
Lu et al. Advances in Difference Equations        (2020) 2020:471 
https://doi.org/10.1186/s13662-020-02930-4

R E S E A R C H Open Access

A generalized isospectral–nonisospectral
heat equation hierarchy and its expanding
integrable model
Huanhuan Lu1, Yufeng Zhang1* and Jianqin Mei2

*Correspondence:
zyfxz@cumt.edu.cn
1School of Mathematics, China
University of Mining and
Technology, Xuzhou, Jiangsu
221116, China
Full list of author information is
available at the end of the article

Abstract
A generalized nonisospectral heat integrable hierarchy with three dependent
variables is singled out. A Bäcklund transformation of a resulting isospectral integrable
hierarchy is produced by converting the usual Lax pair into the Lax pairs in Riccati
forms. In addition, an expanding integrable model is also worked out by making use
of a set of linear spectral problems which are introduced via a high-dimensional loop
algebra. Finally, we obtain some conserved densities of a types of heat integrable
system by using the weight theory on PDEs.
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1 Introduction
There has been an important aspect of the search for integrable systems and their alge-
braic and geometric properties in soliton theory. Magri [1] proposed the Lax pair method
to generate integrable equations. Ablowitz [2, 3], and Newell et al. [4] have made great con-
tributions on integrable systems, including the methods for generating integrable equa-
tions. Tu Guizhang [5] once applied various loop algebras to introduce linear isospectral
problems in order to efficiently generate new integrable hierarchies of evolution equa-
tions and the corresponding Hamiltonian structures. Ma Wen-xiu [6] called the approach
the Tu scheme. By applying the Tu scheme, many interesting integrable systems and their
properties were obtained, such as the work in [7–15]. Guo Fukui [16] once applied the
following loop algebra:

˜A1 = span
{

h(n), e(n), f (n)
}

,

h(n) =
1
2

(

λ2n+1 0
0 –λ2n+1

)

, e(n) =
1
2

(

0 λ2n+1

λ2n+1 0

)

,

f (n) =
1
2

(

0 λ2n

–λ2n 0

)

,
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along with the commutators

[

h(n), e(n)
]

= f (m + n + 1),
[

h(m), f (n)
]

= e(m + n),
[

f (m), e(n)
]

= h(m + n), m, n ∈ Z,

to introduce the following isospectral problems:

ϕx = Uϕ, λt = 0, U = f (1) + qe(0) + rh(0), (1)

ϕt = V (n)ϕ, V (n) =
n

∑

m=0

(

amf (n – m) + bme(n – m) + cmh(n – m)
)

– cnf (0), (2)

whose compatibility condition yields the isospectral integrable hierarchy
(

q
r

)

t

=

(

–an+1 + rcn

bn+1 – qcn

)

=

(

bnx

anx

)

=

(

∂ 0
0 ∂

)(

bn

cn

)

=: J

(

bn

cn

)

,

(

bn+1

cn+1

)

= L

(

bn

cn

)

, L =

(

q∂–1q∂ ∂ + q∂–1r∂
–∂ + r∂–1q∂ r∂–1r∂

)

,

(3)

where J =
(

∂ 0
0 ∂

)

, L is called a recurrence operator.
As we have known that schemes for generating nonisospectral integrable hierarchies of

evolution equations are less than those for isospectral integrable hierarchies. Ma [17, 18]
made use of Lax operators and zero curvature equations to investigate the nonisospectral
integrable equations and their algebraic structures. Qiao Zhijun [19, 20] adopted the gen-
eralized Lax representations to generate nonisospectral integrable hierarchies and further
discuss their algebraic structures. We find that all of the nonisospectral integrable hierar-
chies were obtained under the assumption λt = λn (n ≥ 0). However, Li Yishen, [21] uti-
lized the zero curvature equation and the time evolution λt =

∑n
j=0 kj(t)λn–j to work out

some nonisospectral integrable hierarchies. Li and Zhuang [22] made use of the time evo-
lution λt =

∑m–1
j=0 k2j+1(t)λ2(m–j)–1 and a nonisospectral zero curvature equation to produce

the nonisospectral WKI integrable hierarchy of evolution equations, but it is difficult to
understand the paper. In order to straightforward generate nonisospectral hierarchies of
evolution equations. Zhang, et al. [23] proposed a method which applies the Tu scheme
and Li’s method [21, 22] to derive nonisospectral integrable hierarchies and investigate
the symmetries of integrable hierarchies. In this paper, we would like to adopt the method
to work out the nonisospectral integrable hierarchies corresponding to the Guo hierar-
chy [3]. Through enlarging the loop algebra A1 as above [24]. we obtain an expanding
isospectral–nonisospectral integrable hierarchy which reduces to the Guo hierarchy. Spe-
cially, we further study the Bäcklund transformation of the isospectral integrable hierar-
chy [3]. Finally, we reduce the isospectral–nonisospectral integrable hierarchy to a type
of heat equation which can be reduced to the standard linear equation, whose format of
conserved densities is singled out.

2 An isospectral–nonisospectral integrable hierarchy and its reduction
We take

V = V1 + V2, V1 =
∑

i≥0

(

aih(–i) + bie(–i) + cif (–i)
)

,
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V2 =
∑

j≥0

(

ājh(–j) + b̄je(–j) + c̄jf (–j)
)

,

λt =
∂λ

∂t
=

∑

j≥0

kj(t)λ1–2j.

First solving the stationary zero curvature equation,

V1,x = [U , V1], (4)

gives rise to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

aix = bi+1 – qci,

ai+1 = –bix + rci,

cix = –qai+1 + rbi+1 = raix + qbix, i ≥ 0,

(5)

from which we have ci = ∂–1(raix + qbix) + βi(t). According to the work in [16], then the
compatibility condition of Eq. (1) and Eq. (2), that is, the zero curvature equation

Ut – V (n)
1,x +

[

U , V (n)
1

]

= 0, (6)

admits the Guo hierarchy Eq. (3).
However, under the time evolution λt �= 0, the resulting zero curvature equation differs

from Eq. (6). We first solve the following evolution equation in terms of the Tu scheme
and the method presented in Eq. (23):

V2,x = [U , V2] +
∂U
∂λ

λt , (7)

which leads to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ājx = b̄j+1 – qc̄j + kj(t)r,

b̄jx = –āj+1 + rc̄j + kj(t)q,

c̄jx = –qāj+1 + rb̄j+1 + 2kj+1(t), j ≥ 0,

(8)

from which we have

c̄jx = qb̄jx + rājx – kj(t)
(

q2 + r2) + 2kj+1(t)

⇒ c̄j = ∂–1(qb̄jx + rājx) – kj(t)∂–1(q2 + r2) + 2kj+1(t)x.

Denoting

V (m)
2,+ =

m
∑

j=0

(

ājh(m – j) + b̄je(m – j) + c̄jf (m – j)
)

= λ2mV2 – V (m)
2,– ,

λ
(m)
t,+ =

m
∑

j=0

kj(t)λ2m–2j+1 = λ2mλt – λ
(m)
t,– = λ2mλt –

∞
∑

j=m+1

kj(t)λ2m–2j+1,



Lu et al. Advances in Difference Equations        (2020) 2020:471 Page 4 of 24

then Eq. (7) can be decomposed into the following form:

–
(

V (m)
2,+

)

x +
[

U , V (m)
2,+

]

+
∂U
∂λ

λ
(m)
t,+ =

(

V (m)
2,–

)

x –
[

U , V (m)
2,–

]

–
∂U
∂λ

λ
(m)
t,– . (9)

The gradations of the left-hand side in Eq. (9) are more than 0, while those of the right-
hand side are less than 1. Hence, we only take the terms with the gradations being 0 and 1
in both sides of Eq. (9), and

–
(

V (m)
2,+

)

x +
[

U , V (m)
2,+

]

+
∂U
∂λ

λ
(m)
t,+ = ām+1e(0) – b̄m+1h(0) – c̄mxf (0).

Let V (m)
2 = V (m)

2,+ – c̄mf (0), a direct calculation shows that

–
(

V (m)
2

)

x +
[

U , V (m)
2

]

+
∂U
∂λ

λ
(m)
t,+ = (ām+1 – rc̄m)e(0) + (–b̄m+1 + qc̄m)h(0).

