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Abstract
We introduce a new iterative method for finding a common element of the set of
fixed points of pseudo-contractive mapping, the set of solutions to a variational
inclusion and the set of solutions to a generalized equilibrium problem in a real
Hilbert space. We provide some results about strongly and weakly convergent of the
iterative scheme sequence to a point p ∈ Ω which is the unique solution of a
variational inequality, where Ω is an intersection of set as given by
Ω = F(S)∩ (A + B)–1(0)∩N–1(0)∩GEP(F,M) �= ∅. This gives us a common solution. Also,
We show that our results extend some published recent results in this field. Finally, we
provide an example to illustrate our main result.
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Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively, C a nonempty, closed and convex subset of H . Recall that a mapping S : C →
C is said to be pseudo-contractive if and only if ‖Su – Sv‖2 ≤ ‖u – v‖2 +‖(I – S)u – (I – S)v‖2

for all u, v ∈ C. Equivalently, 〈u–v, Su–Sv〉 ≤ ‖u–v‖2 for all u, v ∈ C. A mapping S : C → C
is said to be k-strictly pseudo-contractive if and only if there exists 0 ≤ k < 1 such that
‖Su – Sv‖2 ≤ ‖u – v‖2 + k‖(I – S)u – (I – S)v‖2 for all u, v ∈ C. Equivalently, 〈u – v, Su – Sv〉 ≤
‖u – v‖2 – k‖(I – S)u – (I – S)v‖2 for all u, v ∈ C. A mapping L-Lipschitz if there exists L ≥ 0
such that ‖Su – Sv‖ ≤ L‖u – v‖ for all u, v ∈ C. The mapping S is called nonexpansive
if L = 1 and is called contractive if L < 1. A mapping S is called firmly nonexpansive if
‖Su – Sv‖2 ≤ ‖u – v‖2 –‖(I – S)u – (I – S)v‖2 for all u, v ∈ C. Every nonexpansive mapping is
a k-strictly pseudo-contractive mapping and every k-strictly pseudo-contractive mapping
is pseudo-contractive. Assume that S : C → C be a strictly pseudo-contractive. We denote
by F(S) the fixed point set of S, that is, F(S) = {x ∈ C : S(x) = x}. There is a lot of work
associated with the fixed point algorithms (see for example, [1–6]). Also, there are many
papers and books about iterative schemes for numerical estimations in different area of
this field (see for example [7–12]).
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Let A : C → H be a nonlinear mapping and F be a bi-function from C ×C to R, where R
is the set of real numbers. The generalized equilibrium problem is to find x∗ ∈ C such that
F(x∗, y) + 〈Ax∗, y – x∗〉 ≥ 0, for all y ∈ C. The set of solutions of x∗ is denoted by GEP(F , A)
([13]). If A = 0, then GEP(F , A) is denoted by EP(F). If F(x, y) = 0 for all x, y ∈ C, then
GEP(F , A) is denoted by VI(C, A) = {x∗ ∈ C : 〈Ax∗, y – x∗〉 ≥ 0, y ∈ C}. This is the set of
solutions of the variational inequality for A ([14–16]). If C = H , then VI(H , A) = A–1(0)
where A–1(0) = {x ∈ H : Ax = 0}. Recall that a mapping A : C → H is said to be monotone
whenever 〈Au – Av, u – v〉 ≥ 0 for all u, v ∈ C. A mapping A is said to be α-strongly mono-
tone whenever there exists a positive real number α such that 〈Au – Av, u – v〉 ≥ α‖u – v‖2

for all u, v ∈ C. A mapping A is said to be α-inverse strongly monotone whenever there
exists a positive real number α such that 〈Au – Av, u – v〉 ≥ α‖Au – Av‖2 for all u, v ∈ C. For
such a case, A is said to be α-inverse strongly monotone. Note that any α-inverse strongly
monotone mapping A is Lipschitz and ‖Au – Av‖ ≤ 1

α
‖u – v‖. Let A : H → H be a single-

valued nonlinear mapping, B : H → 2H a set-valued mapping. The variational inclusion is
to find p ∈ H such that

θ ∈ A(p) + B(p), (1)

where θ is a zero vector in H . When A = 0, then (1) becomes the inclusion problem intro-
duced by Rockafellar ([17]). Let B : H → 2H be a mapping. The effective domain of B is
denoted by D(B), namely, D(B) = {x ∈ H : Bx �= ∅}. The graph of B is G(B) = {(u, v) ∈ H ×H :
v ∈ Bu}. A set-valued mapping B is said to be monotone whenever 〈x – y, f – h〉 ≥ 0 for all
x, y ∈ D(B), f ∈ Bx and h ∈ By. A monotone operator B is maximal if the graph G(B) of
B is not properly contained in the graph of any other monotone mapping. Also, a mono-
tone mapping B is maximal if and only if, for (x, f ) ∈ H × H , 〈x – y, f – h〉 ≥ 0 for every
(y, h) ∈ G(B) implies f ∈ Bx. For a maximal monotone operator B on H and r > 0, we de-
fine a single-valued operator JB

r x = (I + rB)–1 : H → D(B), which is called the resolvent of B
for r. It is well known that JB

r x is firmly nonexpansive, that is, 〈x–y, JB
r x– JB

r y〉 ≥ ‖JB
r x– JB

r y‖2

for all x, y ∈ H , and that a solution of (1) is a fixed point of JB
r (I – rA) for all r > 0 (see[18]).

A basic problem for maximal monotone operator B is to find

x ∈ H such that 0 ∈ Bx. (2)

A well-known method for solving problem (2) is the proximal point algorithm: x1 = x ∈ H ,
and

xn+1 = JB
rn xn, n = 1, 2, 3, . . . ,

where JB
rn = (I + rnB)–1 and {rn} ⊂ (0,∞). For any initial guess x∗ ∈ H , the proximal point

algorithm generates an iterative sequence as xn+1 = JB
rn (xn + en), where en is the error se-

quence, then Rockafellar ([17, 19]) proved that the sequence {xn} converges weakly to
an element of B–1(0). To ensure convergence, it is assumed that ‖en+1‖ ≤ εn‖xn+1 – xn‖
with

∑∞
n=0 εn < ∞ ([17]). This criterion was then improved by Han and He as ‖en+1‖ ≤

εn‖xn+1 – xn‖ with
∑∞

n=0 ε2
n < ∞ ([20]). Then Kamimura and Takahashi introduced the

following iterative method:

xn+1 = λnu + (1 – λn)JB
rn (xn + en),
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where u ∈ H is fixed and (λn) is a real sequence ([3]). They proved that the sequence {xn}
converges strongly to x∗ = P(B)–1(0)(u). Then Ceng, Wu and Yao obtained the norm conver-
gence under the following conditions:

(i) limn→∞ rn = ∞,
(ii) limn→∞ λn = 0,

∑∞
n=0 λn = ∞,

(iii) ‖en+1‖ ≤ εn‖xn+1 – xn‖ with
∑∞

n=0 ε2
n < ∞ ([21]).

In 2013, Tian and Wang show that, if {rn} be bounded below away from zero, then the
norm convergence is still guaranteed for bounded (rn), especially for constant sequence
([22]). In the literature, there are a large number references associated with the proximal
point algorithm (see for example, [20–31]).

