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Abstract
In the paper, a high-order alternating direction implicit (ADI) algorithm is presented to
solve problems of unsteady convection and diffusion. The method is fourth- and
second-order accurate in space and time, respectively. The resulting matrix at each
ADI computation can be obtained by repeatedly solving a penta-diagonal system
which produces a computationally cost-effective solver. We prove that the proposed
scheme is mass-conserved and unconditionally stable by means of discrete Fourier
analysis. Numerical experiments are performed to validate the mass conservation and
illustrate that the proposed scheme is accurate and reliable for
convection-dominated problems.

Keywords: Mass-conservative; High-order compact scheme; Unsteady
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1 Introduction
At the present time, the population explosion, the high standard of living, and the indus-
trial expansion have led to the rise of pollutants into the aquatic environment. In elim-
inating or at least reducing this pollution, the pollutant transport processes induced by
the advection-diffusion equation need to be well studied. Moreover, the processes to be
committed should be adapted to the nature of these processes [1]. The following is the two-
dimensional (2D) mathematical expression of the unsteady advection-diffusion equation
without the source term:

ut – auxx – buyy + pux + quy = 0. (1)

Here, u is an unknown function. The constants p and q are nonnegative speeds of con-
vection, and the constants a and b are positive diffusivity, respectively, in the x- and y-
direction. Engaging a conjunction of convection and diffusion, these processes are en-
countered in science and engineering phenomena very frequently. Also, these problems
appear in a number of applications, for instance, in ground water pollutants and air flow,
the transportation of oil reservoir, semi-conductor modeling, and so on. By convection,
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we refer to an actual behavior with some characteristic carried by the flow’s ordered mo-
tion. On the other hand, diffusion means a physical process with the property transported
by random motion of the fluid’s molecules. The behavior of fluid subjected to mass, vor-
ticity, and heat transfer can be investigated using the mathematical model formulated by
the conservation laws of momentum, mass, and energy.

Difficulty in the development of a numerical method is treating the first derivative term
that contains large coefficients (convection dominated) in a convection–diffusion equa-
tion. It follows that a numerical method that simultaneously solves both hyperbolic term
(advection) and parabolic term (dispersion) is needed. However, there is no numerical
method that can completely solve this problem [2]. Therefore, every effort has been put to
develop the efficient and stable numerical techniques. To solve the convection–diffusion
equation, a huge body of research on proficient numerical methods, such as the finite ele-
ment method (see, e.g., [3–5]), the finite difference method (see, e.g., [6–23]), and oth-
ers, has been created. We now concentrate on the research about the finite difference
method. According to ease of implementation as a conventional approach, the finite differ-
ence method is always utilized to solve partial differential equations. High-order compact
(HOC) finite difference methods happen to be one of the most commonly used numer-
ical methods to solve the unsteady convection–diffusion equation, that may extremely
enhance the approximate precision (see, e.g., [6–12]).

Since the objective of the alternating direction implicit (ADI) method is decreasing
multi-dimensional problems to a series of one-dimensional (1D) problems, and it is only
required to solve the tridiagonal systems, the ADI method is greatly effective in solving
parabolic and hyperbolic initial boundary value problems. Presented by Peaceman and
Rachford [13], the ADI scheme has been considered to be one of the most approved means
to solve the higher-dimensional problems due to its unconditional stability and huge ef-
ficiency. Nevertheless, the Peaceman–Rachford ADI scheme appears to be second-order
accurate in space, and it can generate significant dissipation and phase errors. For gain-
ing resolutions with higher order, many efforts are attempted to use HOC schemes for
spatial estimations of Eq. (1). To solve unsteady convection–diffusion equations, a high-
order compact ADI scheme was presented by Karaa and Zhang [14]. On that account,
great accuracy and great computational efficiency are coincidentally achieved. For 2D
unsteady convection–diffusion equations, a Padé scheme-based ADI (PDE-ADI) model
was presented by You [15]. It has finer phase and amplitude characteristics. Tian and Ge
presented [16] an exponential high-order compact alternating direction implicit (EHOC-
ADI) method used to solve 2D unsteady convection–diffusion equations. It highly ac-
complishes solving convection-dominated equations with high Reynolds numbers. Sub-
sequently, the logical HOC scheme with the ADI (RHOC-ADI) method to solve unsteady
convection–diffusion equations was investigated by Tian [17]. On this account, its great
effectiveness on solution accuracy and computational efficiency was demonstrated. All
of those methods are second-order accurate in time and fourth-order accurate in space
(see more [18–20]). Additional developments on a series of ADI methods have recently
been completed. Some researchers are using the higher-order difference schemes with
ADI methods [21–23] for achieving sixth-order accuracy in space.

In this paper, we consider the 2D unsteady advection-diffusion equation with the ho-
mogeneous boundary conditions

u(xL, y, t) = u(xR, y, t) = u(x, yL, t) = u(x, yR, t) = 0, t ∈ (0, T], (2)
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and the initial condition

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω , (3)

where φ(x, y) is a known smooth function. The solution is supposed to have the following
asymptotic values: |u(x, y)| → 0 as |x|, |y| → +∞. For that reason, if xL � 0, yL � 0, xR � 0,
and yR � 0, the initial-boundary value problem is in agreement with the Cauchy problem
of Eq. (1).

From the past, many conservative schemes have been presented by researchers for ex-
amining solutions of various nonlinear partial differential equations. The conservativeness
is obviously one of the necessary characteristics of fluid or propagating waves. Confirmed
by schemes of the energy or mass conservation, the accomplishment for a numerical ap-
proximation in the long-time behavior is one example. A mass-conservative finite differ-
ence scheme that conserves the solution for the convection–diffusion equation is therefore
required. In the same way, the significant feature which the convection–diffusion prob-
lems occupy is the balance of mass. That is, if there exists no source, the mass must be
conserved. Some of conservative methods shown in [24–28] preserve mass balance iden-
tity well. At this point, work on the family of ADI methods is not necessary.

According to the benefit of ADI methods and conservative discretization simultane-
ously, the improvement of the solution accuracy in the spatial domain based on the HOC-
ADI method, which is a compact sixth-order scheme that inherits mass preserving prop-
erties, will be focused on. The novel HOC scheme for the 1D steady convection–diffusion
equation will be first implemented. Then, a scheme for solving the 2D unsteady advection-
diffusion equation based on the ADI technique and an exponential difference operator
are introduced. We note that no additional computational cost is needed for the compact
scheme. Thus, the compact scheme has better effectiveness than the noncompact scheme
does.

The paper is structured as follows: Numerical methods consisting of spatial and tempo-
ral discretized methods of the 2D convection–diffusion equations are explained in Sect. 2
in detail. Solvability and the conservative property are proved in Sect. 3. In Sect. 4, the
analysis of the linearity of Fourier stability for the proposed ADI scheme is presented.
Various numerical examples and detailed numerical results in 1D and 2D cases of un-
steady advection-diffusion equation are provided to justify the theory analysis and show
the performance of the present ADI scheme. The behavior of numerical solutions is also
discussed when the Reynolds number increases. Eventually, remarkable conclusions are
summarized to finalize the research paper.