Thus, the nonisospectral zero curvature equation,

Ut – V (n)
1,x – V (m)

2,x +
[

U , V (n)
1 + V (m)

2
]

= 0, (10)

gives an isospectral–nonisospectral integrable hierarchy,

(

q
t

)

tn,m

=

(

–an+1 + rcn – ām+1 + rc̄m

bn+1 – qcn + b̄m+1 – qc̄m

)

=

(

bnx + b̄mx – km(t)q
anx + āmx – km(t)r

)

=

(

∂ 0
0 ∂

)(

bn + b̄m

an + ām

)

– km(t)

(

q
r

)

= J

(

bn

an

)

+ J

(

b̄m

ām

)

– km(t)

(

q
r

)

. (11)

In what follows, we consider some reductions for Eq. (11). Let a0 = b0 = 0, c0 = β0(t), ā0 =
b̄0 = 0, then we have from Eq. (5) and Eq. (8)

a1 = β0(t)r, b1 = β0(t)q,

c1 =
1
2
β0(t)

(

q2 + r2) + β1(t),

ā1 = –k0(t)r∂–1(q2 + r2) + k0(t)q + 2k1(t)xr,

b̄1 = –k0(t)q∂–1(q2 + r2) – k0(t)r + 2k1(t)xq,

c̄0 = –k0(t)∂–1(q2 + r2) + 2k1(t)x,

c̄1 = –
1
2

k0(t)
(

q2 + r2)∂–1(q2 + r2) –
1
2

k0(t)∂–1(q2 + r2)2 + k0(t)∂–1(qxr – qrx)

– k1(t)∂–1(q2 + r2) + 2k2(t)x,

a2 = –β0(t)qx +
1
2
β0(t)r

(

q2 + r2) + β1(t)r,

b2 = β0(t)rx +
1
2
β0(t)q

(

q2 + r2) + β1(t)q,
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ā2 = k0(t)qx∂
–1(q2 + r2) + k0(t)q

(

q2 + r2) + k0(t)rx

–
1
2

k0(t)r
(

q2 + r2)∂–1(q2 + r2) –
1
2

k0(t)r∂–1(q2 + r2)2

+ k0(t)r∂–1(qxr – qrx) – k1(t)r∂–1(q2 + r2) + 2k1(t)q + 2k2(t)xr,

b̄2 = –k0(t)rx∂
–1(q2 + r2) – k0(t)r

(

q2 + r2) + k0(t)qx –
1
2

k0(t)q
(

q2 + r2)∂–1(q2 + r2)

–
1
2

k0(t)q∂–1(q2 + r2)2 + k0(t)q∂–1(qxr – qrx) – k1(t)q∂–1(q2 + r2)

– k1(t)r – 2k2(t)xq,

. . . .

Hence, we see that
(

q
r

)

t0,1

=

(

b̄1x – k1(t)q
ā1x – k1(t)r

)

= –k0(t)

(

(q∂–1(q2 + r2))x – rx

(r∂–1(q2 + r2))x + qx

)

+ 2k1(t)

(

(xq)x

(xr)x

)

. (12)

Taking q2 + r2 = ρx, then Eq. (12) becomes
⎧

⎨

⎩

qt = –k0(t)(qρ)x + k0(t)rx – 2k1(t)(xq)x,

rt = –k0(t)(rρ)x – k0(t)qx + 2k1(t)(xr)x,

which can be written, when k0(t) = 1,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

qt + ρqx = –qρx + rx – 2k1(t)(xq)x,

rt + ρrx = –rρx – qx + 2k1(t)(xr)x,

ρx = q2 + r2.

(13)

Remark 1 This nonlocal integrable system is obviously an extension of the nonlocal inte-
grable system given by Hu and Li [25],

⎧

⎪

⎪

⎨

⎪

⎪

⎩

mt + ρmx = –m(ψ(t, x) – ψ̄(t)),

nt + ρnx = –n(ψ(t, x) – ψ̄(t)),

ρ = ∂–1
x ψ .

(14)

Zhang and Qiao [26] investigated the periodic Cauchy problem and the well-posedness
as well as the blow-up phenomena of Eq. (14). Therefore, there is an open problem asking
whether we could study the Cauchy problem, the blow-up phenomena of the system of
equations (13), which will be discussed in another paper in the forthcoming days.

In fact, we can get other reduced integrable systems from Eq. (11). For example, we have
(

q
r

)

t1,1

=

(

β0(t)qx – k0(t)qx∂
–1(q2 + r2) – k0(t)q(q2 + r2) – k0(t)rx + k1(t)q + 2k1(t)xqxx

β0(t)rx – k0(t)rx∂
–1(q2 + r2) – k0(t)r(q2 + r2) + k0(t)qx + k1(t)r + 2k1(t)xrxx

)

,

(15)
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(

q
r

)

t2,0

=

(

β0(t)rxx + 1
2β0(t)(q(q2 + r2))x – k0(t)q

–β0(t)qxx + 1
2β0(t)(r(q2 + r2))x – k0(t)r

)

. (16)

Taking q = ir, Eq. (16) reduces to

qt = iβ0(t)qxx – k0(t)q. (17)

Specially, set iβ0(t) > 0, k0(t) = 0, Eq. (17) becomes to the standard linear heat equation

qt = αqxx, α > 0.

Hence, we call the following reduced integrable system from Eq. (16) a type of heat equa-
tion:

⎧

⎨

⎩

qt = 2rxx + (q(q2 + r2))x,

rt = –2qxx + (r(q2 + r2))x,
(18)

qt1,2 = β0(t)qx – k0(t)rxx∂
–1(q2 + r2) – k0(t)rx

(

q2 + r2) – k0(t)r
(

q2 + r2)

x

+ k0(t)qxx –
1
2

k0(t)
(

q
(

q2 + r2))

x∂
–1(q2 + r2) – k0(t)q

(

q2 + r2)2

–
1
2

k0(t)qx∂
–1(q2 + r2)2 + k0(t)qx∂

–1(qxr – qrx) + k0(t)q(qxr – qrx)

– k1(t)qx∂
–1(q2 + r2) – k1(t)q

(

q2 + r2)

x + k2(t)q + 2k2(t)xqx – k1(t)rx, (19)

rt1,2 = β0(t)rx + k0(t)qxx∂
–1(q2 + r2) + k0(t)qx

(

q2 + r2) + k0(t)q
(

q2 + r2)

x

+ k0(t)rxx –
1
2

k0(t)
(

r
(

q2 + r2))

x∂
–1(q2 + r2) – k0(t)r

(

q2 + r2)2

–
1
2

k0(t)rx∂
–1(q2 + r2) + k0(t)rx∂

–1(qxr – qrx) + k0(t)r(qxr – qrx)

– k1(t)rx∂
–1(q2 + r2) – k1(t)r

(

q2 + r2)

x + k2(t)r + 2k2(t)xrx – k1(t)qx, (20)

set k0(t) = β0(t) = 0, Eq. (19) and Eq. (20) reduce to

⎧

⎨

⎩

qt = –k1(t)qx∂
–1(q2 + r2) – k1(t)q(q2 + r2)x + k2(t)q + 2k2(t)xqx – k1(t)rx,

rt = –k1(t)rx∂
–1(q2 + r2) – k1(t)r(q2 + r2)x + k2(t)r + 2k2(t)xrx + k1(t)qx.

(21)

Let k1 = 0, Eq. (21) further reduces to a variable coefficient linear equation

qt = k2(t)(q + 2xqx). (22)

Assume k2 = 0, Eq. (21) becomes

⎧

⎨

⎩

qt = –k1(t)[qx∂
–1(q2 + r2) + q(q2 + r2)x + rx],

rt = –k1(t)[rx∂
–1(q2 + r2) + r(q2 + r2)x – qx].

(23)

Let q2 + r2 = ρx, k1 = –1, Eq. (23) is just right Eq. (13).
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From the above discussions, we can get many nonlocal integrable systems from the in-
tegrable hierarchy Eq. (13). Hence, Eq. (13) is a source to generate nonlocal integrable sys-
tems. Based on this, we could follow the method presented in [27, 28] to investigate their
algebraic and geometric properties. In what follows, we consider the recurrence operators
of the nonisospectral integrable hierarchy Eq. (11). since we have

(

bi+1

ai+1

)

= L

(

bi

ai

)

+ βi(t)

(

q
r

)

,

via the induction method we get

(

bi

ai

)

=
(

β0Li–1 + β1Li–2 + · · · + βi–1
)

(

q
r

)

, i = 1, 2, . . . , n.