In 2008, Takahashi and Takahashi introduced an iterative method for finding a common
element of the set of fixed points of a nonexpansive mapping and the set of solutions to a
generalized equilibrium problem in a real Hilbert space ([13]). In 2019, Qin, Cho and Yao
introduced the following iterative scheme in Banach space E:

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C ∩ D,

yn = βnTxn + (1 – βn)xn,

xn+1 = PE
C∩D(αnf (xn) + δnRM

rn (xn – rnNxn + en) + γnyn), n ≥ 0,

(3)

where {en} is a sequence in E such that
∑∞

n=0 ‖en‖ < ∞, C and D is two nonempty closed
and convex subsets of E, PE

C∩D is a sunny nonexpansive retraction from E onto C ∩ D, M :
D → 2E is an m-accretive operator, N : C → E is an α-inverse strongly accretive operator,
RM

r the resolvent of N for each r > 0, f : C → E is a k-contraction, T : C → E is a k-strict
pseudo-contraction with a nonempty fixed point set ([32]). They proved that the sequence
{xn} generated by (3) converges strongly to x∗ = PC∩D

F(T)∩(N+M)–1(0)f (x∗), where x∗ is the unique
solution of the variational inequality 〈f (x∗) – x∗, Jq(y – x∗)〉 ≤ 0, y ∈ F(T) ∩ (N + M)–1(0)
([32]).

The purpose of this paper is to prove the strong and weak convergence of new algorithms
under different criteria of the errors {en}. We use a new technique of argument for dealing
with strong and weak convergence, also, suggest and propose the new accuracy criteria for
modified approximate proximal point algorithms. Applications of the main results are also
provided. In this paper, motivated by the mentioned above results, we present an iterative
method which converges strong and weak to a common element of the fixed point set of
pseudo-contractive mapping and the zero set of the sums of maximal monotone operators
and the set of solutions to a generalized equilibrium problem in a real Hilbert space.

1 Preliminaries
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . It is well
known that, for any x ∈ H , there exists a unique nearest point in C, denoted by PC(x), such
that ‖x – PC(x)‖ = infy∈C ‖x – y‖ =: d(x, C). It is well known that PC is nonexpansive and
monotone mapping of H onto C and satisfies the following:

(1) 〈x – PCx, z – PCx〉 ≤ 0 for all x ∈ H , z ∈ C.
(2) ‖x – z‖2 ≥ ‖x – PCx‖2 + ‖z – PCx‖2 for all x ∈ H , z ∈ C.
(3) The relation 〈PCx – PCz, x – z〉 ≥ ‖PCx – PCz‖2 holds for all z, x ∈ H .
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Let A be a monotone mapping of C into H . In the context of the variational inequality
problem, it is easy to see from (2) that

p ∈ VI(C, A) ⇔ p = PC(p – λAp) for some λ > 0.

For solving the equilibrium problem for a bi-function F : C × C → R, we assume that F
satisfy the following conditions:

(A1) F(x, x) = 0 for all x ∈ C,
(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,
(A3) for each x, y, z ∈ C, limt→0 F(tz + (1 – t)x, y) ≤ F(x, y),
(A4) for each x ∈ C, the function y �→ F(x, y) is convex and lower semi-continuous.

Putting F(x, y) = 〈Ax, y – x〉 for every x, y ∈ C, we see that the equilibrium problem is re-
duced to the variational inequality.

Lemma 1.1 ([33]) Assume that B is a maximal monotone operator. The followings hold.
(a) D(JB

r ) = H ,
(b) JB

r is single-valued and firmly nonexpansive
(c) F(JB

r ) = Γ = {x ∈ D(B) : 0 ∈ B(x)},
(d) its graph G(B) is weak-to-strong closed in H × H .

Lemma 1.2 ([34, 35]) Assume that F : C ×C →R satisfies (A1)–(A4) and C is a nonempty,
closed and convex subset of H . For r > 0 and x ∈ H , consider the map Tr : H → C defined
by

Tr(x) =
{

z ∈ C : F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0 for all y ∈ C

}

.

For each c ∈ H , we have Tr(x) �= ∅, Tr is single-valued, EP(F) is closed and convex, F(Tr) =
EP(F) and Tr is firmly nonexpansive, that is, ‖Tr(x) – Tr(y)‖2 ≤ 〈Tr(x) – Tr(y), x – y〉 for all
x, y ∈ H .

Lemma 1.3 ([36]) Assume that C is a nonempty, closed and convex subset of H , F is a bi-
function from C × C to R satisfying (A1)–(A4), AF is the multivalued mapping from H into
itself defined by AF x = {z ∈ C : F(z, y) ≤ 〈y – x, z〉 for all y ∈ C} whenever x ∈ C and AF x = ∅
otherwise. In this case, AF is a maximal monotone operator with the domain Tr(x) = (I +
rAF )–1x, for all x ∈ H and r > 0.

Lemma 1.4 ([5]) Assume that H is a real Hilbert space, C is a closed convex subset of H
and T : C → C is a continuous pseudo-contractive mapping. In this case, F(T) is a closed
convex subset of C and (I – T) is demiclosed at zero, that is, x = T(x) whenever {xn} is a
sequence in C such that xn ⇀ x and Txn – xn → 0.

Lemma 1.5 ([37]) If {xn}, {an} ⊂ R
+, {λn} ⊂ (0, 1) and {γn} ⊂ R are some sequences such

that xn+1 ≤ (1 – λn)xn + λnγn + an for all n ≥ 0,
∑∞

n=0 λn = ∞, lim supn→∞ γn ≤ 0 and
∑∞

n=0 an < ∞, then limn→∞ xn = 0.
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Lemma 1.6 ([38]) Assume that H is a real Hilbert space. For each xj ∈ H and aj ∈ [0, 1]
for j = 1, 2, 3 with a1 + a2 + a3 = 1 the following equality holds:

‖a1x1 + a2x2z + a3x3‖2 = a1‖x1‖2 + a2‖x2‖2 + a3‖x3‖2 –
∑

1≤i,j≤3

aiaj‖xi – xj‖2.

Lemma 1.7 ([36]) Suppose that B is a maximal monotone operator on H . In this case, we
have

λ – r
r

〈
JB
λ x – JB

r x, JB
λ x – x

〉 ≥ ∥
∥JB

λ x – JB
r x

∥
∥2 ∀λ, r > 0 and x ∈ H .

Lemma 1.8 ([5]) Suppose that H is a real Hilbert space. For every x, y ∈ H , we have ‖x +
y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 1.9 ([39]) Assume that {xn} is sequences of real numbers and there exists a subse-
quence {nk} of {n} such that xnk ≤ xn for all k ∈ N. There exists a nondecreasing sequence
{ti} ⊂N such that xti ≤ xti+1 and xi ≤ xti+1 for all i ≥ 1. In fact, ti = max{k ≤ i : xk ≤ xk+1}.

2 Weak and strong convergence theorems
Now, we are ready to state and prove our main results.

Theorem 2.1 Suppose that C is a nonempty, closed and convex subset of H , F is a bi-
function from C × C to R satisfying (A1)–(A4), M is an α-inverse strongly monotone map-
ping from C into H , A is a β-inverse strongly monotone map from C into H , B and N are two
maximal monotone operators on H such that their domains contained in C, f : C → C is a
ρ-contractive map with ρ ∈ (0, 1

2 ) and S : C → C is a Lipschitz pseudo-contractive mapping
with Lipschitz constants K such that Ω = F(S) ∩ (A + B)–1(0) ∩ N–1(0) ∩ GEP(F , M) �= ∅.
Assume that {bn}, {βn} and {δn} are some sequences in (0, 1) and {xn}, {yn}, {un} and {zn}
are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

F(yn, y) + 〈Mxn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C,

un = JB
λn (yn – λnAyn),

zn = bnf (xn) + (1 – bn)JN
sn (un + en),

xn+1 = (1 – βn)zn + βnS(δnzn + (1 – δn)Szn) ∀n ≥ 0.