2 Description of the numerical methods for 2D convection–diffusion equations
2.1 Notations
In this section, we provide some notations which are used in this paper. For a positive
integer N , denote τ = T

N , tn = nk, n = 0, 1, 2, . . . , N . Let Ω = Ω × (0, T] be the solution
domain which is covered by a uniform grid (xi, yj, tn) as defined by

xi = xL + ihx, yj = yL + jhy, –1 ≤ i ≤ Mx + 1, –1 ≤ j ≤ My + 1,
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where hx = (xR – xL)/Mx and hy = (yR – yL)/My are the uniform step sizes in the x and y
spatial directions, respectively. Denote un

i,j = u(xi, yj, tn) and the solution space

Z0
h =

{
u = (ui,j)|ui,–1 = ui,0 = ui,My = ui,My+1 = u–1,j = u0,j = uMx ,j = uMx+1,j = 0,

– 1 ≤ i ≤ Mx + 1, –1 ≤ j ≤ My + 1
}

.

The following notations are introduced for the simplicity for un ∈ Z0
h :

δx
(
un

i,j
)

=
un

i+1,j – un
i,j

hx
, δx̄

(
un

i,j
)

=
un

i,j – un
i–1,j

hx
, δx̂

(
un

i,j
)

=
un

i+1,j – un
i–1,j

2hx
,

δy
(
un

i,j
)

=
un

i,j+1 – un
i,j

hy
, δȳ

(
un

i,j
)

=
un

i,j – un
i,j–1

hy
, δŷ

(
un

i,j
)

=
un

i,j+1 – un
i,j–1

2hy
,

un+1/2
i,j =

un+1
ij + un

ij

2
,

〈
un, vn〉 = hxhy

Mx–1∑

j=1

My–1∑

i=1

un
i,jv

n
i,j,

∥∥un∥∥2 =
〈
un, un〉,

and ‖un‖∞ = maxi,j |un
ij|. For convenience, we let

δ2
xx̄

(
un

i,j
)

=
un

i+1,j – 2un
i,j + un

i–1,j

h2
x

, δ2
yȳ

(
un

i,j
)

=
un

i,j+1 – 2un
i,j + un

i,j–1

h2
y

,

δ3
xx̄x̂

(
un

i,j
)

=
un

i+2,j – 2un
i+1,j + 2un

i–1,j – 2un
i–2,j

2h3
x

,

δ3
yȳŷ

(
un

i,j
)

=
un

i,j+2 – 2un
i,j+1 + 2un

i,j–1 – 2un
i,j–2

2h3
y

,

δ4
xxx̄x̄

(
un

i,j
)

=
un

i+2,j – 4un
i+1,j + 6un

i,j – 4un
i–1,j + un

i–2,j

h4
x

,

δ4
xxx̄x̄

(
un

i,j
)

=
un

i,j+2 – 4un
i,j+1 + 6un

i,j – 4un
i,j–1 + un

i,j–2

h4
y

.

2.2 Double compact high-order ADI finite difference method (DHOC-ADI)
To develop a new HOC-ADI method, we begin with the elementary 1D steady convection
diffusion equation

–auxx + pux = f , (4)

where a is the positive constant conductivity, p is the constant convective velocity, and
f is a sufficiently smooth function of x. The technique outline is to combine the HOC-
ADI proposed by [14] and Richardson’s extrapolation for solving the steady convection
diffusion equation. By using the Taylor series expansion, we have

–a
(

δ2
xx̄(ui) –

h2
x

12
uxxxx +

h4
x

360
uxxxxxx

)
+ p

(
δx̂(ui) –

h2
x

6
uxxx +

h4
x

120
uxxxxx

)
= fi + O

(
h6

x
)
. (5)

First, we differentiate both sides of Eq. (4) with respect to x and obtain

–auxxx + puxx = fx. (6)
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Differentiating both sides of Eq. (6), we have

–auxxxx + puxxx = fxx. (7)

Substituting Eqs. (6) and (7) into Eq. (5) and rearranging it, we get

–aδ2
xx̄(ui)+pδx̂(ui)–

p2h2
x

12a
uxx –

ph4
x

120
uxxxxx +

ah4
x

360
uxxxxxx = fi –

ph2
x

12a
fx +

h2
x

12
fxx +O

(
h6

x
)
. (8)

Apply the fourth-order difference operator for the second-order derivative, and it yields

–
(

a +
p2h2

x
12a

)
δ2

xx̄(ui) + pδx̂(ui) +
p2h4

x
144a

δ4
xxx̄x̄u –

ph4
x

120
uxxxxx +

ah4
x

360
uxxxxxx

= fi –
ph2

x
12a

fx +
h2

x
12

fxx + O
(
h6

x
)
. (9)

To this end, again, we differentiate both sides of Eq. (7) with respect to x and obtain

–auxxxxx + puxxxx = fxxx. (10)

Also, differentiating both sides of Eq. (10), we have

–auxxxxxx + puxxxxx = fxxxx. (11)

Similarly, substituting Eqs. (10) and (11) into Eq. (9) and rearranging it, we get

–
(

a +
p2h2

x
12a

)
δ2

xx̄(ui) + pδx̂(ui) +
p2h4

x
720a

δ4
xxx̄x̄u

= fi –
ph2

x
12a

fx +
h2

x
12

fxx –
ph4

x
180a

fxxx +
h4

x
360

fxxxx + O
(
h6

x
)
. (12)

By using the Richardson extrapolations, we get

fx = δx̂(fi) –
h2

x
6

δ3
xx̄x̂(fi) + O

(
h4

x
)
,

fxx = δ2
xx̄(fi) –

h2
x

12
δ4

xxx̄x̄(fi) + O
(
h4

x
)
.

Combine the above equation and Eq. (12) using the second-order difference operator for
the third- and fourth-order derivative; it yields

–
(

a +
p2h2

x
12a

)
δ2

xx̄(ui) + pδx̂(ui) +
p2h4

x
720a

δ4
xxx̄x̄u

= fi –
ph2

x
12a

δx̂(fi) +
h2

x
12

δxx̄(fi) +
ph4

x
120a

δ3
xx̄x̂(fi) –

h4
x

240
δ4

xxx̄x̄(fi) + O
(
h6

x
)
. (13)

The truncation error analysis shows that Eq. (13) is a sixth-order scheme for the con-
vection–diffusion equation (4). Scheme (13) may be named double compact high-order
(DHOC) finite difference scheme. In fact, Eq. (13) can be symbolically formulated as

L–1
x Axui = fi + O

(
h6

x
)
, (14)
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where

Ax = –
(

a +
p2h2

x
12a

)
δ2

xx̄ + pδx̂ +
p2h4

x
720a

δ4
xxx̄x̄,

Lx = 1 –
ph2

x
12a

δx̂ +
h2

x
12

δxx̄ +
ph4

x
120a

δ3
xx̄x̂ –

h4
x

240
δ4

xxx̄x̄.