In terms of Eq. (8), one has

b̄j+1 = ājx + q
[

∂–1(qb̄jx + rājx) – kj(t)∂–1(q2 + r2) + 2kj+1(t)x
]

– kj(t)r,

āj+1 = –b̄jx + r
[

∂–1(qb̄jx + rājx) – kj(t)∂–1(q2 + r2) + 2kj+1(t)x
]

+ kj(t)q,
(

b̄j+1

āj+1

)

=

(

q∂–1q∂ ∂ + q∂–1r∂
–∂ + r∂–1q∂ r∂–1r∂

)(

b̄j

āj

)

+

(

–kj(t)q∂–1(q2 + r2) – kj(t)r + 2kj(t)xq
–kj(t)r∂–1(q2 + r2) + kj(t)q + 2kj+1(t)xr

)

=: L

(

b̄j

āj

)

+ kj(t)

(

–q∂–1(q2 + r2) – r
–r∂–1(q2 + r2) + q

)

+ 2kj+1(t)

(

xq
xr

)

.

Therefore,

(

b̄j

āj

)

=
(

k0(t)Lj–1 + k1(t)Lj–2 + · · · + kj–1(t)
)

(

–q∂–1(q2 + r2) – r
–r∂–1(q2 + r2) + q

)

+ 2
(

k1(t)Lj + k2(t)Lj–1 + · · · + kj(t)L
)

(

xq
xr

)

. (24)

Thus, the integrable hierarchy Eq. (11) can be written as

(

q
r

)

tn,m

=
n–1
∑

j=0

βj(t)JLn–1–j

(

q
r

)

+
m–1
∑

j=0

kj(t)JLm–1–j

(

–q∂–1(q2 + r2) – r
–r∂–1(q2 + r2) + q

)

+ 2
m

∑

j=0

kj(t)JLm–j

(

xq
xr

)

– km(t)

(

q
r

)

= JPn–1(L)

(

q
r

)

+ JQm–1(L)

(

–q∂–1(q2 + r2) – r
–r∂–1(q2 + r2) + q

)

+ 2JQ̄m(L)

(

xq
xr

)

– km(t)

(

q
r

)

, (25)
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where

Pn–1(L) =
n–1
∑

j=0

βj(t)Ln–1–j,

Qm–1(L) =
m–1
∑

j=0

kj(t)Lm–1–j,

Q̄m(L) = 2
m

∑

j=0

kj(t)Lm–j.

Taking

φ = JLJ–1 =

(

∂q∂–1q ∂ + ∂q∂–1r
–∂ + ∂r∂–1q ∂r∂–1r

)

,

then JLn–1–j = φn–1–jJ . Hence, Eq. (24) again can be written as

Utn,m =:

(

q
r

)

tn,m

= Pn–1(φ)

(

qx

rx

)

+ Qm–1(φ)

(

–(q∂–1(q2 + r2))x – rx

–(r∂–1(q2 + r2))x + qx

)

+ Q̄m(φ)J

(

xq
xr

)

– km(t)

(

q
r

)

. (26)

3 Expanding integrable models of the isospectral–nonisospectral integrable
hierarchy

For the Lie algebra A1 presented previously, there are several enlarging Lie algebras in
terms of [24]:

A31 = span{g1, g2, g3, g4, g5},

g1 =
1
2

⎛

⎜

⎝

1 0 0
0 –1 0
0 0 0

⎞

⎟

⎠
, g2 =

1
2

⎛

⎜

⎝

0 1 0
1 0 0
0 0 0

⎞

⎟

⎠
, g3 =

1
2

⎛

⎜

⎝

0 1 0
–1 0 0
0 0 0

⎞

⎟

⎠
,

g4 =

⎛

⎜

⎝

0 0 1
0 0 0
0 0 0

⎞

⎟

⎠
, g5 =

⎛

⎜

⎝

0 0 0
0 0 1
0 0 0

⎞

⎟

⎠
,

[g1, g2] = g3, [g1, g3] = g2, [g2, g3] = –g1, [g1, g4] =
1
2

g5, [g4, g5] = 0,

[g1, g5] =
1
2

g4, [g2, g4] = –[g3, g4] =
1
2

g5, [g2, g5] =
1
2

g4, [g3, g5] =
1
2

g4,

A32 = span{f1, f2, f3, f4, f5, f6},

f1 =

(

h 0
0 h

)

, f2 =

(

f 0
0 f

)

, f3 =

(

e 0
0 e

)

,
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f4 =

(

0 h
0 0

)

, f5 =

(

0 e
0 0

)

, f6 =

(

0 f
0 0

)

,

[f1, f2] = f3, [f1, f3] = f2, [f2, f3] = f1, [f1, f4] = 0, [f1, f5] = f6,

[f1, f6] = f5, [f2, f4] = –f5, [f2, f5] = f4, [f2, f6] = 0, [f3, f4] = –f6,

[f3, f5] = 0, [f3, f6] = –f4, [f4, f5] = [f4, f6] = [f5, f6] = 0.

Denoting g̃1 = span{g1, g2, g3}, g̃2 = span{g4, g5}, it is easy to see that

A31 = g̃1 ⊕ g̃2, g̃1 ∼= A1, [g̃1, g̃2] ⊂ g̃2,

where A1 = span{h, e, f }, h = 1
2
( 1 0

0 –1

)

, e = 1
2
( 0 1

1 0

)

, f = 1
2
( 0 1

–1 0

)

.
Similarly, noting f̃1 = span{f1, f2, f3}, f̃2 = span{f4, f5, f6}, then we find

A31 = f̃1 ⊕ f̃2, f̃1 ∼= A1, [f̃1, f̃2] ⊂ f̃2.

The Lie subalgebras g̃2, f̃2, are all ideals of A31 and A31, respectively. Although the Lie
subalgebras g̃1, f̃1 are all isomorphic to the Lie algebra A1, the integrable systems obtained
by using g̃1 are different from those given by the use of f̃1. The difference between them
may be positive and negative. In the following, we can only apply the Lie algebra A32 to
investigate expanding integrable hierarchy of Eq. (11), while A31 fails because there is not
a resulting loop algebra corresponding to the loop algebra Ã1. The loop algebra Ã32 cor-
responding to the Lie algebra A32 reads

Ã32 = span
{

f1(n), . . . , f6(n)
}

,

where

f1(n) = f1λ
2n+1, f2(n) = f2λ

2n, f3(n) = f3λ
2n+1,

f4(n) = f4λ
2n+1, f5(n) = f5λ

2n+1, f6(n) = f6λ
2n, n ∈ Z,

along with the commutative relations

[

f1(m), f2(n)
]

= f3(m + n),
[

f1(m), f3(n)
]

= f2(m + n + 1),
[

f2(m), f3(n)
]

= f1(m + n),
[

f1(m), f4(n)
]

= 0,
[

f1(m), f5(n)
]

= f6(m + n + 1),
[

f1(m), f6(n)
]

= f5(m + n),
[

f2(m), f4(n)
]

= –f5(m + n),
[

f2(m), f5(n)
]

= f4(m + n),
[

f2(m), f6(n)
]

= 0,
[

f3(m), f4(n)
]

= –f6(m + n + 1),
[

f3(m), f4(n)
]

= 0,
[

f3(m), f6(n)
]

= f4(m + n),
[

f4(m), f5(n)
]

=
[

f4(m), f6(n)
]

=
[

f5(m), f6(n)
]

= 0.

3.1 An isospectral expanding integrable model
Applying the loop algebra Ã32, we introduce the two linear spectral problems

⎧

⎨

⎩

ϕt = Ūϕ, λt = 0,

Ū = f2(1) + qf3(0) + rf1(0) + u1f4(0) + u2f5(0),
(27)
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕt = V̄ϕ = (V̄1 + V̄2)ϕ,

V̄1 =
∑∞

i=0(aif1(–i) + cif2(–i) + bif3(–i) + dif4(–i) + eif5(–i) + hif6(–i)),

V̄2 =
∑∞

j=0(ājf1(–j) + c̄jf2(–j) + b̄jf3(–j) + d̄jf4(–j) + ējf5(–j) + h̄jf6(–j)).

(28)

First of all, we consider isospectral expanding integrable hierarchy corresponding to the
Guo hierarchy. In terms of the Tu scheme, we solve the following matrix equation for V1:

V̄1,x = [Ū , V̄1], (29)

which admits the recurrence relations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

aix = bi+1 – qci,

cix = –qai+1 + rbi+1,

bix = –ai+1 + rci,

dix = ei+1 – qhi – u2ci,

eix = –di+1 + rhi + u1ci,

hix = –qdi+1 + rei+1 + u1bi+1 – u2ai+1

⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ai+1 = –bix + rci,

ci = ∂–1(raix + qbix) + βi(t),

bi+1 = aix + qci,

di+1 = –eix + rhi + u1ci,

ei+1 = dix + qhi + u2ci,

hi = ∂–1(qeix + rdix + u1aix + u2bix) + γi(t).