(4)

If
(d1) 0 < c ≤ λn ≤ d < 2β , 0 < a ≤ rn ≤ b < 2α,
(d2) 0 < c < βn ≤ δn < d < 1√

1+K2+1
, sn > s > 0,

(d3) limn→∞ bn = 0,
∑∞

n=1 bn = ∞,
(d4) ‖en‖ ≤ εn

2 max{‖un – JN
sn (un + en)‖,‖JN

sn (un + en) – p‖} with
∑∞

n=0 εn < ∞,
then {xn} converges strongly to a point p ∈ Ω which is the unique solution of the variational
inequality 〈(I – f )p, x – p〉 ≥ 0 for all x ∈ Ω .
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Proof We first show that I – λnA is nonexpansive. For all u, v ∈ C and 0 < λn < 2β , we
obtain

∥
∥(I – λnA)u – (I – λnA)v

∥
∥2 =

∥
∥(u – v) – λn(Au – Av)

∥
∥2

≤ ‖u – v‖2 – 2λn〈u – v, Au – Av〉 + λ2
n‖Au – Av‖2

≤ ‖u – v‖2 – λnβ‖Au – Av‖2 + λ2
n‖Au – Av‖2

= ‖u – v‖2 + λn(λn – 2β)‖Au – Av‖2

≤ ‖u – v‖2. (5)

This proves that I – λnA is nonexpansive. Let p ∈ Ω . Observe that yn can be re-written as
yn = Trn (xn – rnMxn), n ≥ 0. From (d2) and Lemma 1.2, we have

‖yn – p‖2 =
∥
∥Trn (xn – rnMxn) – p

∥
∥2

=
∥
∥Trn (xn – rnMxn) – Trn (p – rnMp))

∥
∥2

≤ ∥
∥(xn – rnMxn) – (p – rnMp)

∥
∥2

= ‖xn – p‖2 + rn(rn – 2α)‖Mxn – Mp‖2

≤ ‖xn – p‖2. (6)

From (4), (5) and using the fact that JB
λn is nonexpansive, we have

‖un – p‖2 =
∥
∥JB

λn (yn – λnAyn) – p
∥
∥2

≤ ∥
∥JB

λn (yn – λnAyn) – JB
λn (p – λnAp)

∥
∥2

≤ ∥
∥(yn – λnAyn) – (p – λnAp)

∥
∥2

≤ ‖yn – p‖2 + λn(λn – 2β)‖Ayn – Ap‖2

≤ ‖xn – p‖2 + λn(λn – 2β)‖Ayn – Ap‖2

≤ ‖xn – p‖2. (7)

Set tn = (1 – δn)zn + δnSzn for all n ≥ 1. By using Lemma 1.6, we have

‖tn – p‖2 =
∥
∥(1 – δn)zn + δnSzn – p

∥
∥2

≤ (1 – δn)‖zn – p‖2 + δn‖Szn – p‖2 – (1 – δn)δn‖zn – Szn‖2

≤ (1 – δn)‖zn – p‖2 + δn
(‖zn – p‖2 + ‖zn – Szn‖2) – (1 – δn)δn‖zn – Szn‖2

≤ ‖zn – p‖2 + δ2
n‖zn – Szn‖2. (8)

From (4) and (8), we get

‖xn+1 – p‖2 =
∥
∥(1 – βn)zn + βnS

(
(1 – δn)zn + δnSzn

)
– p

∥
∥2

=
∥
∥(1 – βn)zn + βnStn – p

∥
∥2

≤ (1 – βn)‖zn – p‖2 + βn‖Stn – p‖2 – (1 – βn)βn‖zn – Stn‖2
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≤ (1 – βn)‖zn – p‖2 + βn
(‖tn – p‖2 + ‖tn – Stn‖2) – (1 – βn)βn‖zn – Stn‖2

≤ (1 – βn)‖zn – p‖2 + βn‖tn – p‖2 + βn‖tn – Stn‖2 – (1 – βn)βn‖zn – Stn‖2

≤ ‖zn – p‖2 + δ2
nβn‖zn – Szn‖2 + βn‖tn – Stn‖2

– (1 – βn)βn‖zn – Stn‖2. (9)

Thus,

‖tn – Stn‖2 =
∥
∥(1 – δn)zn + δnSzn – Stn

∥
∥2

≤ (1 – δn)‖zn – Stn‖2 + δn‖Szn – Stn‖2

– (1 – δn)δn‖zn – Szn‖2. (10)

Since S is K-Lipschitz and zn – tn = δn(zn – Szn), by using (10) we get

‖tn – Stn‖2

≤ (1 – δn)‖zn – Stn‖2 + δnK2‖zn – tn‖2 – (1 – δn)δn‖zn – Szn‖2

≤ (1 – δn)‖zn – Stn‖2 + δ3
nK2‖zn – Szn‖2 – (1 – δn)δn‖zn – Szn‖2

= (1 – δn)‖zn – Stn‖2 – δn
(
1 – δn – δ2

nK2)‖zn – Szn‖2.

This together with (9) implies that

‖xn+1 – p‖2 ≤ ‖zn – p‖2 + βn
(
(1 – δn)‖zn – Stn‖2

– δn
(
1 – δn – δ2

nK2)‖zn – Szn‖2)

+ δ2
nβn‖zn – Szn‖2 – (1 – βn)βn‖zn – Stn‖2

≤ ‖zn – p‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2. (11)

Since 0 < c < βn ≤ δn < d < 1√
1+K2+1

for all n ≥ 1, we conclude that

‖xn+1 – p‖2 ≤ ‖zn – p‖2. (12)

Put vn = JN
λn (un + en) for all n ≥ 0. By using Lemma 1.1, we obtain

‖vn – p‖2 ≤ ‖un + en – p‖2 – ‖un + en – vn‖2

= ‖un – p‖2 – ‖un – vn‖2 + 2〈en, vn – p〉
≤ ‖un – p‖2 – ‖un – vn‖2 + 2‖en‖‖vn – p‖.

Since

‖en‖ ≤ εn

2
max

{‖un – vn‖,‖vn – p‖}

≤ εn

2
(‖vn – p‖ + ‖un – vn‖

)
,
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this implies that

‖vn – p‖2 ≤ ‖un – p‖2 – ‖un – vn‖2 + 2
εn

2
(‖vn – q‖ + ‖un – vn‖

)‖vn – p‖.

≤ ‖un – p‖2 –
(

1 –
εn

2

)

‖un – vn‖2 + 2εn‖vn – q‖2.

Since εn → 0, for all n ≥ m0, we see that there exists an integer m0 ≥ 0 such that 1–2εn > 0.
It follows from (7) that

‖vn – p‖2 ≤
(

1 +
2εn

1 – 2εn

)

‖un – p‖2 –
1 – εn

2
1 – 2εn

‖un – vn‖2

≤
(

1 +
2εn

1 – 2εn

)

‖un – p‖2 – ‖un – vn‖2

≤
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2. (13)

It follows that

‖vn – p‖ ≤
(

1 +
εn

1 – 2εn

)

‖xn – p‖. (14)

It follows from (4) and the last inequality that

‖zn – p‖ =
∥
∥bnf (xn) + (1 – bn)vn – p

∥
∥

≤ bn
∥
∥f (xn) – p

∥
∥ + (1 – bn)‖vn – p‖

≤ bn
(
ρ‖xn – p‖ +

∥
∥f (p) – p

∥
∥
)

+ (1 – bn)
(

1 +
εn

1 – 2εn

)

‖xn – p‖.