Notice that the operator L–1
x has symbolic meaning only. By observation, to derive the

higher-order compact scheme for numerical solution of transport problems involving con-
vective and diffusive processes, the symbolic operator approximate technique has been
extensively used (for more details, see [14, 16, 17]. An analogous symbolic sixth-order
compact approximation operator can also be applied for the y variable. Therefore, we de-
fine the difference operator in the y-direction as follows:

Ay = –
(

b +
q2h2

y

12b

)
δ2

yȳ + qδŷ +
q2h4

y

720b
δ4

yyȳȳ,

Ly = 1 –
qh2

y

12b
δŷ +

h2
y

12
δyȳ +

qh4
y

120b
δ3

yȳŷ –
h4

y

240
δ4

yyȳȳ.

This yields

(
L–1

x Ax + L–1
y Ay

)
uij = fij, (15)

when the sixth-order compact difference operators L–1
x Ax and L–1

y Ay are applied to the
unsteady 2D convection–diffusion equation (1). For 2D unsteady convection–diffusion
problem, the term fij can be replaced by –∂u/∂t to obtain

(
∂u
∂t

)

ij
+

(
L–1

x Ax + L–1
y Ay

)
uij = O

(
h6

x
)
, (16)

where O(h6) refers to O(h6
x + h6

y). To complete the discrete scheme, we apply the semi-
discrete approximation technique in [14, 16, 17]. Using the forward Taylor series develop-
ment, we get

un+1
i,j – un

i,j

τ
+

(
L–1

x Ax + L–1
y Ay

)un+1
i,j + un

i,j

2
= O(τ ) + O

(
h6

x
)
. (17)

By applying the commutativity of the difference operators and Taylor expansions with
Eq. (17), we obtain

(
1 +

τ

2
L–1

x Ax

)(
1 +

τ

2
L–1

y Ay

)
un+1 =

(
1 –

τ

2
L–1

x Ax

)(
1 –

τ

2
L–1

y Ay

)
un, (18)

which yields

(
Lx +

τ

2
Ax

)(
Ly +

τ

2
Ay

)
un+1

=
(

Lx –
τ

2
Ax

)(
Ly –

τ

2
Ay

)
un + O

(
τ 3) + O

(
τh6

x + τh6
y
)
, (19)
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when we apply both sides of Eq. (18) with difference operators LxLy. The resulting ap-
proximation Eq. (19) is second-order accurate in time and sixth-order accurate in space.
By introducing an intermediate variable u∗, Eq. (19) can be solved in two steps as follows:

(
Lx +

τ

2
Ax

)
u∗ =

(
Lx –

τ

2
Ax

)(
Ly –

τ

2
Ay

)
un, (20)

(
Ly +

τ

2
Ay

)
un+1 = u∗. (21)

It is worth to notice that the DHOC-ADI scheme (20)–(21) is second-order accurate in
time and sixth-order in space. The solution to the resulting DHOC-ADI schemes can be
computed by solving the one-dimensional penta-diagonal matrix. The boundary condi-
tion for u∗ can be obtained by Eq. (21). Therefore, by considering the boundary conditions
Eq. (2), it is logical to assume that u∗ has the same asymptotic value as boundary as Eq. (2).

3 Solvability and mass-conservative property
3.1 Solvability
The following lemmas and theorems are well-known and elementary results which are
essential for proving the solvability of the new DHOC-ADI scheme (20)–(21).

Lemma 1 For any two mesh functions u, v ∈ Z0
h , we have

〈
δ2

xx̄u, v
〉

=
〈
u, δ2

xx̄v
〉

= –〈δxu, δxv〉, 〈
δ2

yȳu, v
〉

=
〈
u, δ2

yȳv
〉
= –〈δyu, δyv〉,

〈
δ4

xxx̄x̄u, v
〉

=
〈
δ2

xx̄u, δ2
xx̄v

〉
,

〈
δ4

yyȳȳu, v
〉

=
〈
δ2

yȳu, δ2
yȳv

〉
.

Moreover,

〈
δ2

xx̄u, u
〉

= –‖δxu‖2,
〈
δ2

yȳu, u
〉

= –‖δyu‖2,
〈
δ4

xxx̄x̄u, u
〉

= –
∥∥δ2

xx̄u
∥∥2,

〈
δ4

yyȳȳu, u
〉

= –
∥∥δ2

yȳu
∥∥2.

Lemma 2 For any mesh function u ∈ Z0
h , we have

〈δx̂u, u〉 = 0,
〈
δ3

xx̄x̂u, u
〉

= 0,

〈δŷu, u〉 = 0,
〈
δ3

yȳŷu, u
〉

= 0.

Lemma 3 ([29]) For any mesh function u ∈ Z0
h , we have

∥∥δ2
xx̄u

∥∥2 ≤ 4
h2

x
‖δxu‖2 ≤ 16

h4
x
‖u‖2,

∥∥δ2
yȳu

∥∥2 ≤ 4
h2

y
‖δyu‖2 ≤ 16

h4
y
‖u‖2,

and

‖ux̂‖ ≤ ‖ux‖, ‖uŷ‖ ≤ ‖uy‖.
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Theorem 4 There exist un, u∗ ∈ Z0
h satisfying the difference scheme (20)–(21).

Proof It follows from the original problem that u0 satisfies scheme (20)–(21). By using the
mathematical induction, for n ≤ N – 1, assume that there exist u0, u1, . . . , un, with corre-
sponding u∗ in each step, satisfying Eqs. (20)–(21). Next, we prove that there exist un+1,
u∗ satisfying scheme (20)–(21). By considering the homogenous form of Eq. (20)

(
Lx +

τ

2
Ax

)
u∗ = 0, (22)

taking the inner product of Eq. (22) with u∗, we obtain

〈
Lxu∗, u∗〉 +

τ

2
〈
Axu∗, u∗〉 = 0. (23)

By using the boundary conditions, Lemma 1, and Lemma 2, we see that

〈
Axu∗, u∗〉 =

(
a +

p2h2
x

12a

)∥∥δxu∗∥∥2 +
p2h4

x
720a

∥∥δ2
xx̄u∗∥∥2, (24)

〈
Lxu∗, u∗〉 =

∥∥u∗∥∥2 –
h2

x
12

∥∥δxu∗∥∥2 –
h4

x
240

∥∥δ2
xx̄u∗∥∥2. (25)

By using Lemma 3, we have

〈
Lxu∗, u∗〉 ≥ 3

5
∥∥u∗∥∥2,

which yields

τ

2

(
a +

p2h2
x

12a

)∥∥δxu∗∥∥2 +
τp2h4

x
1440a

∥∥δ2
xx̄u∗∥∥2 +

3
5
∥∥u∗∥∥2 ≤ 0,

where Eqs. (24) and (25) are applied in Eq. (22). This implies that

∥∥u∗∥∥ =
∥∥δxu∗∥∥ =

∥∥δ2
xx̄u∗∥∥ = 0.

