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Abstract
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1 Introduction and preliminaries
Convexity [1–5] is a very simple and natural notion which plays a pivotal role in different
fields of pure and applied sciences [6–9] such as optimization theory [10], engineering and
management sciences [11, 12]. In recent past the classical concept of convexity has been
extended and generalized in different directions [13–25]. A significant generalization of
convexity is the preinvexity, which was introduced and studied by Weir and Mond [26].
Recently, Awan et al. [27] introduced and studied another extension of classical convexity
which is called exponentially convex functions.

Another important aspect which makes the theory of convexity more charming is its
relation with the theory of inequalities. Many inequalities can be obtained using the theory
of convex functions [28–36]. One of the most inequalities in convex functions is Hermite–
Hadamard inequality [37–39], which provides us a necessary and sufficient condition for
a function to be convex. In recent years many new generalizations, improvements, and
variants of the Hermite–Hadamard inequality have been obtained in the literature [40–
48] by use of the ordinary, quantum, and fractional calculus.

The main purpose of the article is to introduce the class of generalized exponentially
μ-preinvex functions. We derive a new q-integral identity and then some new estimates
of bounds for it essentially utilizing the concepts of quantum calculus.
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2 Preliminaries
In this section, we introduce the new definition of exponentially μ-preinvex function, es-
tablish a new q-integral identity, and obtain new associated q-bounds.

First of all, let K ⊂ �n be a nonempty set, � : K → � be a continuous function, and
μ : K×K → � \ {0} and θ : K×K → �n be two continuous bifunctions.

Definition 2.1 A set K ⊆ �n is said to be μ-invex with respect to the bifunctions μ(·, ·)
and θ (·, ·) if

a + kμ(b, a)θ (b, a) ∈K

for all a, b ∈K and k ∈ [0, 1].
Note that the convex set with μ(b, a) = 1 and θ (b, a) = b – a is an invex set, but the con-

verse is not true. For example, the set K = � \ (–1/2, 1/2) is an invex set with respect to θ

and μ(b, a) = 1, where

θ (b, a) =

⎧
⎨

⎩

b – a, for b > 0, a > 0 or b < 0, a < 0,

a – b, for b < 0, a > 0 or b < 0, a < 0.

It is clear that K is not a convex set.

Definition 2.2 A function � : K → � is said to be generalized exponentially μ-preinvex
function if there exist bifunctions μ(·, ·) and θ (·, ·), χ ≥ 1 and nonpositive α such that

�
(
a + kμ(b, a)θ (b, a)

) ≤ (1 – k)s �(a)
χαa + ks �(b)

χαb

for all a, b ∈K, k ∈ [0, 1], and s ∈ (0, 1].

Note that, if α = 0 or χ = 1, then the class of generalized exponentially μ-preinvex
functions reduces to the class of generalized μ-preinvex functions. The class of gener-
alized exponentially μ-preinvex function includes the class of of preinvexity for α = 0 and
μ(b, a) = 1. Also note that if we take χ = e, then we have the class of exponentially μ-
preinvex functions, which is defined as follows.

Definition 2.3 A function � : K → � is said to be exponentially μ-preinvex if there exist
bifunctions μ(·, ·) and θ (·, ·) and nonpositive α such that

�
(
a + kμ(b, a)θ (b, a)

) ≤ (1 – k)s �(a)
eαa + ks �(b)

eαb

for all a, b ∈K, k ∈ [0, 1], and s ∈ (0, 1].

Example 2.1 The function � : � → � defined by �(k) = k2 is exponentially μ-preinvex
for all α < 0 and μ(b, a) = 1.

Next, we recall some previously known concepts and results, which will be helpful in
obtaining the quantum analogues of the main results of the article.
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Definition 2.4 (see [49, 50]) Let 0 < q < 1 and � : J = [a, b] → � be an arbitrary function.
Then the q-derivative of � on J at t is defined as follows:

aDq�(t) =
�(t) – �(qt + (1 – q)a)

(1 – q)(t – a)
(t 	= a) and aDq�(a) = lim

t→aa
Dq�(t).

We note that limq→1 aDq�(t) = d�(t)/dt is just the classical derivative if � is differen-
tiable.

Definition 2.5 (see [49, 50]) Let � : J = [a, b] → � be an arbitrary function. Then the
second-order q-derivative on the interval J is defined by

aD2
q�(t) = aDq

(
aDq�(t)

)

provided aDq is q-differentiable on J . Similarly, the higher order q-derivative on J can be
defined by

aDn
q�(t) =a Dq

(
aDn–1

q �(t)
)
.