≤
(

1 +
εn

1 – 2εn

)
(
1 – bn(1 – ρ)

)‖xn – p‖ + bn
∥
∥f (p) – p

∥
∥.

Now, by induction we have

‖xn+1 – p‖ ≤
n∏

i=0

(

1 +
εi

1 – 2εi

)

max

{
1

1 – ρ

∥
∥f (p) – p

∥
∥,‖x0 – p‖

}

, ∀n ≥ 0. (15)

Indeed when n = 0, from (12) we have

‖x1 – p‖ ≤
(

1 +
ε0

1 – 2ε0

)
(
1 – b0(1 – ρ)

)‖x0 – p‖ + b0
∥
∥f (p) – p

∥
∥

≤
(

1 +
ε0

1 – 2ε0

)
[(

1 – b0(1 – ρ)
)‖x0 – p‖ + b0

∥
∥f (p) – p

∥
∥
]

≤
(

1 +
ε0

1 – 2ε0

)

max

{
1

1 – ρ

∥
∥f (p) – p

∥
∥,‖x0 – p‖

}

,

which implies that (15) holds for n = 0. Assume that (15) holds for n ≥ 1. Then it follows
that ‖xn – p‖ ≤ ∏n–1

i=0 (1 + εi
1–2εi

) max{ 1
1–ρ

‖f (p) – p‖,‖x0 – p‖}. Hence, from (12) we have

‖xn+1 – p‖ ≤
(

1 +
εn

1 – 2εn

)
(
1 – bn(1 – ρ)

)‖xn – p‖ + bn
∥
∥f (p) – p

∥
∥
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≤
(

1 +
εn

1 – 2εn

)
[(

1 – bn(1 – ρ)
)‖xn – p‖ + bn

∥
∥f (p) – p

∥
∥
]

≤
(

1 +
εn

1 – 2εn

) n–1∏

i=0

(

1 +
εi

1 – 2εi

)

max

{
1

1 – ρ

∥
∥f (p) – p

∥
∥,‖x0 – p‖

}

=
n∏

i=0

(

1 +
εi

1 – 2εi

)

max

{
1

1 – ρ

∥
∥f (p) – p

∥
∥,‖x0 – p‖

}

.

This indicates that (15) holds for n + 1. Therefore, (15) holds for n ≥ 0. We have

‖xn+1 – p‖ ≤
n∏

i=0

(

1 +
εi

1 – 2εi

)

max

{
1

1 – ρ

∥
∥f (p) – p

∥
∥,‖x0 – p‖

}

≤
∞∏

i=0

(

1 +
εi

1 – 2εi

)

max

{
1

1 – ρ

∥
∥f (p) – p

∥
∥,‖x0 – p‖

}

.

Since
∑+∞

n=0 εn < +∞, it follows that
∏+∞

n=m0
(1 + εn

1–2εn
) < +∞. Thus, {‖xn – p‖} is bounded.

So, {xn} is bounded and so are the sequences {yn}, {un} and {zn}. Let p = PΩ f (p). We have
from (6), (7), (11), (14) and Lemma 1.8

‖xn+1 – p‖2 ≤ ‖zn – p‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2

=
∥
∥bnf (xn) + (1 – bn)vn – p

∥
∥2 – δn

(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2

≤ ∥
∥bn

(
f (xn) – p

)
+ (1 – bn)(vn – p)

∥
∥2 – δn

(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2

≤ (1 – bn)‖vn – p‖2 + 2bn
〈
f (xn) – p, xn+1 – p

〉

+ βn(βn – δn)‖zn – Stn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

≤ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2
]

+ 2bn
〈
f (xn) – p, xn+1 – p

〉

+ (1 – bn)
[
λn(λn – 2β)‖Ayn – Ap‖2 + rn(rn – 2α)‖Mxn – Mp‖2]

+ βn(βn – δn)‖zn – Stn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

≤ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2
]

+ 2bn
[〈

f (xn) – p, xn – p
〉
+

〈
f (xn) – p, xn+1 – xn

〉]

+ (1 – bn)
[
λn(λn – 2β)‖Ayn – Ap‖2 + rn(rn – 2α)‖Mxn – Mp‖2]

+ βn(βn – δn)‖zn – Stn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

≤ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2
]

+ 2bn
[〈

f (xn) – f (p), xn – p
〉
+

〈
f (p) – p, xn – p

〉
+ ‖xn+1 – xn‖

∥
∥f (xn) – p

∥
∥
]



Rezapour and Zakeri Advances in Difference Equations        (2020) 2020:462 Page 10 of 23

+ (1 – bn)
[
λn(λn – 2β)‖Ayn – Ap‖2 + rn(rn – 2α)‖Mxn – Mp‖2]

+ βn(βn – δn)‖zn – Stn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

≤ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2
]

+ 2bn
[
ρ‖xn – p‖2 +

〈
f (p) – p, xn – p

〉
+ ‖xn+1 – xn‖

∥
∥f (xn) – p

∥
∥
]

+ (1 – bn)
[
λn(λn – 2β)‖Ayn – Ap‖2 + rn(rn – 2α)‖Mxn – Mp‖2]

+ βn(βn – δn)‖zn – Stn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

≤ (
1 – bn(1 – 2ρ)

)
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – (1 – bn)‖un – vn‖2

+ 2bn
[〈

f (p) – p, xn – p
〉
+ ‖xn+1 – xn‖

∥
∥f (xn) – p

∥
∥
]

+ (1 – bn)
[
λn(λn – 2β)‖Ayn – Ap‖2 + rn(rn – 2α)‖Mxn – Mp‖2]

+ βn(βn – δn)‖zn – Stn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2.

It follows that

‖xn+1 – p‖ ≤ (
1 – bn(1 – 2ρ)

)
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2

+ 2bn
[〈

f (p) – p, xn – p
〉
+ ‖xn+1 – xn‖

∥
∥f (xn) – p

∥
∥
]
. (16)

Next, we split the proof into two cases.
Case 1: Assume that there exists n0 ∈N such that {‖xn – p‖} is decreasing for all n ≥ n0.

Therefore, we obtain limn→∞ ‖xn – p‖ = d. Consequently, we obtain

(1 – bn)
[‖un – vn‖2 + λn(2β – λn)‖Ayn – Ap‖2 + rn(2α – rn)‖Mxn – Mp‖2]

+ βn(δn – βn)‖zn – Stn‖2 + δn
(
2δn + δ2

nK2 – 1
)‖zn – Szn‖2

≤ (
1 – bn(1 – 2ρ)

)
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖xn+1 – p‖2

+ 2bn
[〈

f (p) – p, xn – p
〉
+ ‖xn+1 – xn‖

∥
∥f (xn) – p

∥
∥
]
.

We find from the restrictions (d1)–(d4) that

lim
n→∞‖un – vn‖ = lim

n→∞‖Ayn – Ap‖,

lim
n→∞‖Mxn – Mp‖ = lim

n→∞‖zn – Stn‖ = lim
n→∞‖zn – Szn‖ = 0.