Hence, it uniquely admits a zero solution satisfying scheme (22). Therefore, u∗ is uniquely
solvable. Repeating the same arguments to the homogenous form of Eq. (21), we can easily
obtain the solvability and the uniqueness of un+1. This completes the proof. �

3.2 Mass-preserving properties
Theorem 5 Suppose u0(x, y) ∈ Zh

0 (Ω), then the finite difference scheme (20)–(21) is con-
servative for discrete mass in the sense of

Qn = hxhy

Mx–1∑

i=1

My–1∑

j=1

un
i,j = Qn–1 = · · · = Q0.
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Proof Multiplying Eq. (21) with hxhy and summing up for i from 1 to Mx – 1 and j from 1
to My – 1, we obtain

hxhy

Mx–1∑

i=1

My–1∑

j=1

Lyun+1 + hxhy
τ

2

Mx–1∑

i=1

My–1∑

j=1

Ayun+1 = hxhy

Mx–1∑

i=1

My–1∑

j=1

u∗
i,j. (26)

According to the boundary conditions, we see that

Mx–1∑

i=1

My–1∑

j=1

δŷun+1
i,j =

1
2hy

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+1 – un+1
i,j–1

)

= 0,

Mx–1∑

i=1

My–1∑

j=1

δ2
yȳun+1

i,j =
1
h2

y

Mx–1∑

i=1

My–1∑

i=1

(
un+1

i,j+1 – 2un+1
i,j + un+1

i,j–1
)

=
1
h2

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+1 – un+1
i,j

)
–

1
h2

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j – un+1
i,j–1

)

= 0,

Mx–1∑

i=1

My–1∑

j=1

δ3
yȳŷun+1

i,j =
1

2h3
y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+2 – 2un+1
i,j+1 + 2un+1

i,j–1 – un+1
i,j–2

)

=
1

2h3
y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+2 – un+1
i,j+1

)
–

1
2h3

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+1 – un+1
i,j–1

)

+
1

2h3
y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j–1 – un+1
i,j–2

)

= 0,

and

Mx–1∑

i=1

My–1∑

j=1

δ4
yyȳȳun+1

i,j =
1
h4

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+2 – 4un+1
i,j+1 + 6un+1

i,j – 4un+1
i,j–1 + un+1

i,j–2
)

=
1
h4

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+2 – un+1
i,j+1

)
–

3
h4

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j+1 – un+1
i,j

)

+
3
h4

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j – un+1
i,j–1

)
–

1
h4

y

Mx–1∑

i=1

My–1∑

j=1

(
un+1

i,j–1 – un+1
i,j–2

)

= 0,

which yield

Mx–1∑

i=1

My–1∑

j=1

Lyun+1
i,j =

Mx–1∑

i=1

My–1∑

j=1

un+1
i,j ,
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Mx–1∑

i=1

My–1∑

j=1

Ayun+1
i,j = 0.

Hence, Eq. (26) gives

hxhy

Mx–1∑

i=1

My–1∑

j=1

un+1
i,j = hxhy

Mx–1∑

i=1

My–1∑

j=1

u∗
i,j. (27)

Next, we again multiply Eq. (20) with hxhy, summing up for i from 1 to Mx – 1 and j from
1 to My – 1, we obtain

hxhy

Mx–1∑

i=1

My–1∑

j=1

Lxu∗
i,j + hxhy

τ

2

Mx–1∑

i=1

My–1∑

j=1

Axu∗
i,j

= hxhy

Mx–1∑

i=1

My–1∑

j=1

(
Lx –

τ

2
Ax

)(
Ly –

τ

2
Ay

)
un

i,j. (28)

Again, by using the boundary conditions, we obtain

Mx–1∑

i=1

My–1∑

j=1

δx̂u∗
i,j = 0,

Mx–1∑

i=1

My–1∑

j=1

δ2
xx̄u∗

i,j = 0,

Mx–1∑

i=1

My–1∑

j=1

δ3
xx̄x̂u∗

i,j = 0,
Mx–1∑

i=1

My–1∑

j=1

δ4
xxx̄x̄u∗

i,j = 0,

which yield

Mx–1∑

i=1

My–1∑

j=1

Lxu∗
i,j =

Mx–1∑

i=1

My–1∑

j=1

u∗
i,j,

Mx–1∑

i=1

My–1∑

j=1

Axu∗
i,j = 0. (29)

Consider the right term of Eq. (28), we see that

Mx–1∑

i=1

My–1∑

j=1

(
Lx –

τ

2
Ax

)(
Ly –

τ

2
Ay

)
un

i,j

=
Mx–1∑

i=1

My–1∑

j=1

LxLyun
i,j –

τ

2

Mx–1∑

i=1

My–1∑

j=1

LxAyun
i,j

–
τ

2

Mx–1∑

i=1

My–1∑

j=1

AxLyun
i,j +

τ 2

4

Mx–1∑

i=1

My–1∑

j=1

AxAyun
i,j. (30)

It is not difficult to see that

Mx–1∑

i=1

My–1∑

j=1

LxAyun
i,j = 0,
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Mx–1∑

i=1

My–1∑

j=1

AxLyun
i,j = 0,

Mx–1∑

i=1

My–1∑

j=1

AxAyun
i,j = 0,

by the fact that

Mx–1∑

i=1

My–1∑

j=1

Axun
i,j =

Mx–1∑

i=1

My–1∑

j=1

Ayun
i,j = 0.

Hence, Eq. (28) gives

hxhy

Mx–1∑

i=1

My–1∑

j=1

u∗
i,j = hxhy

Mx–1∑

i=1

My–1∑

j=1

LxLyun
i,j, (31)

where Eqs. (29) and (30) are used. Consider the right term of Eq. (31) and use the boundary
conditions

Mx–1∑

i=1

My–1∑

j=1

LxLyun
i,j =

Mx–1∑

i=1

My–1∑

j=1

(
1 –

ph2
x

12a
δx̂ +

h2
x

12
δ2

xx̄ +
ph4

x
120a

δ3
xx̄x̂ –

h4
x

240
δ4

xxx̄x̄

)

×
(

1 –
qh2

y

12b
δŷ +

h2
y

12
δ2

yȳ +
qh4

y

120b
δ3

yȳŷ –
h4

y

240
δ4

yyȳȳ

)
un

i,j

=
Mx–1∑

i=1

My–1∑

j=1

un
i,j.

From Eqs. (27) and (31), we finally arrive at

hxhy

Mx–1∑

i=1

My–1∑

j=1

un+1
i,j = hxhy

Mx–1∑

i=1

My–1∑

j=1

u∗
i,j =

Mx–1∑

i=1

My–1∑

j=1

un
i,j,

as desired. �

4 Stability analysis
In this section, we study the stability of the proposed scheme (20)–(21) via the von Neu-
mann method for linear stability analysis. Following the method, we assume that the nu-
merical solution can be expressed by virtue of a Fourier series, whose typical term is

un
i,j = ηn exp

{
I(kθxi + θyj)

}
,

where I =
√

–1, ηn is the amplitude at time level n, and θx = kxθx and θy = kyhy are phase
angles with the wave number kx and ky in the x– and y– directions, respectively. Substi-
tuting the discrete Fourier mode into Eq. (19), the amplification factor G(θx, θy) = ηn+1/ηn

is found to be

∣∣G(θx, θy)
∣∣ =

∣∣gx(θx)
∣∣∣∣gy(θy)

∣∣, (32)
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where gx(θx) is given by

gx(θx) =
(γ1 – γ2) + I(γ3 – γ4)
(γ1 + γ2) + I(γ3 + γ4)

(33)

with

γ1 = 1 –
1
3

sin2
(

θx

2

)
–

1
240

(
16 sin2

(
θx

2

)
– 4 sin2(θx)

)
,

γ2 =
τ

2

[(
a +

p2h2
x

12a

)
4
h2

x
sin2

(
θx

2

)
+

p2

720a

(
16 sin2

(
θx

2

)
– 4 sin2(θx)

)]
,

γ3 = –
phx

12a
sin(θx) +

phx

120a
(
sin(2θx) – 2 sin(θx)

)
,

γ4 =
pτ

2hx
sin(θx).