(30)

We take initial values by

a0 = b0 = 0, c0 = β0(t)q, e0 = d0 = 0, h0 = γ0(t).

Then from Eq. (30) one infers that

a1 = β0(t)r, b1 = β0(t)q,

c1 =
1
2
β0(t)

(

q2 + r2) + β1(t),

a2 = –β0(t)qx +
1
2
β0(t)r

(

q2 + r2) + β1(t)r,

b2 = β0(t)rx +
1
2
β0(t)q

(

q2 + r2) + β1(t)q,

c2 = β0(t)(qrx – qxr) +
3
8
β0(t)

(

q2 + r2)2 +
1
2
β1(t)

(

q2 + r2),

e1 = γ0(t)q + β0(t)u2, d1 = γ0(t)r + β0(t)u1,

h1 =
1
2
γ0(t)

(

q2 + r2) + β0(t)qu2 + β0(t)ru1 + γ1(t),
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e2 = γ0(t)rx + β0(t)u1x +
1
2
γ0(t)

(

q3 + qr2) + β0(t)
(

q2u2 + qru1
)

+
1
2
β0(t)u2

(

q2 + r2)

+ γ1(t)q + β1(t)u2,

d2 = –γ0(t)qx – β0(t)u2x +
1
2
γ0(t)

(

q2r + r3) + β0(t)
(

r2u1 + qru2
)

+
1
2
β0(t)u1

(

q2 + r2)

+ γ1(t)r + β1(t)u1,

. . . .

Denoting

V̄ n
1,+ =

n
∑

i=0

(

aif1(–i) + cif2(–i) + bif3(–i) + dif4(–i) + eif5(–i) + hif6(–i)
)

λ2n = λ2nV̄ – V̄ n
1,–,

then Eq. (29) can be written as

–
(

V̄ (n)
1,+

)

x +
[

Ū , V (n)
1,+

]

=
(

V̄ (n)
1,–

)

x –
[

Ū , V (n)
1,–

]

. (31)

The gradations of the left-hand side are ≥ 0, those of the right-hand side are ≤ 1. There-
fore, we get

–
(

V (n)
1,+

)

x +
[

U , V (n)
1,+

]

= an+1f3(0) – bn+1f1(0) + (qan+1 – rbn+1)f2(0) + dn+1f5(0)

– en+1f4(0) + (qdn+1 – ren+1 – u1bn+1 + u2an+1)f6(0).

Assume that V (n)
1 = V (n)

1,+ – cnf2(0) – hnf6(0), one infers again

–
(

V̄ (n)
1

)

x +
[

Ū , V̄ (n)
1

]

= –
(

V̄ (n)
1,+

)

x +
[

Ū , V̄ (n)
1,+

]

+ cnxf2(0) +
[

Ū , –cnf2(0)
]

+ hnxf6(0)

+
[

Ū , –hnf6(0)
]

= an+1f3(0) – bn+1f1(0) + dn+1f5(0) – en+1f4(0) + qcnf1(0)

+ qhnf4(0) – rcnf3(0) – rhnf5(0) – u1cnf5(0) + u2cnf4(0)

= (–bn+1 + qcn)f1(0) + (an+1 – rcn)f3(0) + (–en+1 + u2cn + qhn)f4(0)

+ (dn+1 – u1cn – rhn)f5(0)

= –anxf1(0) – bnxf3(0) – dnxf4(0) – enxf5(0).

Hence, the zero curvature equation

Ūt – V̄ (n)
x +

[

Ū , V̄ (n)] = 0,

gives an isospectral integrable hierarchy

⎛

⎜

⎜

⎜

⎝

q
r

u1

u2

⎞

⎟

⎟

⎟

⎠

tn

=

⎛

⎜

⎜

⎜

⎝

bn

an

dn

en

⎞

⎟

⎟

⎟

⎠

x

=

⎛

⎜

⎜

⎜

⎝

∂ 0 0 0
0 ∂ 0 0
0 0 ∂ 0
0 0 0 ∂

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

bn

an

dn

en

⎞

⎟

⎟

⎟

⎠

= J̄

⎛

⎜

⎜

⎜

⎝

bn

an

dn

en

⎞

⎟

⎟

⎟

⎠

. (32)
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Taking u1 = u2 = 0, Eq. (32) reduces to the Guo hierarchy Eq. (3). Thus, Eq. (32) is its
expanding integrable hierarchy.

Case 1: when n = 1, Eq. (32) reduces to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

qt = β0(t)qx,

rt = β0(t)rx,

u1t = γ0(t)rx + β0(t)u1x,

u2t = γ0(t)qx + β0(t)u2x.

Set q = r = m, u1 = u2 = n, then we get

⎧

⎨

⎩

mt = β0(t)mx,

nt = γ0(t)mx + β0(t)nx,

which is solvable.
Case 2: when n = 2, Eq. (32) becomes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = β0(t)rxx + 1
2β0(t)(q(q2 + r2))x + β0(t)qx,

rt = –β0(t)qxx + 1
2β0(t)(r(q2 + r2))x + β1(t)rx,

u1t = –γ0(t)qxx – β0(t)u2xx + 1
2γ0(t)(q2r + r3)x + β0(t)(qru2 + r2u1)x

+ 1
2β0(t)(u1(q2 + r2))x + γ1(t)rx + β1(t)u1x,

u2t = γ0(t)rxx + β0(t)u1xx + 1
2γ0(t)(q3 + qr2)x + β0(t)(q2u2 + rqu1)x

+ 1
2β0(t)(u2(q2 + r2))x + γ1(t)qx + β1(t)u2x.

(33)

Let β0(t) = 2, β1(t) = 0, γ0(t) = 2, γ1(t) = 0. Equation (33) turns to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

qt = 2rxx + (q(q2 + r2))x,

rt = –2qxx + (r(q2 + r2))x,

u1t = –2qxx – 2u2xx + (q2r + r3)x + 2(qru2 + r2u1)x + (u1(q2 + r2))x,

u2t = 2rxx + 2u1xx + (q3 + qr2)x + 2(q2u2 + qru1)x + (u2(q2 + r2))x,

(34)

which is obviously an expanding integrable model of Eq. (18). Specially, set q = r = 0,
Eq. (34) reduces to

vtt = –4vxxxx,

which is a special Boussinesq equation, here v = u2. If q = r = 1, Eq. (34) becomes a linear
integrable system

⎧

⎨

⎩

u1,t = –2u2,xx + 4u1,x + 2u2,x,

u2,t = 2u1,xx + 2u1,x + 4u2,x.
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3.2 A nonisospectral integrable model
Setting λt =

∑

j≥0 kj(t)λ1–2j, and solving the equation for V2,

V̄2,x = [Ū , V̄2] +
∂Ū
∂λ

λt ,

we have
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ājx = b̄j+1 – qc̄j + kj(t)r,

c̄jx = –qāj+1 + rb̄j+1 + 2kj+1(t),

b̄jx = –āj+1 + rc̄j + kj(t)q,

d̄jx = ēj+1 – qh̄j – u2c̄j + kj(t)u1,

ējx = –d̄j+1 + rh̄j + u1c̄j + kj(t)u2,

h̄jx = –qd̄j+1 + rēj+1 + u1b̄j+1 – u2āj+1,

(35)

from which we get

c̄j = ∂–1(qb̄jx + rājx) – kj(t)∂–1(q2 + r2) + 2kj+1(t)x,

h̄j = ∂–1(qējx + rd̄jx) + u1ājx + u2b̄jx) – 2kj(t)∂–1(ru1 + qu2) + αj(t).

Taking ā0 = b̄0 = ē0 = d̄0 = 0, one infers from Eq. (35) that

c̄0 = –k0(t)∂–1(q2 + r2) + 2k1(t)x,

h̄0 = –2k0(t)∂–1(ru1 + qu2) + α0(t),

ā1 = –k0(t)r∂–1(q2 + r2) + 2k1(t)xr + k0(t)q,

b̄1 = –k0(t)q∂–1(q2 + r2) + 2k1(t)xq – k0(t)r,

ē1 = –2k0(t)q∂–1(ru1 + qu2) + α0(t)q – k0(t)u2∂
–1(q2 + r2) + 2k1(t)xu2 – k0(t)u1,

d̄1 = –2k0(t)r∂–1(ru1 + qu2) + α0(t)r – k0(t)u1∂
–1(q2 + r2) + 2k1(t)xu1 + k0(t)u2,

h̄1 = –k0(t)
(

q2 + r2)∂–1(ru1 + qu2) – k0(t)(ru1 + qu2)∂–1(q2 + r2) + 2k1(t)x(ru1 + qu2)

+ k0(t)∂–1(u1qx – qu1x + ru2x – u2rx) +
α0(t)

2
(

q2 + r2) + α1(t),

. . . .