(17)

From ‖xn+1 – un‖ ≤ ‖xn+1 – zn‖ + ‖zn – un‖, ‖zn – un‖ ≤ bn‖f (xn) – un‖ + (1 – bn)‖vn – un‖,
‖xn+1 – zn‖ ≤ ‖zn – Stn‖ and the restrictions (d3) we get

lim
n→∞‖xn+1 – zn‖ = lim

n→∞‖zn – un‖ = lim
n→∞‖xn+1 – un‖ = 0. (18)
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Observe that

‖un – p‖2 =
∥
∥JB

λn (yn – λnAyn) – JB
λn (p – λnAp)

∥
∥2

≤ 〈
(yn – λnAyn) – (P – λnAp), un – p

〉

=
1
2
∥
∥(yn – λnAyn) – (p – λnAp)

∥
∥2 +

1
2
‖un – p‖2

–
1
2
∥
∥(yn – λnAyn) – (p – λnAp) – (un – p)

∥
∥2

≤ 1
2
[‖yn – p‖2 + ‖un – p‖2 –

∥
∥(yn – un) – λn(Ayn – Ap)

∥
∥2]

=
1
2
[‖yn – p‖2 + ‖un – p‖2 – ‖yn – un‖2 + 2λn〈yn – un, Ayn – Ap〉

– λ2
n‖Ayn – Ap‖2],

from which one deduces that

‖un – p‖2 ≤ ‖yn – p‖2 – ‖yn – un‖2 + 2λn‖yn – un‖‖Ayn – Ap‖. (19)

Using Lemma 1.2 and (4), we have

‖yn – p‖2 =
∥
∥Trn (xn – rnMxn) – Trn (p – rnMp)

∥
∥2

≤ 〈
(xn – rnMxn) – (p – rnMp), yn – p

〉

=
1
2
∥
∥(xn – rnMxn) – (p – rnMp)

∥
∥2 +

1
2
‖yn – p‖2

–
1
2
∥
∥(xn – rnMxn) – (p – rnMp) – (yn – p)

∥
∥2

≤ 1
2
[‖xn – p‖2 + ‖yn – p‖2 –

∥
∥(xn – yn) – 2rn(Mxn – Mp)

∥
∥2]

=
1
2
[‖xn – p‖2 + ‖yn – p‖2 – ‖xn – yn‖2 + 2rn〈xn – yn, Mxn – Mp〉

– r2
n‖Mxn – Mp‖2].

It follows that

‖yn – p‖2 ≤ ‖xn – p‖2 – ‖xn – yn‖2 + 2rn〈xn – yn, Mxn – Mp〉. (20)

We have from (7), (12), (14), (19) and (20)

‖xn+1 – p‖2 =
∥
∥bnf (xn) + (1 – bn)vn – p

∥
∥2

≤ bn
∥
∥f (xn) – p

∥
∥2 + (1 – bn)‖vn – p‖2

≤ bn
∥
∥f (xn) – p

∥
∥2 + (1 – bn)

(

1 +
2εn

1 – 2εn

)
[‖xn – p‖2 – ‖yn – un‖2

+ 2λn‖yn – un‖‖Ayn – Ap‖ – ‖xn – yn‖2 + 2rn〈xn – yn, Mxn – Mp〉]

≤ bn
(∥
∥f (xn) – f (p)

∥
∥ +

∥
∥f (p) – p

∥
∥
)2 + (1 – bn)

(

1 +
2εn

1 – 2εn

)
[‖xn – p‖2
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– ‖yn – un‖2 + 2λn‖yn – un‖‖Ayn – Ap‖ – ‖xn – yn‖2

+ 2rn〈xn – yn, Mxn – Mp〉]

≤ bn
(
ρ‖xn – p‖ +

∥
∥f (p) – p

∥
∥
)2 + (1 – bn)

(

1 +
2εn

1 – 2εn

)
[‖xn – p‖2

– ‖yn – un‖2 + 2λn‖yn – un‖‖Ayn – Ap‖ – ‖xn – yn‖2

+ 2rn〈xn – yn, Mxn – Mp〉]

≤ bn
(
ρ2‖xn – p‖2 +

∥
∥f (p) – p

∥
∥2 + 2ρ‖xn – p‖∥∥f (p) – p

∥
∥
)

+ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖yn – un‖2

+ 2λn‖yn – un‖‖Ayn – Ap‖

– ‖xn – yn‖2 + 2rn〈xn – yn, Mxn – Mp〉
]

≤ bn
(
ρ(1 + ρ)‖xn – p‖2 + (1 + ρ)

∥
∥f (p) – p

∥
∥2)

+ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖yn – un‖2

+ 2λn‖yn – un‖‖Ayn – Ap‖

– ‖xn – yn‖2 + 2rn〈xn – yn, Mxn – Mp〉
]

≤
(

1 +
2εn

1 – 2εn

)
(
1 – bn

(
1 – ρ(1 + ρ)

))‖xn – p‖2 + bn(1 + ρ)
∥
∥f (p) – p

∥
∥2

+ (1 – bn)
[(

1 +
2εn

1 – 2εn

)

2λn‖yn – un‖‖Ayn – Ap‖ – ‖yn – un‖2

+
(

1 +
2εn

1 – 2εn

)

2rn〈xn – yn, Mxn – Mp〉 – ‖xn – yn‖2
]

.

Consequently, we obtain

(1 – bn)
(‖yn – un‖2 + ‖xn – yn‖2)

≤
(

1 +
2εn

1 – 2εn

)
(
1 – bn

(
1 – ρ(1 + ρ)

))‖xn – p‖2

– ‖xn+1 – p‖2 + bn(1 + ρ)
∥
∥f (p) – p

∥
∥2

+
(

1 +
2εn

1 – 2εn

)
[
2λn‖yn – un‖‖Ayn – Ap‖

+ 2rn〈xn – yn, Mxn – Mp〉].

We find from (17) and the restrictions (d3) and (d4) that

lim
n→∞‖yn – un‖ = lim

n→∞‖xn – yn‖ = 0. (21)

We have from ‖xn – xn+1‖ ≤ ‖xn – yn‖ + ‖yn – un‖ + ‖un – xn+1‖ and (18) that

lim
n→∞‖xn – xn+1‖ = 0.
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Next, we show that

lim sup
n→∞

〈
f (p) – p, xn – p

〉 ≤ 0,

where p = PΩ f (p). The existence of q is justified since PΩ is nonexpansive and f is a con-
traction, then PΩ is a contraction so it has a fixed point. To show it, choose a subsequence
{xnj} of {xn} such that

lim sup
n→∞

〈
f (p) – p, xn – p

〉
= lim

j→∞
〈
f (p) – p, xnj – p

〉
. (22)

Since {xnj} is bounded, there exists a subsequence {xnjk
} of {xnj}, converges weakly to u.

Without loss of generality, we assume that xnj ⇀ u. Since ‖xn – yn‖ → 0 as n → ∞ we
obtain ynj ⇀ u. Since {ynj} ⊂ C and C is closed and convex, we obtain u ∈ C. First, we
show that u ∈ F(S). Then, from (17) and Lemma 1.4, we have u ∈ F(S). We now show
u ∈ GEP(F , M). By yn = Trn (xn – rnMxn), we know that

F(yn, y) + 〈Mxn, y – yn〉 +
1
rn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C.

It follows from (A2) that

〈Mxn, y – yn〉 +
1
rn

〈y – yn, yn – xn〉 ≥ F(y, yn), ∀y ∈ C.