The other term gy(θy) can be defined in a similar way by replacing x, a, p, and hx with y,
b, q, and hy, respectively, in the above expression. To obtain the stability, it is sufficient to
show that |gx(θx)| ≤ 1 (and also |gy(θy)| ≤ 1), which is equivalent to γ1γ2 + γ3γ4 ≥ 0. Simple
calculations show that

γ1 = 1 –
2
5

sin2
(

θx

2

)
+

1
60

sin2(θx),

γ2 =
τ

2

[(
a +

p2h2
x

12a

)
4
h2

x
sin2

(
θx

2

)
+

p2

45a
sin4

(
θx

2

)]
,

which yields

γ1γ2 =
τ

2

[
1 –

2
5

sin2
(

θx

2

)
+

1
60

sin2(θx)
][(

a +
p2h2

x
12a

)
4
h2

x
sin2

(
θx

2

)
+

p2

45a
sin4

(
θx

2

)]

=
τ

2

[
1 –

2
5

sin2
(

θx

2

)
+

1
60

sin2(θx)
][

4a
h2

x
sin2

(
θx

2

)
+

p2

45a
sin4

(
θx

2

)]

+
τp2

2a

(
1
3

sin2
(

θx

2

)
–

2
15

sin4
(

θx

2

))
+

p2

180a
sin2

(
θx

2

)
sin4(θx). (34)

Consider

γ3γ4 =
τp2

2a

[
–

1
10

sin2(θx) +
2

120
sin2(θx) cos(θx)

]

=
τp2

2a

[
–

1
10

sin2(θx) +
2

120
sin2(θx) –

4
120

sin2(θx) sin2
(

θx

2

)]

=
τp2

2a

[
–

1
12

sin2(θx) –
16

120

(
1 – sin2

(
θx

2

))
sin4

(
θx

2

)]

=
τp2

2a

[
–

1
12

sin2(θx) –
16

120
sin4

(
θx

2

)
+

16
120

sin6
(

θx

2

)]

=
τp2

2a

[
–

1
3

sin2
(

θx

2

)
+

24
120

sin4
(

θx

2

)
+

16
120

sin6
(

θx

2

)]
. (35)
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From Eqs. (34)–(35), they give

γ1γ2 + γ3γ4 =
τ

2

[
1 –

2
5

sin2
(

θx

2

)
+

1
60

sin2(θx)
][

4a
h2

x
sin2

(
θx

2

)
+

p2

45a
sin4

(
θx

2

)]

+
p2

180a
sin2

(
θx

2

)
sin4(θx) +

τp2

2a

[
1

15
sin4

(
θx

2

)
+

16
120

sin6
(

θx

2

)]
.

Hence γ1γ2 + γ3γ4 ≥ 0, it follows that |gx(θx)| ≤ 1 for all θx ∈ [–π ,π ]. In a similar way, we
also have an inequality for gy(θy). We then conclude that the present scheme is uncondi-
tionally stable.

5 Numerical experiment
For verifying the effectiveness and correctness of our theoretical results in the previous
sections, several numerical experiments are performed in this section and compared with
some existing schemes in the recent literature [14, 16, 17, 30–32]. The comparison of nu-
merical solutions with the exact solutions can prove the accuracy of the method, and then
the rate of convergence can be measured by using the ratio

Rate = log2

(
Error1

Error2

)
,

where Error1 and Error2 are the norm errors relevant with the grid sizes h and h/2, re-
spectively.

5.1 1D convection–diffusion equation
Consider the 1D convection–diffusion equation

ut + pux – auxx = 0, (36)

whose analytic solution is of the form

u(x, t) =
(√

20
20 + t

)
exp

(
–

(x – 2 – pt)2

4a(20 + t)

)
,

where the boundary condition is from the above analytic solution.
In the simulations, we take the computational domain in the interval [–12, 28] with

p = 0.8 and a = 0.1. Adapted into the 1D case, the comparison of numerical results us-
ing the implementation of the present ADI scheme and the similar approach of ADI, such
as the Karaa and Zhang ADI (HOC-ADI) scheme [14], the Tian and Ge ADI (EHOC-ADI)
scheme [16], and the rational higher-order compact ADI (RHOC-ADI) [17], is given in Ta-
bles 1 and 2. In Table 1, to neglect the error domination in terms of temporal step size for
verifying only the spatial sixth-order accuracy, we choose the value of τ to be sufficiently
small as of 0.0001. The final time T is set to be 5. The rate of convergence is approximately
6 for the proposed DHOC-ADI which is in good agreement as to the theoretical predic-
tion. However, for the HOC-ADI, EHOC-ADI, and RHOC-ADI, the rate of convergence
is approximately 4 due to the limitation of those schemes. When h reduces to 0.1, both
L2 and L∞ error norms obtained by the proposed ADI scheme provide more accuracy
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Table 1 The error norms of numerical solutions and the rate of convergence in space where
τ = 0.0001

h L2 error norm Rate L∞ error norm Rate

DHOC-ADI 0.8 1.83952× 10–3 – 1.04192× 10–3 –
0.4 3.29634× 10–5 5.80232 1.93998× 10–5 5.74705
0.2 5.22365× 10–7 5.97966 3.08672× 10–7 5.97382
0.1 8.12295× 10–9 6.00691 4.79173× 10–9 6.00938

HOC-ADI [14] 0.8 1.52825× 10–2 – 8.55117× 10–3 –
0.4 1.04708× 10–3 3.86744 6.11681× 10–4 3.80527
0.2 6.58088× 10–5 3.99194 3.87684× 10–5 3.97983
0.1 4.11305× 10–6 4.00000 2.42285× 10–6 4.00011

EHOC-ADI [16] 0.8 1.21641× 10–2 – 6.56784× 10–3 –
0.4 1.07036× 10–3 3.50660 6.25626× 10–4 3.39207
0.2 7.51890× 10–5 3.83129 4.42441× 10–5 3.82172
0.1 4.85407× 10–6 3.95328 2.85767× 10–6 3.95263

RHOC ADI [17] 0.8 2.46040× 10–3 – 1.42352× 10–3 –
0.4 1.35129× 10–3 0.86456 7.91705× 10–4 0.84643
0.2 1.90001× 10–4 2.83025 1.11645× 10–4 2.82604
0.1 9.20647× 10–6 4.36722 5.41556× 10–6 4.36567