Definition 2.6 (see [49, 50]) Let 0 < q < 1 and � : J = [a, b] → � be an arbitrary function.
Then the q-integral on J is defined by

∫ x

a
�(k) dqk = (1 – q)(x – a)

∞∑

n=0

qn�
(
qnx +

(
1 – qn)a

)

for x ∈ J .

Note that if a = 0, then we have the classical q-integral, which is defined as follows:

∫ x

0
�(k) dqk = (1 – q)x

∞∑

n=0

qn�
(
qnx

)
.

Lemma 2.2 (see [49, 50]) Let α ∈ � \ {–1}. Then

∫ x

a
(k – a)α dqk =

(
1 – q

1 – qα+1

)

(x – a)α+1.

Definition 2.7 (see [51]) Let a ∈ � and n ∈N. Then the q-analogue of a is defined by

[a]q =
1 – qn

1 – q
.

Definition 2.8 (see [51]) Let k, p > 0. Then Bq(k, p) is defined by

Bq(k, p) =
∫ 1

0
xk–1(1 – qx)p–1

q dqx.

For more details for q-calculus, we recommend the literature [52–55] to the readers.
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3 Results and discussions
In this section, we present our main results of the article.

Lemma 3.1 Let 0 < q < 1 and � : K → � be an arbitrary function such that D2
q� is q-

integrable on K. Then one has

q�(a) + �(a + μ(b, a)θ (b, a))
q + 1

–
1

μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

=
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk. (3.1)

Proof We clearly see that

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

=
∫ 1

0

(
k(1 – qk)

[
q�

(
a + kμ(b, a)θ (b, a)

)
– (1 + q)�

(
a + qkμ(b, a)θ (b, a)

)

+ �
(
a + q2kμ(b, a)θ (b, a)

)])

/
(
k2q(1 – q)2μ2(b, a)θ2(b, a)

)
dqk

=

(

q
∞∑

n=0

�
(
a + qnμ(b, a)θ (b, a)

)
– (1 + q)

∞∑

n=0

�
(
a + qn+1μ(b, a)θ (b, a)

)

+
∞∑

n=0

�
(
a + qn+2μ(b, a)θ (b, a)

)
)

/
(
q(1 – q)μ2(b, a)θ2(b, a)

)

– q
{

q(1 – q)μ(b, a)θ (b, a)
∑∞

n=0 qn�(a + qnμ(b, a)θ (b, a))
q(1 – q)2μ3(b, a)θ3(b, a)

– (1 + q)(1 – q)μ(b, a)θ (b, a)

×
∑∞

n=0 qn+1�(a + qn+1μ(b, a)θ (b, a))
q2(1 – q)2μ3(b, a)θ3(b, a)

+
(1 – q)μ(b, a)θ (b, a)

∑∞
n=0 qn+2�(a + qn+2μ(b, a)θ (b, a))

q3(1 – q)2μ3(b, a)θ3(b, a)

}

=
q(�(a + μ(b, a)θ (b, a)) – �(a)) – �(a + qμ(b, a)θ (b, a)) + �(a)

q(1 – q)μ2(b, a)θ2(b, a)

–
1 + q

q2μ3(b, a)θ3(b, a)

×
∫ a+μ(b,a)θ (b,a)

a
�(x) dqk –

q2 + q – 1
q2(1 – q)μ2(b, a)θ2(b, a)

�
(
a + μ(b, a)θ (b, a)

)

+
�(a + qμ(b, a)θ (b, a))

q(1 – q)μ2(b, a)θ2(b, a)

=
q�(a) + �(a + μ(b, a)θ (b, a))

q2μ2(b, a)θ2(b, a)
–

1 + q
q2μ3(b, a)θ3(b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx.
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Multiplying both sides of the above equality by q2μ2(b, a)θ2(b, a)/(1 + q), we get the re-
quired result. �

Theorem 3.2 Let � : K → � be an arbitrary function, μ(b, a)θ (b, a) > 0 with D2
q� be q-

integrable on K, where 0 < q < 1 is a constant. If |D2
q�|r is a generalized exponentially

μ-preinvex function with χ ≥ 1 and non-positive α, then for s ∈ (0, 1] and r > 1 we have

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
1

1 + q

)1– 1
r
(

ψ1

∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ψ2

∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
, (3.2)

where

ψ1 = 21–sBq(2, r + 1) – Bq(s + 2, r + 1)

and

ψ2 = Bq(s + 2, r + 1).