Hence,

〈Mxnj , y – ynj〉 +
〈

y – ynj ,
ynj – xnj

rnj

〉

≥ F(y, ynj ), ∀y ∈ C. (23)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 – t)u. Since y ∈ C and u ∈ C, we obtain yt ∈ C.
So, from (23) we have

〈yt – ynj , Myt〉 ≥ 〈yt – ynj , Myt〉 – 〈yt – ynj , Mxnj〉

–
〈

yt – ynj ,
ynj – xnj

rnj

〉

+ F(yt , ynj )

= 〈yt – ynj , Myt – Mynj〉 + 〈yt – ynj , Mynj – Mxnj〉

–
〈

yt – ynj ,
ynj – xnj

rnj

〉

+ F(yt , ynj ).

Since ‖ynj – xnj‖ → 0, we have ‖Mynj – Mxnj‖ → 0. Further, from the inverse strongly
monotonicity of M, we have 〈yt – ynj , Myt – Mynj〉 ≥ 0. It follows from A4 and

ynj –xnj
rnj

→ 0
and ynj ⇀ u that we have

〈yt – v, Myt〉 ≥ F(yt , u),
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as j → ∞. From (A1), (A4) we have

0 = F(yt , yt)

= tF(yt , y) + (1 – t)F(yt , u)

≤ tF(yt , y) + (1 – t)〈yt – u, Myt〉
= tF(yt , y) + (1 – t)t〈y – u, Myt〉,

and hence

0 ≤ F(yt , y) + (1 – t)〈y – u, Myt〉.

Letting t → 0, we have, for each y ∈ C,

F(u, y) + (1 – t)〈y – u, Mu〉 ≥ 0.

This implies that u ∈ GEP(F , M). Next we show u ∈ (A + B)–1(0). Due to (a), there is a
subsequence {λnjk

} of {λnj} such that λnjk
→ λ∗ ∈ [c, d]. Without loss of generality, we

assume that λnj → λ∗. From Lemma 1.7, we have

∥
∥xnj – JB

λ∗
(
I – λ∗A

)
xnj

∥
∥

≤ ‖xnj – unj‖ +
∥
∥JB

λnj
(I – λnj A)xnj – JB

λ∗
(
I – λ∗A

)
xnj

∥
∥

≤ ‖xnj – unj‖ +
∥
∥JB

λnj
(I – λnj A)xnj – JB

λnj

(
I – λ∗A

)
xnj

∥
∥

+
∥
∥JB

λnj

(
I – λ∗A

)
xnj – JB

λ∗
(
I – λ∗A

)
xnj

∥
∥

≤ ‖xnj – unj‖ +
∣
∣λnj – λ∗∣∣‖Axnj‖

+
∣
∣
∣
∣
λnj – λ∗

λ∗

∣
∣
∣
∣
∥
∥JB

λ∗
(
I – λ∗A

)
xnj –

(
I – λ∗A

)
xnj

∥
∥.

This implies that

lim
j→∞

∥
∥xnj – JB

λ∗
(
I – λ∗A

)
xnj

∥
∥ = 0.

Since JB
λ∗ (I – λ∗M) is nonexpansive, the demiclosedness for a nonexpansive mapping im-

plies that u ∈ F(JB
λ∗ (I – λ∗A)), that is, u ∈ (A + B)–1(0). Finally we show u ∈ N–1(0). Since

‖en‖ → 0 and ‖xn – vn‖ = ‖un – vn‖ → 0 as n → ∞, we have vnj ⇀ u and

∥
∥xnj + enj – JN

sn (xnj + enj )
∥
∥ ≤ ‖xnj – vnj‖ + ‖enj‖ → 0.

From Lemma 1.1, we have 0 ∈ N(u). This implies u ∈ Ω . Due to (22), we arrive at

lim sup
n→∞

〈
f (p) – p, xn – p

〉
= lim

j→∞
〈
f (p) – p, xnj – p

〉
=

〈
f (p) – p, u – p

〉 ≤ 0.



Rezapour and Zakeri Advances in Difference Equations        (2020) 2020:462 Page 15 of 23

Since limn→∞ bn = 0,
∑∞

n=0 bn = ∞, limn→∞ ‖xn+1 – xn‖ = 0 and
∑+∞

n=0 εn < +∞, we obtain
from Lemma 1.5 and (16)

lim
n→∞‖xn – p‖ = 0.

Consequently, xn → p = PCf (p).
Case 2: Assume that there exists a subsequence {nj} of {n} such that

‖xnj – p‖ ≤ ‖xnj+1 – p‖

for all j ∈ N. From Lemma 1.9 there exists a nondecreasing sequence {tk} ⊂ N such that
tk → ∞ and

‖xtk – p‖ ≤ ‖xtk +1 – p‖ and ‖xk – p‖ ≤ ‖xtk +1 – p‖ (24)

for all k ∈ N. Since limn→∞ bn = 0 and
∑+∞

n=0 εn < +∞ we can obtain from (17), (18) and
(21)

lim
k→∞

‖xtk – ztk ‖ = lim
k→∞

‖xtk – ytk ‖ = lim
k→∞

‖xtk – vtk ‖

= lim
k→∞

‖ztk – Tztk ‖ = lim
k→∞

‖xtk +1 – xtk ‖ = 0.

From Case 1, we also have

lim sup
k→∞

〈
f (p) – p, xtk – p

〉 ≤ 0 (25)

Using (16) and following the methods used to get (16), we obtain

= ‖xtk+1 – p‖2 ≤ (1 – btk )
(

1 +
2εtk

1 – 2εtk

)

‖xtk – p‖2 + 2btk

〈
f (p) – p, xtk – p

〉

+ 2btk

(‖xtk +1 – xtk ‖
∥
∥f (xtk ) – p

∥
∥ + ρ‖xtk – p‖2)

≤ (
1 – btk (1 – 2ρ)

)‖xtk – p‖2 +
2εtk

1 – 2εtk

L + 2btk

〈
f (p) – p, xtk – p

〉

+ 2btk ‖xtk +1 – xtk ‖
∥
∥f (xtk ) – p

∥
∥ (26)

where L > 0 is a sufficiently large number. This implies that

btk (1 – 2ρ)‖xtk – p‖2 ≤ ‖xtk – p‖2 – ‖xtk +1 – p‖2 +
2εtk

1 – 2εtk

L

+ 2btk

〈
f (p) – p, xtk – p

〉
+ 2btk ‖xtk+1 – xtk ‖

∥
∥f (xtk ) – p

∥
∥.

Since btk > 0, we get from (24)

(1 – ρ)‖xtk – p‖2 ≤ 2εtk

1 – 2εtk

L + 2
〈
f (p) – p, xtk – p

〉
+ 2‖xtk +1 – xtk ‖

∥
∥f (xtk ) – p

∥
∥.
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Since limn→∞ ‖xn+1 – xn‖ = 0 and
∑+∞

n=0 εn < +∞, we obtain from (25) ‖xtk – p‖ → 0 as
k → ∞. From (26) we have ‖xtk+1 – p‖ → 0 as k → ∞. Using (24), we obtain limk→∞ ‖xk –
p‖ = 0. Therefore, from the above two cases, we can conclude that {xn} converges strongly
to a point p = PΩ f (p), which satisfies the variational inequality 〈(I – f )p, x – p〉 ≥ 0, for all
x ∈ Ω . The proof is complete. �

If f (x) = u ∈ C in Theorem 2.1, then we have the following result.