Table 2 The error norms of numerical solutions and the rate of convergence in time where h = 0.01

τ L2 error norm Rate L∞ error norm Rate

DHOC-ADI 0.1 4.72724× 10–4 – 2.40082× 10–4 –
0.05 1.18218× 10–4 1.99955 6.00246× 10–5 1.99990
0.025 2.95567× 10–5 1.99989 1.50064× 10–5 1.99998
0.0125 7.38933× 10–6 1.99997 3.75162× 10–6 1.99999

HOC-ADI [14] 0.1 4.72724× 10–4 – 2.40082× 10–4 –
0.05 1.18218× 10–4 1.99955 6.00246× 10–5 1.99990
0.025 2.95567× 10–5 1.99989 1.50064× 10–5 1.99998
0.0125 7.38927× 10–6 1.99998 3.75159× 10–6 2.00000

EHOC-ADI [16] 0.1 4.72724× 10–4 – 2.40082× 10–4 –
0.05 1.18218× 10–4 1.99955 6.00246× 10–5 1.99990
0.025 2.95567× 10–5 1.99989 1.50064× 10–5 1.99998
0.0125 7.38925× 10–6 1.99998 3.75157× 10–6 2.00001

RHOC-ADI [17] 0.1 4.72724× 10–4 – 2.40082× 10–4 –
0.05 1.18218× 10–4 1.99955 6.00246× 10–5 1.99990
0.025 2.95566× 10–5 1.99989 1.50063× 10–5 1.99998
0.0125 7.38915× 10–6 2.00000 3.75151× 10–6 2.00003

than others up to three digits. Especially, the most accurate simulation obtained from our
method is with the choices for which the L∞ error norm is less than 4.80 × 10–9, while the
most accurate simulation of other methods can be reduced to only 2.43 × 10–6. In conclu-
sion, we see that the proposed DHOC-ADI scheme in this paper provided more accurate
results in comparison with others.

To verify the rate of convergence in time, one can have the fixed value of the spatial step
size h = 0.01. It is clearly seen that all schemes provide the second-order rate of conver-
gence which is close to the theoretical prediction, as recorded in Table 2. However, no
significant difference between results obtained by our method and the ones obtained by
other methods can be observed in these cases.

Next, we consider the absolute errors on the interval [0, 1] at different locations and
make a comparison with those mentioned ADI schemes and other recorded results pro-
posed in [30–32] including the cubic B-spline method [30], the weighted finite difference
method [31], and the exponential B-spline method [32]. The results are reported in Ta-
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Table 3 Absolute errors (×10–9) at different locations at t = 5 for Example 1

h τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DHOC-ADI 0.01 0.001 4.54 4.81 5.07 5.33 5.57 5.80 6.01 6.19 6.33
0.1 0.0001 0.75 0.83 0.90 0.97 0.10 0.11 0.11 0.12 0.12

HOC-ADI [14] 0.01 0.001 4.59 4.86 5.13 5.38 5.62 5.84 6.04 6.21 6.35
0.1 0.0001 273 262 248 229 206 177 143 104 58.8

EHOC-ADI [16] 0.01 0.001 4.60 4.87 5.13 5.38 5.62 5.84 6.04 6.21 6.35
0.1 0.0001 316 302 283 259 229 192 150 100 44.6

RHOC-ADI [17] 0.01 0.001 4.62 4.88 5.14 5.40 5.63 5.85 6.04 6.21 6.34
0.1 0.0001 571 535 488 430 361 280 187 81.3 37.3

Nazir [30] 0.01 0.001 0.88 1.45 1.68 1.54 1.02 1.98 7.68 1.54 1.56
Dehghan [31] 0.01 0.001 0.91 1.54 1.84 1.77 1.33 0.56 0.38 1.18 1.31
Mohammadi [32] 0.01 0.001 1.73 1.02 0.39 1.96 3.59 5.25 6.94 8.57 9.13

Figure 1 The numerical solution at the final time T = 5 with h = 0.1 and τ = 0.0001

ble 3. It can be seen from Table 3 that the numerical solutions obtained with the methods
in [30–32] are more accurate than those obtained with HOC-ADI schemes in the case of
h = 0.01 and τ = 0.001. However, when the coarse grid size h = 0.1 and the smaller tempo-
ral step size τ = 0.0001 are used, the great numerical resolution is obtained by the present
ADI method, while other ADI methods give very poor results. That is, the present scheme
can give accurate solutions comparable with solutions by the methods in [30–32] when the
step size τ is small enough even when using the coarse grid size h.

We also provide the distribution of the Gaussian pulse in Fig. 1, which is in excellent
agreement with the exact solutions, especially the sub-plot (top) in the sub-interval [0, 1].
The corresponding absolute error distribution is presented in the sub-plot (bottom).

5.2 2D convection–diffusion equation
Consider the 2D convection–diffusion equation

ut + pux + quy – auxx – buyy = 0. (37)

The analytic solution is given, as in [33], by

u(x, y, t) =
1

4t + 1
exp

[
–

(x – pt – 0.5)2

a(4t + 1)
–

(y – qt – 0.5)2

b(4t + 1)

]
, (38)

where the boundary and initial conditions can be taken directly from Eq. (38).
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Table 4 The error norms of numerical solutions and the rate of convergence in space where
τ = 2.5× 10–6

hx = hy L2 error norm Rate L∞ error norm Rate

DHOC-ADI 0.2 2.47422× 10–2 – 6.68806× 10–2 –
0.1 2.02976× 10–3 3.60759 9.10817× 10–3 2.87635
0.05 5.75054× 10–5 5.14146 3.05154× 10–4 4.89955
0.025 1.12116× 10–6 5.68064 5.26134× 10–6 5.85796

hx = hy ‖ · ‖ Rate ‖ · ‖∞ Rate

HOC-ADI 0.2 3.10477× 10–2 – 8.14136× 10–2 –
0.1 6.97094× 10–3 2.15506 3.07207× 10–2 1.40606
0.05 7.18499× 10–4 3.27829 3.63248× 10–3 3.08019
0.025 4.74734× 10–5 3.91979 2.43081× 10–4 3.90144

Table 5 The error norms of numerical solutions and the rate of convergence in time where
hx = hy = 0.01

τ ‖ · ‖ Rate ‖ · ‖∞ Rate

DHOC-ADI 0.1 2.13489× 10–2 – 8.43103× 10–2 –
0.05 2.67308× 10–3 2.99758 1.15578× 10–2 2.86684
0.025 6.60480× 10–4 2.01692 2.76702× 10–3 2.06247
0.0125 1.64559× 10–4 2.00491 6.84316× 10–4 2.01560

τ ‖ · ‖ Rate ‖ · ‖∞ Rate

HOC-ADI 0.1 2.13481× 10–2 – 8.43028× 10–2 –
0.05 2.67269× 10–3 2.99774 1.15540× 10–2 2.86718
0.025 6.60210× 10–4 2.01730 2.76494× 10–3 2.06308
0.0125 1.64320× 10–4 2.00642 6.81863× 10–4 2.01969

