by using our method for T = 1, 10 for Example 7.2

Example 7.2 We consider

y′(t) = 0.5y(t) + y(0.25t) +
∫ t

0
et+xy(x) dx +

∫ 0.25t

0
xy(x) dx + g(t),

y(0) = 0,

where

g(t) = 0.5 – 0.25e0.25 + 0.03125t2 – 0.5e3t + e2t ,

and then the analytical solution is y(t) = et – 1. Likewise, we implement the proposed com-
putational scheme to solve the second problem with 4 ≤ N ≤ 20 for T = 1 and 16 ≤ N ≤ 40
for T = 10, various values of N and T . The obtained errors are plotted in L2-norms in
Fig. 2 for 4 ≤ N ≤ 40. From Fig. 2, we know that the suggested numerical scheme is very
effective. We compare the maximum absolute errors of our developed approach with sine
collocation method [13]. The computational results are tabulated in Table 2. Moreover,
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Table 2 Comparison of the maximum absolute errors with various N for Example 7.1

Sinc method Proposed method

N ‖e(t)‖L∞ N ‖e(t)‖L∞
5 3.6000e–3 4 8.1760e–4
10 2.2328e–4 8 7.7913e–9
20 5.7215e–6 12 2.8315e–14
30 2.8939e–7 16 3.3316e–16
40 2.2096e–7 20 2.2202e–16

a simple comparison between the two methods confirms the accuracy of the proposed
computational scheme.

8 Conclusion
We proposed a computational scheme for solving a class of Volterra integro-differential
equations. The derivation of this scheme is based on Chebyshev operational matrices and
the Gauss quadrature formula. Moreover, the convergence analysis for the present method
is investigated in detail. We compare the computational results obtained in this work with
other approximated methods. The comparison indicates that our approach is more ac-
curate and efficient. Moreover, our proposed computational scheme can be extended for
solving nonlinear problems of pantograph type.
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