Corollary 2.2 Assume that C is a nonempty, closed and convex subset of H , F is a bi-
function from C × C to R satisfying (A1)–(A4), M is an α-inverse strongly monotone map-
ping from C into H , A is a β-inverse strongly monotone map from C into H , B and N
are two maximal monotone operators on H such that their domains contained in C and
S : C → C is a Lipschitz pseudo-contractive mapping with Lipschitz constants K such that
Ω = F(S) ∩ (A + B)–1(0) ∩ N–1(0) ∩ GEP(F , M) �= ∅. Assume that {bn}, {βn} and {δn} are
some sequences in (0, 1) and {xn}, {yn}, {un} and {zn} are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

F(yn, y) + 〈Mxn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C,

un = JB
λn (yn – λnAyn),

zn = bnu + (1 – bn)JN
sn (un + en),

xn+1 = (1 – βn)zn + βnS(δnzn + (1 – δn)Szn), ∀n ≥ 0.

If the conditions (d1)–(d4) hold, then the sequence {xn} converges strongly to a point p ∈ Ω

which is the unique solution of the variational inequality 〈p – u, x – p〉 ≥ 0 for all x ∈ Ω .

Now, we discuss weak convergence of the sequence in the new iteration.

Theorem 2.3 Assume that C is a nonempty, closed and convex subset of H , F is a bi-
function from C × C to R satisfying (A1)–(A4), M is an α-inverse strongly monotone map-
ping from C into H , A is a β-inverse strongly monotone map from C into H , B and N
are two maximal monotone operators on H such that their domains contained in C and
S : C → C is a Lipschitz pseudo-contractive mapping with Lipschitz constants k such that
Ω = F(S) ∩ (A + B)–1(0) ∩ N–1(0) ∩ GEP(F , M) �= ∅. Assume that {bn}, {βn} and {δn} are
some sequences in (0, 1) and {xn}, {yn}, {un} and {zn} are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

F(yn, y) + 〈Mxn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C,

un = JB
λn (yn – λnAyn),

zn = bnxn + (1 – bn)JN
sn (un + en),

xn+1 = (1 – βn)zn + βnS(δnzn + (1 – δn)Szn) ∀n ≥ 0.

(27)

If
(d1) 0 < c ≤ λn ≤ d < 2β , 0 < a ≤ rn ≤ b < 2α,
(d2) 0 < c < βn ≤ δn < d < 1√

1+k2+1
, sn > s > 0,
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(d3) ‖en‖ ≤ εn
2 max{‖un – JN

sn (un + en)‖,‖JN
sn (un + en) – p‖} with

∑∞
n=0 εn < ∞,

then {xn} converges weakly to an element p ∈ Ω .

Proof Let p ∈ Ω . Similarly, from (6) and (7) we obtain

‖yn – p‖2 ≤ ‖xn – p‖2 + rn(rn – 2α)‖Mxn – Mp‖2

≤ ‖xn – p‖2

and

‖un – p‖2 ≤ ‖xn – p‖2 + λn(λn – 2β)‖Ayn – Ap‖2

≤ ‖xn – p‖2.

We also conclude from (11) and (12) that

‖xn+1 – p‖2 ≤ ‖zn – p‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2. (28)

Put vn = JN
λn (un + en) for all n ≥ 0. From (14), we have

‖vn – p‖2 ≤
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2

≤
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2.

These have already been proved in Theorem 2.1. Since 0 < c < βn ≤ δn < d < 1√
1+k2+1

for all
n ≥ 1, we conclude from (27), (28) and Lemma 1.6 that

= ‖xn+1 – p‖2

≤ ‖zn – p‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2

=
∥
∥bnxn + (1 – bn)vn – p

∥
∥2 – δn

(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2

≤ bn‖xn – p‖2 + (1 – bn)‖vn – p‖2 – (1 – bn)bn‖xn – vn‖2

– δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2 + βn(βn – δn)‖zn – Stn‖2

≤ bn‖xn – p‖2 + (1 – bn)
[(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖un – vn‖2
]

– (1 – bn)bn‖xn – vn‖2 – δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2

+ βn(βn – δn)‖zn – Stn‖2

≤
(

1 +
2εn

1 – 2εn
(1 – bn)

)

‖xn – p‖2 – (1 – bn)
(‖un – vn‖2 + bn‖xn – vn‖2)

– δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2 + βn(βn – δn)‖zn – Stn‖2
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≤
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – (1 – bn)
(‖un – vn‖2 + bn‖xn – vn‖2)

– δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2 + βn(βn – δn)‖zn – Stn‖2

≤
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2. (29)

For every n = 0, 1, 2, . . . , since
∑∞

n=0 ε2
n < ∞, we obtain

M0 :=
∞∑

n=m0

2ε2
n

1 – 2ε2
n

< ∞ and M1 :=
∞∏

n=m0

(

1 +
2ε2

n
1 – 2ε2

n

)

< ∞.

Hence for each integer n ≥ m0,

‖xn+1 – p‖2 ≤
(

1 +
2ε2

n
1 – 2ε2

n

)

‖xn – p‖2

≤
(

1 +
2ε2

n
1 – 2ε2

n

)(

1 +
2ε2

n–1
1 – 2ε2

n–1

)

‖xn–1 – p‖2

...

≤
n∏

i=m0

(

1 +
2ε2

i
1 – 2ε2

i

)

‖xm0 – p‖2

≤
∞∏

i=m0

(

1 +
2ε2

i
1 – 2ε2

i

)

‖xm0 – p‖2 = K1‖xm0 – p‖2.

Therefore, {‖xn – p‖} is bounded. So, {xn} is bounded and so are the sequences {yn}, {un}
and {zn}. Setting K := supn≥0 ‖xn – p‖, we obtain from (29)

‖xn+1 – p‖2 ≤ ‖xn – p‖2 +
2ε2

n
1 – 2ε2

n
K2, ∀n ≥ m0.

Thus it follows that, for all n, m ≥ m0,

‖xn+m+1 – p‖2 ≤ ‖xn+m – p‖2 +
2ε2

n+m
1 – 2ε2

n+m
K2

≤ ‖xn+m–1 – p‖2 +
2ε2

n+m–1
1 – 2ε2

n+m–1
K2 +

2ε2
n+m

1 – 2ε2
n+m

K2

...

≤ ‖xn – p‖2 +
∞∑

n=m0

2ε2
n

1 – 2ε2
n

K2.

Since
∑∞

n=0
2ε2

n
1–2ε2

n
< ∞ we obtain

lim sup
m→∞

‖xm – p‖2 ≤ ‖xn – p‖2 +
∞∑

i=0

2ε2
i

1 – 2ε2
i

K2.
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This implies that for every p ∈ Ω , limn→∞ ‖xn – p‖2 exists. From (29), we have

δn
(
1 – 2δn – δ2

nK2)‖zn – Szn‖2 + βn(δn – βn)‖zn – Stn‖2

+ (1 – bn)
(‖un – vn‖2 + bn‖xn – vn‖2)

≤
(

1 +
2εn

1 – 2εn

)

‖xn – p‖2 – ‖xn+1 – p‖2.