Assume

V̄ (m)
2,+ =

m
∑

j=0

(

ājf1(m – j) + c̄jf2(m – j) + b̄jf3(m – j) + d̄jf4(m – j) + ējf5(m – j)

+ h̄jf6(m – j)
)

= λ2mV̄2 – V̄ (m)
2,– ,

λ
(m)
t,+ =

m
∑

j=0

kj(t)λ2m–2j+1 = λ2mλt – λ
(m)
t,– ,
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then we can compute that

–
(

V̄ (m)
2,+

)

x +
[

Ū , V̄ (m)
2,+

]

+
∂Ū
∂λ

λ
(m)
t,+

=
(

V̄ (m)
2,–

)

x –
[

Ū , V̄ (m)
2,–

]

–
∂Ū
∂λ

λ
(m)
t,–

= ām+1f3(0) – b̄m+1f1(0) + d̄m+1f5(0) – ēm+1f4(0) + qām+1f2(0) + qd̄m+1f6(0)

– rb̄m+1f2(0) – rēm+1f6(0) – u1b̄m+1f6(0) + u2ām+1f6(0) – 2km+1(t)f2(0).

Denoting V̄ (m)
2 = V̄ (m)

2,+ – c̄mf2(0) – h̄mf6(0), a direct calculation yields

–V̄ (m)
2 +

[

Ū , V̄ (m)
2

]

+
∂Ū
∂λ

λ
(m)
t,+ = –āmxf1(0) – b̄mxf3(0) – d̄mxf4(0) – ēmxf5(0).

The zero curvature equation

∂Ū
∂u

ut +
∂Ū
∂λ

λ
(m)
t,+ – V̄ (m)

2,x +
[

Ū , V̄ (m)
2

]

= 0, (36)

leads to the isospectral integrable hierarchy

⎛

⎜

⎜

⎜

⎝

q
r

u1

u2

⎞

⎟

⎟

⎟

⎠

tm

=

⎛

⎜

⎜

⎜

⎝

b̄mx

āmx

d̄mx

ēmx

⎞

⎟

⎟

⎟

⎠

= J̄

⎛

⎜

⎜

⎜

⎝

b̄m

ām

d̄m

ēm

⎞

⎟

⎟

⎟

⎠

. (37)

Taking u1 = u2 = 0, Eq. (37) reduces to the isospectral integrable hierarchy Eq. (26) (the
case Pn–1(φ) = 0 in Eq. (26).

When n = 1, Eq. (37) turns to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –k0(t)(q∂–1(q2 + r2))x + 2k1(t)(xq)x – k0(t)rx,

rt = –k0(t)(r∂–1(q2 + r2))x + 2k1(t)(xr)x + k0(t)qx,

u1t = –2k0(t)(r∂–1(ru1 + qu2))x + α0(t)rx – k0(t)(u1∂
–1(q2 + r2))x

+ 2k1(t)(xu1)x + k0(t)u2x,

u2t = –2k0(t)(q∂–1(ru1 + qu2))x + α0(t)qx – k0(t)(u2∂
–1(q2 + r2))x

+ 2k1(t)(xu2)x – k0(t)u1x.

(38)

Let q2 + r2 = ρx, ru1 + qu2 = σx, then Eq. (38) becomes a nonlocal expanding integrable
model of Eq. (13):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

qt = –k0(t)(qρ)x + 2k1(t)(xq)x – k0(t)rx,

rt = –k0(t)(rρ)x + 2k1(t)(xr)x + k0(t)qx,

u1t = –2k0(t)(rσ )x + α0(t)rx – k0(t)(u1ρ)x + 2k1(t)(xu1)x + k0(t)u2x,

u2t = –2k0(t)(qσ )x + α0(t)qx – k0(t)(u2σ )x + 2k1(t)(xu2)x – k0(t)u1x.

For the Cauchy problem, blow-up phenomena could be investigated according to the
method in [29], we shall consider the problem in another paper.
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4 A Bäcklund transformation
Tian and Zhang [30] once discussed the Bäcklund transformations of the AKNS hierarchy
of evolution equations. The so-called Bäcklund transformation means a map from a solu-
tion of an equation to another solution of the same equation or another equation. In the
isospectral case it is an auto-Bäcklund transformation, but in the nonisospectral case it is
not an auto-Bäcklund transformation. It is easy to find the spectral matrix of the AKNS
hierarchy to be

U1 =

(

–iλ q
r iλ

)

,

while that of the Guo hierarchy is

U2 =
1
2

(

λr λ2 + λq
–λ2 + λq –λr

)

.

U2 is more complicated than U1. Therefore, we could conclude the Bäcklund transfor-
mations of the isospectral and the nonisospectral Guo hierarchies have more tedious and
complicated forms than those of the AKNS hierarchy. In the section, we only investigate
the Bäcklund transformation of the isospectral Guo hierarchy. As for the nonisospectral
case, we do not further discuss it again.

Denoting ϕ1 = (ϕ11,ϕ12), ϕ2 = (ϕ21,ϕ22), Eq. (1) can be written as

⎧

⎨

⎩

ϕ1x = 1
2λrϕ1 + 1

2 (λ2 + λq)ϕ2,

ϕ2x = – 1
2λrϕ2 + 1

2 (–λ2 + λq)ϕ1.
(39)

Equation (2) can be given again by

(

ϕ1t

ϕ2t

)

=

(

An Bn

Cn –An

)(

ϕ1

ϕ2

)

, (40)

where

An =
1
2

n
∑

i=0

aiλ
2n–2i+1,

Bn =
1
2

n
∑

i=0

(biλ + ci)λ2n–2i+1 –
1
2

cn,

Cn = ∂–1(rAnx + qBnx).

We define an inner product in real-number space R2 : ∀a = (a1, a2)T , b = (b1, b2)T ∈ R2,
〈a, b〉 = aT b = (a1b1 + a2b2). When investigating the conservation laws of some integrable
hierarchy of evolution equations, we usually suppose that Γ = ϕ2

ϕ1
(see [22]). Here we want

to seek a Bäcklund transformation of integrable hierarchies, so a transform between Lax
pairs of linear spectral problem of integrable hierarchies and Lax pairs in Riccati forms is
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established as follows:

ξj =
vjϕ

T
2

vjϕ
T
1

=:
(μj, vj)ϕT

2

(μj, vj)ϕT
1

=
μjϕ21(x, t,λj) + vjϕ22(x, t,λj)
μjϕ11(x, t,λj) + vjϕ12(x, t,λj)

, j = 1, 2, (41)

where λi �= λj, when i �= j, |μj| + |vj| �= 0.

Remark 2 Applying the idea we could get a transform like Eq. (41) when spectral matrices
are of high orders, such as 3 × 3 matrices and 4 × 4 matrices.

Hence, we find

ξix =
1
2
(

–λ2 + λq
)

– λrξj –
1
2
(

λ2 + λq
)

ξ 2
j . (42)

Similarly, the linear spectral problem Eq. (40) can lead to

ξjt =
ϕ2t

ϕ1
–

ϕ2

ϕ1

ϕ1t

ϕ1
= Cn – 2Anξj – Bnξ

2
j . (43)

Note that f = 1
λ1λ2(ξ2

2 –ξ2
1 ) , g = 1

λ1λ2(ξ2–ξ1)(1+ξ1ξ2) .
Define

T =

(

f [2λ2∂ + 2λ1λ2(r + (λ1 + q)ξ1)] –2f [λ1∂ + λ1λ2(r + (λ2 + q)ξ1)]
g(1 – ξ 2

2 )[λ2∂ + λ1λ2(r + (λ1 + q)ξ1)] –g(1 – ξ 2
1 )[λ1∂ + λ1λ2(r + (λ2 + q)ξ2)]

)

,

after tedious computation we have

(

qx

rx

)

= T

(

ξ1x

ξ2x

)

. (44)

It is easy to see that

T

(

ξ1t

ξ2t

)

=

(

A
B

)

, (45)

where

A = f
[

2λ2ξ1xt + 2λ1λ2rξ1t + 2λ1λ2(λ1 + q)ξ1ξ1t – 2λ1ξ2tx – 2λ1λ2rξ2t

– 2λ1λ2(λ2 + q)ξ2ξ2t
]

,

B = g
(

1 – ξ 2
2
)[

λ2ξ1tx + λ1λ2ξ1t + λ1λ2(λ1 + q)ξ1ξ1t
]

– g
(

1 – ξ 2
1
)[

λ1ξ2tx + λ1λ2rξ2t + λ1λ2(λ2 + q)ξ2ξ2t
]

.