In our experiments, we set the computational domain to be (x, y, t) ∈ [–1, 3] × [–1, 3] ×
(0, T]. First, we employed the present scheme in Eqs. (20)–(21) for a = b = 0.01 and
p = q = 0.8 in our simulations. To explore the efficiency of the proposed DHOC-ADI
scheme, we provide the comparison of numerical results using the present DHOC-ADI
scheme and the original HOC-ADI scheme, which are given in Tables 4 and 5. Besides,
to show the accuracy of the scheme proposed here, a temporal step size is chosen to be
sufficiently small as τ = 2.5 × 10–6 so that it does not have impact on the accuracy in space
while the fine grid hx = hy = 0.01 is chosen to verify the accuracy in time. The simula-
tions run up to T = 1.25. Numerical results in terms of errors and rates of convergence
are listed in Tables 4 and 5. In Table 4, the rate of convergence of the DHOC-ADI scheme
in space tends to 6 as reported, when hx = hy = 0.2, 0.1, 0.02, and 0.025, while the rate of
convergence in space of the HOC-ADI scheme seems to be 4, the same as the theoretical
prediction. In Table 5, the errors and rates of convergence in time are reported, where
τ = 0.1, 0.05, 0.025, and 0.0125 are used. From the table, we may see that the convergence
rate obtained by the present DHOC-ADI scheme and the HOC-ADI scheme is 2, which
is expected to confirm the theoretical prediction. In terms of the grid point number, the
computational performance of the new DHOC-ADI scheme is clearly better than that of
the HOC-ADI schemes. That is, the results of our DHOC-ADI scheme show improvement
over the HOC-ADI scheme. Especially, our DHOC-ADI scheme can reduce errors from
the HOC-ADI scheme up to 97% in the case hx = hy = 0.025 and τ = 2.5 × 10–6. However,
in terms of the temporal grid point number, the L2 and L∞ error norms are comparable
and no significant improvement is noticed.
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Table 6 Comparison errors at T = 1.25 with different hx , hy , and τ

hx = hy τ Average error L∞ norm error

DHOC-ADI 0.05 0.0125 1.99× 10–3 8.98× 10–3

0.00625 3.81× 10–5 2.49× 10–4

0.025 0.0125 1.10× 10–4 6.84× 10–4

0.0001 6.17× 10–7 4.98× 10–6

HOC-ADI 0.05 0.0125 4.48× 10–4 3.32× 10–3

0.00625 4.66× 10–4 3.56× 10–3

0.025 0.0125 1.06× 10–4 6.19× 10–4

0.0001 3.07× 10–5 2.43× 10–4

EHOC-ADI 0.05 0.0125 4.31× 10–4 3.18× 10–3

0.00625 4.66× 10–4 3.41× 10–3

0.025 0.0125 1.06× 10–4 6.09× 10–4

0.0001 3.42× 10–5 2.69× 10–4

RHOC-ADI 0.05 0.0125 2.84× 10–4 2.09× 10–3

0.00625 2.88× 10–4 2.19× 10–3

0.025 0.0125 8.39× 10–5 6.54× 10–4

0.0001 9.04× 10–5 7.16× 10–4

FTCS 0.025 0.0125 3.94× 10–3 1.21× 10–1

Upwind 0.025 0.0125 2.65× 10–3 6.63× 10–1

Kalita et al. (9, 5) [34] 0.025 0.0125 1.49× 10–3 3.74× 10–2

Kalita et al. (5, 9) [34] 0.025 0.0125 1.02× 10–3 2.25× 10–2

Kalita et al. (9, 9) [34] 0.025 0.0125 5.24× 10–5 1.19× 10–3

Kalita et al. [35] 0.025 0.0125 7.77× 10–5 1.69× 10–3

Noye and Tan [33] 0.025 0.0125 1.43× 10–5 4.84× 10–4

We also listed the comparison on errors versus the recorded results [33–35] using the av-
erage error and the L∞ norm error with the same parameters a = b = 0.01 and p = q = 0.8
at final time T = 1.25 in Table 6. One can find that the computational efficiency of the
DHOD-ADI scheme satisfies in the case hx = hy = 0.025 with τ = 0.0125. Moreover, when
the coarse grid hx = hy = 0.05 and τ = 0.00625 are used, the error obtained by present ADI
scheme is much better than the that by other ADI schemes and is considered as a compa-
rable accurate solution with the recorded ones. In addition, the most accurate simulation
as obtained from our scheme is with the choice hx = hy = 0.025 and τ = 0.0001 for which
the average error and L∞ norm error is less than 4.98 × 10–6, which is clearly better than
others.

Figure 2 presents the numerical solutions and its obtained contours based on the present
DHOC-ADI scheme within the sub-region [1, 2] × [1, 2] at T = 1.25, where hx = hy = 0.05,
τ = 0.00625 (top) and hx = hy = 0.025, τ = 0.00001 (bottom) used. The contour plots of the
analytic and computed pulses in the sub-region [1, 2] × [1, 2] capture the moving pulse
very well and are almost visually indistinguishable from the exact solution.

The absolute error distributions and the contour plots are shown in Fig. 3. It can be
observed that the maximum error is taken around the peak amplitude of the Gaussian
pulse in both cases. However, using coarse grid sizes hx = hy = 0.05 and τ = 0.00625, one
can observe that errors occur a lot at the bottom left of the pulse base.

As observed in Table 3, in 1D case, the numerical resolution can be made by choosing
a small time step; even coarse grid spacing is used. Also, as reported in Table 6, one can
see that the most accurate solution is obtained when small temporal step size is used.
Figure 4 shows errors obtained by the present ADI scheme and mentioned ADI schemes
as a function of time step. From the simulations, the errors can be improved when the
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Figure 2 Numerical solutions and their contour obtained by the DHOC-ADI scheme using hx = hy = 0.05,
τ = 0.00625 (top) and h = 0.025, τ = 0.0001 (bottom)

Figure 3 Absolute error and its contour by the DHOC-ADI scheme using hx = hy = 0.05, τ = 0.00625 (top) and
hx = hy = 0.025, τ = 0.0001 (bottom)
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Figure 4 The errors of numerical solutions using hx = hy = 0.05 under different temporal step sizes

Table 7 Quantities Qn under different step sizes hx , hy , and τ at various time

t hx = hy = 0.01, τ = 0.0125 hx = hy = 0.05, τ = 2.5× 10–6

Qn |Qn – Q(0)| Qn |Qn –Q(0)|
0 0.0314159265 – 0.0314159265 –
0.25 0.0314159265 1.36696× 10–15 0.0314159265 1.00833× 10–12

0.50 0.0314159265 2.27596× 10–15 0.0314159265 2.06732× 10–12

0.75 0.0314159265 2.65066× 10–15 0.0314159265 3.13927× 10–12

1.00 0.0314159265 4.42701× 10–15 0.0314159265 4.20146× 10–12

1.25 0.0314159265 5.66908× 10–15 0.0314159265 5.24557× 10–12

time step is decreased as we expected. The performance of the DHOC-ADI scheme is
clearly better than that of others. However, the error slightly increases as the time step is
decreased less than τ = 0.0625, presumably because of the increase in round-off error.