Proof Using Lemma 3.1, the well-known power mean inequality, and the given hypothesis
of the theorem, we get

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

=
∣
∣
∣
∣
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

∫ 1

0
k(1 – qk)

∣
∣D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
k dqk

)1– 1
r

×
(∫ 1

0
k(1 – qk)r∣∣D2

q�
(
a + kμ(b, a)θ (b, a)

)∣
∣r dqk

) 1
r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
1

1 + q

)1– 1
r

×
(∫ 1

0
k(1 – qk)r

[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
1

1 + q

)1– 1
r

×
(∫ 1

0
k(1 – qk)r

q

[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
1

1 + q

)1– 1
r
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×
(∫ 1

0
k(1 – qk)r

q

[
(
21–s – ks)

∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

=
q2μ2(b, a)θ2(b, a)

q + 1

(
1

1 + q

)1– 1
r
(

ψ1

∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ψ2

∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
,

where

ψ1 =
∫ 1

0
k
(
21–s – ks)(1 – qk)r

q dqk = 21–sBq(2, r + 1) – Bq(s + 2, r + 1) ≥ 0

due to 21–s – ks ≥ 0 for all k ∈ [0, 1] and s ∈ (0, 1], and

ψ2 =
∫ 1

0
ks+1(1 – qk)r

q dqk = Bq(s + 2, r + 1).

This proof is completed. �

Theorem 3.3 Let � : K → � be an arbitrary function, μ(b, a)θ (b, a) > 0 with D2
q� be q-

integrable on K, where 0 < q < 1 is a constant. If |D2
q�|r is a generalized exponentially μ-

preinvex function with χ ≥ 1 and non-positive α, then for s ∈ (0, 1], r > 1, and 1/p + 1/r = 1
we obtain

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (2, p + 1)

q + 1

×
( (21–s[s + 2]q – 1 – q)|D2

q�(a)
χαa |r + (1 + q)|D2

q�(b)
χαb |r

(1 + q)[s + 2]q

) 1
r
. (3.3)

Proof Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we
have

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

=
∣
∣
∣
∣
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
k(1 – qk)p dqk

) 1
p

×
(∫ 1

0
k
∣
∣D2

q�
(
a + kμ(b, a)θ (b, a)

)∣
∣r dqk

) 1
r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
k(1 – qk)p

q dqk
) 1

p

×
(∫ 1

0
k
[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (2, p + 1)

q + 1
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×
( (21–s[s + 2]q – 1 – q)|D2

q�(a)
χαa |r + (1 + q)|D2

q�(b)
χαb |r

[s + 2]q

) 1
r
.

This completes the proof. �

Theorem 3.4 Let � : K → � be an arbitrary function, μ(b, a)θ (b, a) > 0 with D2
q� be q-

integrable on K, where 0 < q < 1 is a constant. If |D2
q�|r is a generalized exponentially μ-

preinvex function with χ ≥ 1 and non-positive α, then for s ∈ (0, 1], r > 1, and 1/p + 1/r = 1
we get

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

×
(

(
21–sBq(r + 1, r + 1) – Bq(r + s + 1, r + 1)

)
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ Bq(r + s + 1, r + 1)
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
. (3.4)

Proof Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we
obtain

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

=
∣
∣
∣
∣
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
1 dqk

) 1
p

×
(∫ 1

0
kr(1 – qk)r∣∣D2

q�
(
a + kμ(b, a)θ (b, a)

)∣
∣r dqk

) 1
r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
kr(1 – qk)r

q

[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
(
21–sBq(r + 1, r + 1) – Bq(r + s + 1, r + 1)

)

×
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ Bq(r + s + 1, r + 1)
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
,

where

21–sBq(r + 1, r + 1) – Bq(r + s + 1, r + 1) ≥ 0.

Using the same idea as in the proof of Theorem 3.2, we can complete the proof. �

Theorem 3.5 Let � : K → � be an arbitrary function, μ(b, a)θ (b, a) > 0 with D2
q� be q-

integrable on K, where 0 < q < 1 is a constant. If |D2
q�|r is a generalized exponentially μ-
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preinvex function with χ ≥ 1 and non-positive α, then for s ∈ (0, 1], r > 1, and 1/p + 1/r = 1
we have

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (p + 1, p + 1)

q + 1

×
( (21–s[s + 1]q – 1)|D2

q�(a)
χαa |r + |D2

q�(b)
χαb |r

[s + 1]q

) 1
r
. (3.5)

Proof Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we
get

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

=
∣
∣
∣
∣
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
kp(1 – qk)p dqk

) 1
p

×
(∫ 1

0

∣
∣D2

q�
(
a + kμ(b, a)θ (b, a)

)∣
∣r dqk

) 1
r

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (p + 1, p + 1)

q + 1

×
(∫ 1

0

[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (p + 1, p + 1)

q + 1

( (21–s[s + 1]q – 1)|D2
q�(a)
χαa |r + |D2

q�(b)
χαb |r

[s + 1]q

) 1
r
.