Since

ξ1xt =
1
2
λ1qt – λ1rtξ1 – λ1rξ1t –

1
2
λ1qtξ

2
1 –

(

λ2
1 + λ1q

)

ξ1ξ1t ,

ξ2xt =
1
2
λ2qt – λ2rtξ2 – λ2rξ2t –

1
2
λ2qtξ

2
2 –

(

λ2
2 + λ2q

)

ξ2ξ2t ,
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substituting them into A and B, we have

A = qt +
2

ξ1 + ξ2
rt , B =

1 – ξ 2
2

1 + ξ1ξ2

[

rt +
1
2

(ξ1 + ξ2)qt

]

.

Therefore, Eq. (45) can be written as

T

(

ξ1t

ξ2t

)

=

(

1 2
ξ1+ξ2

(ξ1+ξ2)(1–ξ2
2 )

1+ξ1ξ2

1–ξ2
2

1+ξ1ξ2

)(

qt

rt

)

. (46)

Obviously,

det

(

1 2
ξ1+ξ2

(ξ1+ξ2)(1–ξ2
2 )

1+ξ1ξ2

1–ξ2
2

1+ξ1ξ2

)

=
ξ 2

2 – 1
1 + ξ1ξ2

�= 0 (ξ2 �= ±1).

Hence, when ξ2 �= ±1, we find that

(

qt

rt

)

=

(

1 2
ξ1+ξ2

(ξ1+ξ2)(1–ξ2
2 )

1+ξ1ξ2

1–ξ2
2

1+ξ1ξ2

)–1

T

(

ξ1t

ξ2t

)

=: T̃

(

ξ1t

ξ2t

)

, (47)

where

T̃ =

(

1 2
ξ1+ξ2

(ξ1+ξ2)(1–ξ2
2 )

1+ξ1ξ2

1–ξ2
2

1+ξ1ξ2

)–1

T =

⎛

⎝

1 – 2+2ξ1ξ2
(ξ1+ξ2)(ξ2

2 –1)

–ξ1 – ξ2
1+ξ1ξ2
ξ2

2 –1

⎞

⎠T .

From Eq. (40), one has

(

Bn

An

)

=
1
2

n
∑

i=0

(

bi

ai

)

λ2n–2i+1 +
1
2

n
∑

i=0

(

∂–1q∂ 0
0 ∂–1r∂

)(

bi

ai

)

λ2n–2i

–
1
2

n
∑

i=0

(

∂–1q∂ 0
0 ∂–1r∂

)(

bn

an

)

=
1
2
λ2n

n
∑

i=0

λ1–2iLi–1J–1

(

qx

rx

)

+
1
2
λ2n

n
∑

i=0

λ–2i

(

∂–1q∂ 0
0 ∂–1r∂

)

Li–1J–1

(

qx

rx

)

–
1
2

(

∂–1q∂ 0
0 ∂–1r∂

)

Ln–1J–1

(

qx

rx

)

.

Denote

1
2

Li–1J–1 =:

(

φ1 φ2

φ3 φ4

)

,
1
2

Ln–1J–1 =

(

ϕ1 ϕ2

ϕ3 ϕ4

)

,

then we get

(

Bn

An

)

=
n

∑

i=0

λ2n–2i+1

(

φ1qx + φ2rx

φ3qx + φ4rx

)

+
n

∑

i=0

λ2n–2i

(

∂–1q∂ 0
0 ∂–1r∂

)(

φ1qx + φ2rx

φ3qx + φ4rx

)
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–
1
2

(

∂–1q∂ 0
0 ∂–1r∂

)(

ϕ1qx + ϕ2rx

ϕ3qx + ϕ4rx

)

,

from which one gets

An =
n

∑

i=0

λ2n–2i+1(φ3qx + φ4rx) +
n

∑

i=0

λ2n–2i∂–1r∂(φ3qx + φ4rx) –
1
2
∂–1r∂(ϕ3qx + ϕ4rx),

Bn =
n

∑

i=0

λ2n–2i+1(φ1qx + φ2rx) +
n

∑

i=0

λ2n–2i∂–1q∂(φ1qx + φ2rx) –
1
2
∂–1q∂(ϕ1qx + ϕ2rx).

Hence, we infer
(

Cn(λ1) – 2An(λ1)ξ1 – Bn(λ1)ξ 2
1

Cn(λ2) – 2An(λ2)ξ2 – Bn(λ2)ξ 2
2

)

=

(

(∂–1r∂ – 2ξ1)An(λ1) + (∂–1q∂ – ξ 2
1 )Bn(λ1)

(∂–1r∂ – 2ξ2)An(λ2) + (∂–1q∂ – ξ 2
2 )Bn(λ2)

)

=
n

∑

i=0

(

(∂–1q∂ – ξ 2
1 )λ2n–2i

1 (λ1 + ∂–1q∂) (∂–1r∂ – 2ξ1)λ2n–2i
1 (λ1 + ∂–1r∂)

(∂–1q∂ – ξ 2
2 )λ2n–2i

2 (λ2 + ∂–1q∂) (∂–1r∂ – 2ξ2)λ2n–2i
2 (λ2 + ∂–1r∂)

)

× Li–1J–1

(

qx

rx

)

–
1
2

(

(∂–1q∂ – ξ 2
1 )∂–1q∂ (∂–1r∂ – 2ξ1)∂–1r∂

(∂–1q∂ – ξ 2
2 )∂–1q∂ (∂–1r∂ – 2ξ2)∂–1r∂

)

Ln–1J–1

(

qx

rx

)

.

Thus, Eq. (47) can be written as

(

qt

rt

)

=

⎛

⎝

1 – 2+2ξ1ξ2
(ξ1+ξ2)(ξ2

2 –1)

–ξ1 – ξ2
1+ξ1ξ2
ξ2

2 –1

⎞

⎠T

×
[ n
∑

i=0

(

(∂–1q∂ – ξ 2
1 )λ2n–2i

1 (λ1 + ∂–1q∂) (∂–1r∂ – 2ξ1)λ2n–2i
1 (λ1 + ∂–1r∂)

(∂–1q∂ – ξ 2
2 )λ2n–2i

2 (λ2 + ∂–1q∂) (∂–1r∂ – 2ξ2)λ2n–2i
2 (λ2 + ∂–1r∂)

)

× Li–1

(

q
r

)

–
1
2

(

(∂–1q∂ – ξ 2
1 )∂–1q∂ (∂–1r∂ – 2ξ1)∂–1r∂

(∂–1q∂ – ξ 2
2 )∂–1q∂ (∂–1r∂ – 2ξ2)∂–1r∂

)

Ln–1

(

q
r

)]

. (48)

Equation (47) indicates that the Guo hierarchy can be expressed by the solutions of the
Lax pairs in the Riccati forms.

Applying the Riccati equation (43), we define a pair of new variables q̄, r̄ which satisfy
the following equations:

⎧

⎨

⎩

ξ1x = 1
2 (–λ2

2 + λ2q̄ – λ2r̄ξ1 – 1
2 (λ2

2 + λ2q̄)ξ 2
1 ,

ξ2x = 1
2 (–λ2

1 + λ1q̄ – λ1r̄ξ2 – 1
2 (λ2

1 + λ1q̄)ξ 2
2 ,

from which we can solve q̄, r̄ given by

q̄ =
λ2

1 – λ2
2 + λ2

2ξ
2
2 – λ2

1ξ
2
1

λ2λ1(ξ 2
2 – ξ 2

1 )
q +

2(λ2
2ξ2 – λ2

1ξ1)
λ2λ1(ξ 2

2 – ξ 2
1 )

r +
λ3

2 – λ3
1 + λ3

2ξ
2
2 – λ3

1ξ
2
1

λ2λ1(ξ 2
2 – ξ 2

1 )
, (49)
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r̄ =
(1 – ξ 2

1 )(1 – ξ 2
2 )(λ2

1 – λ2
2)

2λ2λ1(ξ2 – ξ1)(1 + ξ1ξ2)
q +

2λ2
2ξ2(1 – ξ 2

1 ) – 2λ2
1ξ1(1 – ξ 2

2 )
2λ2λ1(ξ2 – ξ1)(1 + ξ1ξ2)

r

+
λ3

2(1 – ξ 2
1 )(1 + ξ 2

2 ) – λ3
1(1 + ξ 2

1 )(1 – ξ 2
2 )

2λ2λ1(ξ2 – ξ1)(1 + ξ2ξ1)
. (50)

Similar to the steps in [30], we can verify that Eq. (49), Eq. (50) is a set of solutions of the
Guo hierarchy, here we omit the detailed computations due to the rather tedious calcula-
tions.