Next, the proposed DHOC-ADI scheme is applied to verify the conservation of the nu-
merical model. It results from the present method in case hx = hy = 0.01, τ = 0.025 and
hx = hy = 0.05, τ = 2.5 × 10–6 that the values of Qn at any time t ∈ [0, 1.25] coincide with
Theorem 5 as presented in Table 7. The results show that the mobility constant slightly
differs from the exact value by less than 5.7 × 10–15 when hx = hy = 0.01 and τ = 0.025 is
used while less than 5.3 × 10–12 when hx = hy = 0.05 and τ = 2.5 × 10–6.

To explore the superiority of the present ADI scheme, the numerical simulation at a
high Reynolds number is the major indicator as studied before in [15, 17]. Here, three
cases of Reynolds numbers are presented: Pe = 100, 1000, and 10,000, corresponding to the
convective velocities p = q = 100, p = q = 1000, and p = q = 10,000, respectively. The value
of viscosity coefficients is set to be a = b = 0.01. As previously observed, the numerical
resolution can be achieved when the temporal step size is sufficiently small as shown in
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Fig. 4. We then choose the temporal step size of τ = 2.5 × 10–5, 2.5 × 10–6, and 2.5 × 10–7

for Pe = 100, Pe = 1000, and Pe = 10,000, respectively. To compare the accuracy of the
numerical solution, the spatial step size hx = hy = 0.01 is used.

The numerical solutions against the exact solution in the sub-region 1.2 ≤ x, y ≤ 1.8 for
each test carried out are plotted in Figs. 5–7, where the solid line indicates the exact solu-
tion and the dash-dot line indicates the numerical solutions. Results of the cases present
the moving center of the initial Gaussian pulse from (0.5, 0.5) to (1.5, 1.5). The numerical
solutions obtained by the presented DHOC-ADI and the RHOC-ADI schemes produce
the solution that is in good agreement with the exact solution for all cases (see Figs. 5–
7(a), (d)), while small pulse distortion can be observed by the EHOC-ADI scheme (see
Figs. 5–7(c)). However, the HOD-ADI scheme produces a noticeable dissipated solution,
which can be observed from Figs. 5–7(b) with the same agreement as [15, 17]. Thus, it
is worth noting that at the high Reynolds numbers the present scheme produces better
results than the HOC-ADI scheme does.

Table 8 reports the average error, the L2 norms error, and the L∞ norms error using
Pe = 100, 1000, and 10,000. The results from the present DHOC-ADI scheme are com-
pared with those from the HOC-ADI scheme, the EHOC-ADI scheme, and the RHOC-
ADI scheme. It is clear that our scheme can reduce errors from other ADI schemes. Es-
pecially, the present DHOC-ADI scheme obtains over 90% less error than the HOC-ADI
scheme does and up to approximately 95% when Pe = 10,000. Again, in terms of errors,
this clearly shows that the DHOC-ADI scheme provides more incredible resolution than
the standard HOC-ADI scheme. Finally, the computations using the DHOC-ADI scheme

Figure 5 Contour lines of pulses in the sub-region 1.2≤ x, y ≤ 1.8 at final time t = 0.01 with Pe = 100 and
τ = 2.5× 10–5: (a) exact and present DHOD-ADI, (b) exact and HOC-ADI, (c) exact and EHOC-ADI, and
(d) exact and RHOC-ADI. Dash-dot contour lines in (a)–(d) correspond to numerical solutions



Wongsaijai et al. Advances in Difference Equations        (2020) 2020:513 Page 21 of 24

Figure 6 Contour lines of pulses in the sub-region 1.2≤ x, y ≤ 1.8 at final time t = 0.001 with Pe = 1000 and
τ = 2.5× 10–6: (a) exact and present DHOD-ADI, (b) exact and HOC-ADI, (c) exact and EHOC-ADI, and
(d) exact and RHOC-ADI. Dash-dot contour lines in (a)–(d) correspond to numerical solutions

Figure 7 Contour lines of pulses in the sub-region 1.2≤ x, y ≤ 1.8 at final time t = 0.0001 with Pe = 10,000
and τ = 2.5× 10–7: (a) exact and present DHOD-ADI, (b) exact and HOC-ADI, (c) exact and EHOC-ADI, and
(d) exact and RHOC-ADI. Dash-dot contour lines in (a)–(d) correspond to numerical solutions
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Table 8 Errors of numerical solutions using hx = hy = 0.01 with different Pe

Method Average error L2 norm error L∞ norm error

Pe = 100
t = 0.01 DHOC-ADI 8.05924× 10–5 2.75150× 10–4 2.32611× 10–3

τ = 2.5× 10–5 HOC-ADI 1.25123× 10–3 4.37851× 10–3 4.70167× 10–2

EHOC-ADI 2.01865× 10–4 7.43597× 10–4 8.83915× 10–3

RHOC-ADI 9.64574× 10–5 3.54495× 10–4 3.20386× 10–3

Pe = 1000
t = 0.001 DHOC-ADI 8.06267× 10–5 2.79187× 10–4 2.32880× 10–3

τ = 2.5× 10–6 HOC-ADI 1.45299× 10–3 5.31763× 10–3 4.90389× 10–2

EHOC-ADI 2.16272× 10–4 8.09967× 10–4 9.79204× 10–3

RHOC-ADI 1.01878× 10–4 3.81345× 10–4 3.51572× 10–3

Pe = 10,000
t = 0.0001 DHOC-ADI 8.09330× 10–5 2.80772× 10–4 2.33917× 10–3

τ = 2.5× 10–7 HOC-ADI 1.46509× 10–3 5.38039× 10–3 4.89280× 10–2

EHOC-ADI 2.17773× 10–4 8.16985× 10–4 9.89365× 10–3

RHOC-ADI 1.02455× 10–4 3.84194× 10–4 3.54963× 10–3

Figure 8 Numerical solutions (top) and absolute errors (bottom) in sub-region 1.2 ≤ x, y ≤ 1.8 with different
Pe

in three cases of Reynolds numbers Pe = 100, 1000, and 10,000 at final time t = 0.01,
t = 0.001, and t = 0.0001, respectively are shown in Fig. 8.

6 Concluding remarks
In this paper, with the help of the Richardson extrapolation and the technique used in [14],
we proposed a new high-order alternating direction implicit (DHOC-ADI) method for
solving 2D unsteady convection–diffusion equations which inherit the mass-preserving
property. The method is second-order in time and sixth-order in space and the uncondi-
tional stability was proved through a discrete Fourier analysis. Numerical studies were car-
ried out in both 1D and 2D cases to demonstrate the accuracy and superiority over some
existing schemes. In the 2D case, the DHOC-ADI scheme gave high accurate solutions and
preserved the mass exactly. Additionally, it is obvious that moving of the Gaussian pulse
by the proposed scheme can be smoothed out at high Reynolds numbers, which is supe-
rior to the classical HOC-ADI scheme. Furthermore, the multi-dimensional convection–
diffusion equation can be easily extended by a similar approach.
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