This completes the proof. �

Theorem 3.6 Let � : K → � be an arbitrary function, μ(b, a)θ (b, a) > 0 with D2
q� be q-

integrable on K, where 0 < q < 1 is a constant. If |D2
q�|r is a generalized exponentially μ-

preinvex function with χ ≥ 1 and non-positive α, then for s ∈ (0, 1], r > 1, and 1/p + 1/r = 1
we obtain

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

×
(

1
[p + 1]q

) 1
p
(

(
21–sBq(1, r + 1) – Bq(s + 1, r + 1)

)
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ Bq(s + 1, r + 1)
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
. (3.6)
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Proof Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we
have

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

=
∣
∣
∣
∣
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
kp dqk

) 1
p

×
(∫ 1

0
(1 – qk)r∣∣D2

q�
(
a + kμ(b, a)θ (b, a)

)∣
∣r dqk

) 1
r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
1

[p + 1]q

) 1
p

×
(∫ 1

0
(1 – qk)r

[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)
q + 1

(
1

[p + 1]q

) 1
p
(

(
21–sBq(1, r + 1) – Bq(s + 1, r + 1)

)

×
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ Bq(s + 1, r + 1)
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
,

where

21–sBq(1, r + 1) – Bq(s + 1, r + 1) ≥ 0.

Using the same idea as in the proof of Theorem 3.2, we complete the proof. �

Theorem 3.7 Let � : K → � be an arbitrary function, μ(b, a)θ (b, a) > 0 with D2
q� be q-

integrable on K, where 0 < q < 1 is a constant. If |D2
q�|r is a generalized exponentially μ-

preinvex function with χ ≥ 1 and non-positive α, then for s ∈ (0, 1], r > 1, and 1/p + 1/r = 1
we get

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (1, p + 1)

q + 1

((
21–s

[r + 1]q
–

1
[r + s + 1]q

)∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+
(

1
[r + s + 1]q

)∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
. (3.7)

Proof Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we
obtain

∣
∣
∣
∣
q�(a) + �(a + μ(b, a)θ (b, a))

q + 1
–

1
μ(b, a)θ (b, a)

∫ a+μ(b,a)θ (b,a)

a
�(x) dqx

∣
∣
∣
∣
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=
∣
∣
∣
∣
q2μ2(b, a)θ2(b, a)

q + 1

∫ 1

0
k(1 – qk)D2

q�
(
a + kμ(b, a)θ (b, a)

)
dqk

∣
∣
∣
∣

≤ q2μ2(b, a)θ2(b, a)
q + 1

(∫ 1

0
(1 – qk)p dqk

) 1
p

×
(∫ 1

0
kr∣∣D2

q�
(
a + kμ(b, a)θ (b, a)

)∣
∣r dqk

) 1
r

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (1, p + 1)

q + 1

×
(∫ 1

0
kr

[

(1 – k)s
∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+ ks
∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r]

dqk
) 1

r

≤ q2μ2(b, a)θ2(b, a)B
1
p
q (1, p + 1)

q + 1

×
((

21–s

[r + 1]q
–

1
[r + s + 1]q

)∣
∣
∣
∣

D2
q�(a)
χαa

∣
∣
∣
∣

r

+
(

1
[r + s + 1]q

)∣
∣
∣
∣

D2
q�(b)
χαb

∣
∣
∣
∣

r) 1
r
.

This completes the proof. �

4 Conclusion
In this paper, we have defined the class of generalized exponentially μ-preinvex functions
and derived a new generalized quantum integral identity. With the help of this auxiliary
result, we have obtained some new estimates of the quantum bounds essentially using
the class of generalized exponentially μ-preinvex functions. It is worth to mention here
that if we take χ = e, then all of the main results reduce to the results for exponentially
μ-preinvex functions. To the best of our knowledge, these results are new in the litera-
ture. Since the quantum calculus has wide applications in many mathematical areas, this
new class of functions can be applied to obtain more results in convex analysis, special
functions, quantum mechanics, optimization theory, mathematical inequalities and may
stimulate further research in different areas of pure and applied sciences.
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