5 Discussion on the conserved densities of the integrable system of
equations (18)

In this section, we only take the obtained integrable system of equations (18) as an ex-
ample to illustrate how to generate conserved densities. Actually, we have obtained many
integrable equations by the reduction of the hierarchy Eq. (11). By applying the analogous
method we could work out their resulting conserved densities via the approach in [31].

For the partial differential system

ui,t + Fi
(

uj, u(1)
j , . . . , u(n)

j
)

= 0, i = 1, . . . , N ; j = 1, . . . , N . (51)

Step 1: Determine the weights of variables and parameters.
We define the weight of a variable as the number of partial derivatives with respect to x

the variable carries, and the rank of a term as the total weight in terms of partial derivatives
with respect to x.

(i) Take the ith equation in Eq. (51) and denote the number of terms in the equation
by Ki.

(ii) Compute the rank ri,k of the kth term in the ith equation

ri,k = d(x) + d(t)w(∂t) +
N

∑

j=1

g(uj)w(uj) +
p

∑

j=1

g(pj)w(pj), k = 1, . . . , Ki,

where g returns the degree of nonlinearity of its argument, d returns the number of
partial derivatives with respect to its argument.

(iii) Assume uniformity in rank in the ith equation, form the linear system

Ai = {ri,1 = ri,2 = · · · = ri,ki}.

(iv) Gather the equations Ai to form the global linear system A =
⋃N

i=1 Ai.
Step 2: Construct the form of the density.
Let v = {v1, v2, . . . , va} be the sorted list of all the variables with positive weights, but

excluding ∂t .
Form all monomials of rank R or less by taking combinations of the variables in ν . Set

B0 = {(1; 0)}. For 1 ≤ q ≤ Q, we begin to compute the pair {Tq,s; Wq,s} in terms of the for-
mula

Tq,s = Tq–1,mvs
q, Wq,s = Wq–1,m + sw(vq).
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Denote Bq,m =
⋃bq,m

s=0 {(Tq,s; Wq,s)}, where bq,m = [[ R–Wq–1,m
w(vq) ]], Bq =

⋃M–1
m=0 Bq,m, here M is the

number of pairs in Bq–1. We apply ∂ l

∂xl to the term TQ,S , provided l = R – WQ,S is integer.
Then remove the terms from Bq that can be written as a total derivative with respect to x,
or as a derivative up to terms kept prior in the set. Call the resulting set I . Finally, set ρ =
∑μ

i=1 ciI(i), where I(i) denotes the ith element in I , and ci are constants to be determined.
Step 3: Determine the unknown coefficients in the density ρ .
Recall the conservation law:

Dtρ + DxJ = 0, (52)

J is called the flux, and ρ is the conserved density. Equation (52) indicates that Dtρ =
Dx(–J). Hence, we first compute Dtρ and replace all (ui,t)j, i = 0, 1, . . . , N , j = 0, 1, 2, . . . ,
using the evolution equations (51). The resulting expression, denoted by E, must equal
Dx(–J) for some function J . Next, apply the Euler operator to E to get a linear system for
the coefficients ci denoted by S. Solving S for the ci yields the corresponding conserved
densities.

In what follows, we consider the formats of conserved densities of Eq. (18) based on the
above approach. It is easy to see that

r1,1 = w(q) + w(∂t), r1,2 = 2 + w(r), r1,3 = 1 + 3w(q), r2,3 = 1 + 3w(r);

r1,4 = 1 + w(q) + 2w(r), r2,1 = w(r) + w(∂t), r2,2 = 2 + w(q),

r2,4 = 1 + w(r) + 2w(q).

Set r1,1 = r1,2 = r1,3 = r1,4, r2,1 = r2,2 = r2,3 = r2,4, we have w(q) = w(r) = 1
2 , w(∂t) = 2.

Remark 3 In the paper [31], the conserved densities of partial differential equations along
with the integer number weights are investigated. As for the case of the rational number
weights, there are no examples to give a detailed analysis. For the integrable system of
equations (18), the weights of q and r are all a rational number, 1

2 , hence we have to face the
difficulty of how to find the conserved densities of Eq. (18). Multiplying the first equation
in Eq. (25) by r, and multiplying the second equation by q, then adding them together, we
find that

(

q2 + r2)

t =
(

4(qrx – qxr) + 3
(

q2 + r2)2)

x,

which indicates that q2 + r2 is a conserved density. In terms of this fact we want to search
for the conserved density of Eq. (18) with weight being 1. Take v = {u = q2, v2 = r2, v3 = qr},
B0 = {(1; 0)}. Let us consider the case where rank R = 4.

For q = 1, m = 0 (here q is not that in Eq. (18): b1,0 = [[ 4–0
1 ]] = 4, T1,s = vs

1, W1,s = sw(v1) = s,
where s = 0, 1, 2, 3, 4. We obtain B1 = B1,0 = {(1; 0), (q2; 1), (q4; 2), (q6; 3), (q8; 4)}.

For q = 2, m = 0 : b2,0 = [[ 4–W1,4
1 ]] = 4, T2,s = r2s, W2,s = W1,0 + sw(v2) = s, here s =

0, 1, 2, 3, 4. we have B2,0 = {(1; 0), (r2; 1), (r4; 2), (r6; 3), (r8; 4)}.
For q = 2, m = 1 : b2,1 = [[ 4–W1,1

1 ]] = 3, T2,s = T1,1vs
2 = q2r2s, W2,s = W1,1 + s = 1 + s, where

s = 0, 1, 2, 3. Thus, we get B2,1 = {(q2; 1), (q2r2; 2), (q2r4; 3), (q2r6; 4)}.
For q = 2, m = 2 : b2,2 = [[ 4–W1,2

1 ]] = 2, T2,s = T1,2vs
2 = q4r2s, W2,s = W1,2 + s = 2 + s, here

s = 0, 1, 2. We obtain B2,2 = {(q4; 2), (q4r2; 3), (q4r4; 4)}.
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For q = 2, m = 3 : b2,3 = [[ 4–3
1 ]] = 1, where s = 0, 1, T2,s = q6r2s, W2,s = W1,3 + s = 3 + s, we

have B2,3 = {(q6; 3), (q6r2; 4)}.
For q = 2, m = 4 : b2,4 = 0, T2,s = T1,4vs

2 = q8vs
2, W2,s = 4 + s, here s = 0. Thus, one has

B2,4 = {(q8; 4)}.
Hence, B2 = {(1; 0), (q2; 1), (q4; 2), (q6; 3), (q8; 4), (r2; 1), (r4; 2), (r6; 3), (r8; 4), (q6r2; 4), (q2r2;

2), (q2r4; 3), (q2r6; 4), (q4r2; 3), (q4r4; 4)}.
For q = 3, m = 0 : b3,0 = [[ 4–W2,0

w(v3) ]] = 4, T3,s = T2,0vs
3 = (qr)s, W3,s = W2,0 + sw(v3) = s, where

s = 0, 1, 2, 3, 4. So B3,0 = {(1; 0), (qr; 1), (q2r2; 2), (q3r3; 3), (q4r4; 4)}.
For q = 3, m = 1 : b3,1 = [[ 4–W2,1

1 ]] = 2, T3,s = T2,1vs
3 = q2r2(qr)s, W3,s = W2,1 + s = 2 + s,

where s = 0, 1, 2. Hence, B3,1 = {(q2r2; 2), (q3r3; 3), (q4r4; 4)}.
For q = 3, m = 2 : b3,2 = [[ 4–W2,2

1 ]] = 2, T3,s = T2,2vs
3 = q4r4(qr)s, W3,s = W2,2 + s = 4 + s,

s = 0, 1, 2. Thus, we get B3,2 = {(q4r4; 4)}.
As for s = 1, 2 and q = 3, m = 3, . . . , 14, we would obtain the same pairs as the previous

cases. Therefore, we have

B3 = G = B0 ∪B2 ∪ {B3,0 ∪ B3,1 ∪ B2,2}
=

{

(1; 0),
(

q2; 1
)

,
(

q4; 2
)

,
(

q6; 3
)

,
(

q8; 4
)

,
(

r2; 1
)

,
(

r4; 2
)

,
(

r6; 3
)

,
(

r8; 4
)

,
(

q6r2; 4
)

,
(

q2r2; 2
)

,
(

q2r4; 3
)

,
(

q2r6; 4
)

,
(

q4r2; 3
)

,
(

q4r4; 4
)

,
(

q3r3; 3
)}

.