We find from the restrictions (d1)–(d3) that

lim
n→∞‖un – vn‖ = lim

n→∞‖xn – vn‖ = lim
n→∞‖zn – Stn‖ = lim

n→∞‖zn – Szn‖ = 0. (30)

From ‖xn+1 – un‖ ≤ ‖xn+1 – zn‖ + ‖zn – un‖, ‖zn – un‖ ≤ bn‖xn – un‖ + (1 – bn)‖vn – un‖,
‖xn+1 – zn‖ ≤ ‖zn – Stn‖ and ‖xn – un‖ ≤ ‖xn – vn‖ + ‖vn – un‖ we get

lim
n→∞‖xn+1 – zn‖ = lim

n→∞‖zn – un‖ = lim
n→∞‖xn+1 – un‖ = lim

n→∞‖xn – un‖ = 0. (31)

Also from ‖xn+1 – xn‖ ≤ ‖xn+1 – zn‖ + ‖zn – xn‖ and ‖xn – zn‖ ≤ ‖xn – un‖ + ‖un – zn‖ we
obtain

lim
n→∞‖xn – zn‖ = lim

n→∞‖xn+1 – xn‖ = 0. (32)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} converging weakly to u.
Since ‖xn – yn‖ → 0 as n → ∞ we obtain ynj ⇀ u. Since {ynj} ⊂ C and C is closed and
convex, we obtain u ∈ C. First, we show that u ∈ F(S). Then, from (30) and Lemma 1.4,
we have u ∩ F(S). Using the same argument we had in Theorem 2.1, we get u ∈ GEP(F , M)
and u ∈ (A + B)–1(0). In a similar way, we have 0 ∈ N(u). This implies u ∈ Ω .

Let us consider the uniqueness of the weak cluster point of {xn}. Suppose there exist
two weak cluster points û and ū of the sequence {xn}, then û and ū belong to Ω and the
sequences {‖û – xn‖} and {‖ū – xn‖} converge; i.e., there exist β̂, β̄ ∈ R

+ such that

lim
n→+∞‖û – xn‖ = β̂ , lim

n→+∞‖û – xn‖ = β̄ . (33)

Since

‖û – xn‖2 = ‖ū – xn‖2 + 2〈xn – û, û – ū〉 + ‖û – ū‖2,

from (33), we have

lim
n→+∞〈xn – û, û – ū〉 =

1
2
(
β̄2 – β̂2 – ‖û – ū‖2). (34)

Because û is a weak cluster point of {xn}, which implies that

β̄2 – β̂2 = ‖û – ū‖2. (35)

Reversing the roles of p̄ and p̂, hence β̂2 – β̄2 = ‖û – ū‖2, Combining this with (35), we
have ‖û – ū‖ = 0, i.e., û = ū, which is a contradiction. Therefore, there exists an unique
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weak cluster point of {xn}.Then {xn} is weakly convergent to an element of Ω , and this
completes the proof of Theorem 2.3. �

Remark 2.1 Theorem 2.1 and Theorem 2.3 improves and extends the result in Ceng, Wu,
Yao ([21]), Han, He ([20]) and Tian, Wang ([22]).

Let IC be the indicator function of C defined by IC(x) = 0 whenever x ∈ C and IC(x) = ∞
otherwise. Recall that the subdifferential ∂IC of IC is a maximal monotone operator since
IC is a proper lower semi-continuous convex function on H . The resolvent J∂IC

r of ∂IC for
r is PC and VI(C, A) = (A + ∂IC)–1(0), where A is an inverse strongly monotone mapping
of C into H ([40]). We obtain the following result.

Theorem 2.4 Suppose that C is a nonempty, closed and convex subset of H , F is a bi-
function from C × C to R satisfying (A1)–(A4), M is an α-inverse strongly monotone map-
ping from C into H , A is a β-inverse strongly monotone map from C into H , B and N are
two maximal monotone operators on H such that their domains contained in C, f : C → C
is a ρ-contractive map with ρ ∈ (0, 1

2 ) and S : C → C a Lipschitz pseudo-contractive map-
ping with Lipschitz constants K such that Ω = F(S) ∩ VI(C, A) ∩ N–1(0) ∩ GEP(F , M) �= ∅.
Assume that {bn}, {βn} and {δn} are some sequences in (0, 1) and {xn}, {yn}, {un} and {zn}
are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

F(yn, y) + 〈Mxn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C,

un = PC(yn – λnAyn),

zn = bnf (xn) + (1 – bn)JN
sn (un + en),

xn+1 = (1 – βn)zn + βnS(δnzn + (1 – δn)Szn) ∀n ≥ 0.

If the conditions (d1)–(d4) hold, then, {xn} converges strongly to a point p ∈ Ω which is the
unique solution of the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all x ∈ Ω .

Proof Putting B = ∂IC in Theorem 2.1, we know that Jλn = PC for all λn > 0, we obtain the
desired result. �

Remark 2.2 Theorem 2.4 improves and extends the result in Takahashi, Takahashi ([13])
and Su, Shang, Qin ([41]).

Theorem 2.5 Suppose that C is a nonempty, closed and convex subset of H , F is a bi-
function from C × C to R satisfying (A1)–(A4), M is an α-inverse strongly monotone map-
ping from C into H , ψ : C → C is a β-strict pseudo-contraction, N is a maximal monotone
operator on H such that its domains contained in C, f : C → C is a ρ-contractive map with
ρ ∈ (0, 1

2 ) and S : C → C is a Lipschitz pseudo-contractive mapping with Lipschitz con-
stants K such that Ω = F(S) ∩ F(ψ) ∩ N–1(0) ∩ GEP(F , M) �= ∅. Assume that {bn}, {βn} and
{δn} are some sequences in (0, 1) and {xn}, {yn}, {un} and {zn} are the sequences generated
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by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

F(yn, y) + 〈Mxn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C,

un = (1 – λn)yn + λnψyn,

zn = bnf (xn) + (1 – bn)JN
sn (un + en),

xn+1 = (1 – βn)zn + βnS(δnzn + (1 – δn)Szn) ∀n ≥ 0.

If the conditions (d1)–(d4) hold, 0 < c < λn < d < 1–β , then {xn} converges strongly to a point
p ∈ Ω which is the unique solution of the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all
x ∈ Ω .

Proof Putting B = ∂IC , A = I – ψ , we see that A is 1–β

2 -inverse strongly monotone. We also
have Jλn = PC for all λn > 0, F(ψ) = VI(C, A) and PC(yn – λnAyn) = (1 – λn)yn + λnψyn, by
Theorem 2.1 we obtain the desired result. �

Now, we provide an example to illustrate our first result.

Example 2.1 Let H = R with Euclidean norm and usual Euclidean inner product. Let C :=
(–∞, 1], Sx = x

x–2 , Bx = log(1 – x), Ax = 2x, β ≤ 1
2 , F(x, y) = y – x, N(x) = log(1 – x3), α ≤

1 and Mx = x – 1. Clearly, S is a Lipschitz pseudo-contractive mapping with Lipschitz
constants K ≤ 1

10 , A a β-inverse strongly monotone mapping, B, N maximal monotone
operators, F a bi-function from C × C to R satisfying (A1)–(A4), M an α-inverse strongly
monotone mapping and 0 ∈ N–1(0) ∩ F(S) ∩ (A + B)–1(0) ∩ GEP(F , M).

3 Conclusion
As is well known, many things need to be optimized. Numerous techniques and methods
have been used to optimize a variety of issues. This has even been used to solve some
differential equations. In this work, we introduced a new iterative method for finding a
common element of the set of fixed points of a pseudo-contractive mapping, the set of
solutions to a variational inclusion and the set of solutions to a generalized equilibrium
problem in a real Hilbert space. We provided some strong and weak convergence results
as regards the common solutions. Finally, we provided an example to illustrate our first
main result.
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