Next, we apply derivatives to the first components of the pairs in G . Computation of l for
each pair of G leaves us with

l = 4, 3, 2, 1, 0, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0.

Gathering the terms that come from applying the indicated number l of partial derivatives
with respect to x gives

H =
{

0, qxqxx, qqxxx, q2q2
x , q3qxx, q5qx, q8, rxrxx, rrxxx, r2rx, r3rxx, r5rx, r8, q6r2,

q2
xr2, qqxxr2, qqxrrx, q2r2

x , q2rrxx, qqxr4, q2r3rx, q2r6, q3qxr2, q4rrx, q4r4}.

Removing from H the constant terms, the terms that can be written as a x-derivative or
as a x-derivative up to terms retained earlier in the set I , yields

I =
{

qqxxx, q3qxx, q2q2
x , q8, rrxxx, r2r2

x , r3rxx, r8, q6r2, q2
xr2, qqxrrx, q2r2

x ,

q2r3rx, q2r6, q3qxr2, q4r4}.

Let the form of the density with rank 4 be the following:

ρ = c1qqxxx + c2q3qxx + c3q8 + c4rrxxx + c5r3rxx + c6r8 + c7q6r2 + c8q2
xr2 + c9qqxrrx

+ c10q2r2
x + c11q2r3rx + c12q2r6 + c13q3qxr2 + c14q4r4 + c15q2q2

x + c16r2r2
x ,

where ci = (i = 1, . . . , 16) are constants to be determined. Computation of Dtρ and replac-
ing qj

t , rj
t (j = 0, 1, 2, 3) by using Eq. (18) yield the function

E =
(

2c2q3 + 2c1q2r + c4q2r + 3c4r3)rxxxx +
(

3c1q3 + c1qr2 + 2c4qr2 – 2c5r3)qxxxx
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+
(

2c2q4r + 2c13q3r2 + c5q2r3 + 3c5r5 + 4c15q2qx + 8c1q2rx + c4q2rx + 8c1qqxr

+ 10c4qqxr + 2c9qrrx + 4c8qxr2 + 27c4r2rx – 2c4qxx
)

rxxx +
(

3c2q5 + c2q3r2

– 2c11q2r3 + 2c5qr4 + 27c1q2qx – 4c10q2rx – 2c9qqxr + 10c1qrrx + 8c4qrrx + c1qxr2

+ 8c4qxr2 – 4c16r2rx + 2c1rxx
)

qxxx +
(

6c1q2 + 18c4r2)r2
xx +

(

16c3q7 +
(

6c2q2

+ 12c1qr + 12c4qr – 6c5r2)qxx + 4c15q3qx + 6c2q3qxr + c9q3qxr + 6c13q2qxr2

+ 6c10q2r2rx + 2c16q2r2rx + 3c5q2r2rx + 2c9q2r2rx + 12c5qqxr3 + 4c8qqxr3

+ 3c9qxr3 + 4c11qr3rx + 24c1qqxrx + 2c9qxrrx + 12c7q5r2 + c11q4r3 + 2c13q4r3

+ 8c14q3r4 + 3c11q2r5 + 4c12qr6 + 2c10q4rx + 6c2q4rx + 6c16r4rx + 27c5r4rx

+ 4c15qq2
x + 4c10qr2

x + 12c4rq2
x + 36c4rr2

x
)

rxx +
(

18c1q2 + 6c4r2)q2
xx +

(

–4c13q3qxr

+ 4c10q3rrx + 12c2q3rrx + 3c9q3rrx + 2c15q2qxr2 + 3c2q2qxr2 + 6c8q2qxr2

+ 2c9q2qxr2 – 6c11q2r2rx + 4c16qr3rx + 6c5qr3rx + c9qr3rx – 2c9qqxrx – 16c6r7

– 4c7q6r + 3c13q5r2 – 8c14q4r3 + 2c11q3r4 + c13q3r4 – 12c12q2r5 + 6c15q4qx

+ 27c2q4qx + 6c5qxr4 + 2c8r4qx + 36c1qq2
x + 12c1qr2

x – 4c8q2
xr – 4c16r2

xr

+ 24qxrrxc4
)

qxx + 16c11q3qxr3rx + 16c13q3qxr3rx + 15c9q2q2
xrrx + 15c9qqxr2r2

x

+ 2c11qqxr5rx + 2c13q5qxrrx + 4c10q2q2
xrrx + 12c16qxr2r2

x + 4c8qqxr2r2
x

+ 12c15q2q2
xrrx + 2c10qqxr2r2

x + 2c8q2q2
xrrx + 24c6r9rx + 24c3q9qx + 6c5r3r3

x

+ 6c2q3q3
x + 18c16r3r3

x + 18c15q3q3
x + 19c13q4q2

xr2 + 2c13q4r2r2
x + 8c6q2r7rx

+ 16c6qqxr8c6 + 16c3q8rrx + 8c3q7qxr2 + 6c5q2
xr3rx + 6c2q3qxr2

x + 14c10q3qxr2
x

+ 16c10q2rr3
x + 6c12q4r5rx + 18c12q3qxr6 + 22c12q2r7rx + 2c9q2rr3

x + c9q2
xr3rx

+ c9q3qxr2
x + 2c9qq3

xr2 + 3c13q2q2
xr4 + 3c13q2q2

xr4 + 3c11q4r2r2
x + 4c14q6r3rx

+ 20c14q4r5rx + 4c16q2
xr3rx + 2c16q2rr3

x + 16c8qq3
xr2 + 14c8q2

xr3rx + 4c15q3qxr2
x

+ 22c7q7qxr2 + 18c7q6r3rx + 6c7q5qxr4 + 4c14q3qxr6 + 2c15qq3
xr2 + 2c7q8rrx

+ 2c11q2q2
xr4 + 19c11q2r4r2

x – 2c4qxxxxxr + 2c1qrxxxxx. (53)

Solving the following equations by Maple,

δE
δq

= 0,
δE
δr

= 0, (54)

gives c3 = c6 = c7 = c8 = c9 = c10 = c11 = c12 = c13 = c14 = 0, c16 = 3c5, c15 = 3c2, and c1, c2, c4,
c5 are arbitrary constants. Thus, we obtain the conserved densities, except for q, r,

ρ1 = c1qqxxx + c4rrxxx,

ρ2 = c5r3rxx + 3c5r2r2
x ,

ρ3 = c2q3qxx + 3c2q2q2
x ,
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where δ
δu = ∂

∂u – Dx
∂

∂ux
+ D2

x
∂

∂uxx
– · · · . As for rank R = 5, 6, . . . , we can analogously calculate

the resulting conserved densities of the heat integrable system Eq. (18).

6 Conclusion and discussion
In the paper, we expanded the Guo hierarchy with the help of enlarged loop algebras.
As a result, we obtained the isospectral and nonisospectral expanding integrable models,
which reduced the linear heat equations and a type of generalized Camassa–Holm equa-
tion which was once obtained by Chang, Hu and Li. By converting the usual Lax pair of the
Guo hierarchy into the Lax pair in Riccati forms, the Bäcklund transformation of the Guo
hierarchy was singled out. In addition, we investigated the format of conserved densities
of a reduced integrable nonlinear system when rank R = 4, from which one could deduce
other conserved densities when rank R = 5, 6, . . . . This approach can extend to other inte-
grable systems, which indicates it has extensively applicable in integrable system theory.
Arqub [32, 33] applied the generalized Taylor series formula in the Caputo sense to present
the solution of the time-fractional Schrödinger equation. He also considered the solu-
tions of systems of first-order, two-point boundary value problems for ODEs. In Ref. [34],
he presented a kernel algorithm for obtaining the numerical solutions of fractional-order
systems of Dirichlet function types. Meanwhile, Riza et al. [35, 36] discussed the heat and
mass transfer for MHD Oldroyd-B fluid and Maxwell fluid in view of local and nonlocal
differential operators. In the forthcoming days, we would like to apply the generalized Tu
scheme to further seek new nonisospectral integrable systems and some resulting prop-
erties. Besides, we also consider whether we are able to generalize the method presented
in the paper to the fractional-order differential equations in terms of the ideas showed in
Refs. [32–36].
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