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Abstract
The aim of this work is to present a new fractional order model of novel coronavirus
(nCoV-2019) under Caputo–Fabrizio derivative. We make use of fixed point theory
and Picard–Lindelöf technique to explore the existence and uniqueness of solution
for the proposed model. Moreover, we explore the generalized Hyers–Ulam stability
of the model using Gronwall’s inequality.

Keywords: Fractional Caputo–Fabrizio derivative; Novel coronavirus (nCoV-2019);
Picard–Lindelöf technique

1 Introduction and preliminaries
Fractional calculus plays an important role for the mathematical modeling in many scien-
tific and engineering disciplines. For detailed study, we refer the readers to [1–14] and the
references cited therein.

In the early literature, fractional derivatives in the sense of Riemann–Liouville and of
Caputo were used widely. Recent studies showed that at the boundary points of the interval
on which the order of derivative is based, the kernels of these derivatives have a singularity.
To overcome such problems, fractional derivatives have been generalized in many other
ways. For details, we refer to [15–23].

After the outbreak of novel coronavirus (nCoV-2019) on December 31, 2020, researchers
started working to find the cure of the virus. Due the importance of mathematical mod-
eling, Chen et al. [24] and Khan and Atangana [25] proposed the coronavirus models in-
dependently. In this paper, we generalize the novel coronavirus (nVoC-2019) model pro-
posed by Khan and Atangana [25] by utilizing the Caputo–Fabrizio fractional derivative
and explore the existence and uniqueness of its solution using fixed point theory. Also, we
present the generalized Hyers–Ulam stability of it.

We now give some basic definitions which are used in the sequel.
The definition of Caputo fractional derivative can be found in many books (see, e.g., [2]).
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Definition 1 For a differentiable function h, the Caputo derivative of order γ ∈ (0, 1) is
defined by

CDγ h(t) =
1

Γ (n – γ )

∫ t

0
h′(s)

1
(t – s)γ

ds. (1)

Definition 2 ([17]) Let h ∈ H1(a, b), a < b, a ∈ (–∞, t), and γ ∈ (0, 1); then the γ th-order
Caputo–Fabrizio derivative of h in the Caputo sense is given as

CFDγ h(t) =
M(γ )

(1 – γ )

∫ t

a
h′(s) exp

[
–

α

1 – α
(t – s)

]
ds, (2)

where M(γ ) is a normalizing function depending on γ such that M(0) = M(1) = 1.

Definition 3 ([26]) The corresponding fractional integral in the Caputo–Fabrizio sense
is given by

CFIγ h(t) =
(1 – γ )
M(γ )

h(t) +
γ

M(γ )

∫ t

a
h(s) ds, 0 < γ < 1. (3)

2 Fractional model in the Caputo–Fabrizio sense
Very recently, Khan and Atangana [25] proposed a mathematical model of a novel corona
virus (COVID-19) as follows:

dSp

dt
=

∧
p

–ωpSp –
ζpSp(Ip + Ψ Ap)

Np
– ωwSpM,

dEp

dt
=

ζpSp(Ip + Ψ Ap)
Np

+ ωwSpM – (1 – Θp)ηpEp – Θp
pEp – Θp
pEp – ωpEp,

dIp

dt
= (1 – Θp)ηpEp – (τp – ωp)Ip,

dAp

dt
= Θp
PEp – (τap – ωp)Ap,

dRp

dt
= τpIp + τapAp – ωpRp,

dM

dt
= φpIp + pAp – ϕM,

(4)

with the initial conditions

Sp(0) = Sp(0) ≥ 0, Ep(0) = Ep(0) ≥ 0, Ip(0) = Ip(0) ≥ 0,

Ap(0) = Ap(0) ≥ 0, Rp(0) = Rp(0) ≥ 0, M(0) = M(0) ≥ 0.

They generalized the model to a fractional order model using Atangana–Baleanu deriva-
tive and solved the model numerically.

In this paper, we replace Atangana–Baleanu derivative with Caputo–Fabrizio fractional
derivative and generalize model (4) in the following way:

CFDγ Sp =
∧

p
–ωpSp –

ζpSp(Ip + Ψ Ap)
Np

– ωwSpM,
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CFDγ Ep =
ζpSp(Ip + Ψ Ap)

Np
+ ωwSpM – (1 – Θp)ηpEp – Θp
pEp – Θp
pEp – ωpEp,

CFDγ Ip = (1 – Θp)ηpEp – (τp – ωp)Ip,
CFDγ Ap = Θp
PEp – (τap – ωp)Ap,

(5)

CFDγ Rp = τpIp + τapAp – ωpRp,
CFDγ M = φpIp + pAp – ϕM,

where γ denotes the fractional order parameter and the model variables in (4) are non-
negative, the initial conditions are given by

Sp(0) = Sp(0) ≥ 0, Ep(0) = Ep(0) ≥ 0, Ip(0) = Ip(0) ≥ 0,

Ap(0) = Ap(0) ≥ 0, Rp(0) = Rp(0) ≥ 0, M(0) = M(0) ≥ 0.

Using the initial conditions and fractional integral operator, we convert model (5) into the
following integral equations:

Sp(t) – Sp(0) = CFIγ

[∧
p

–ωpSp –
ζpSp(Ip + Ψ Ap)

Np
– ωwSpM

]
,

Ep(t) – Ep(0) = CFIγ

[
ζpSp(Ip + Ψ Ap)

Np
+ ωwSpM – (1 – Θp)ηpEp

– Θp
pEp – Θp
pEp – ωpEp

]
,

Ip(t) – Ip(0) = CFIγ
[
(1 – Θp)ηpEp – (τp – ωp)Ip

]
,

Ap(t) – Ap(0) = CFIγ
[
Θp
PEp – (τap – ωp)Ap

]
,

Rp(t) – Rp(0) = CFIγ [τpIp + τapAp – ωpRp],

M(t) – M(0) = CFIγ [φpIp + pAp – ϕM].

(6)

For the sake of convenience, we assume the kernels

K1(t,Sp) =
∧

p
–ωpSp(t) –

ζpSp(t)(Ip(t) + Ψ Ap(t))
Np(t)

– ωwSp(t)M(t),

K2(t,Ep) =
ζpSp(t)(Ip(t) + Ψ Ap(t))

Np(t)
+ ωwSp(t)M(t) – (1 – Θp)ηpEp(t) – Θp
pEp(t)

– Θp
pEp(t) – ωpEp(t),

K3(t,Ip) = (1 – Θp)ηpEp(t) – (τp – ωp)Ip(t),

K4(t,Ap) = Θp
PEp(t) – (τap – ωp)Ap(t),

K5(t,Rp) = τpIp(t) + τapAp(t) – ωpRp(t),

K6(t,M) = φpIp(t) + pAp(t) – ϕM(t)

(7)
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and the functions

Υ (γ ) =
1 – γ

M(γ )
, Φ(γ ) =

γ

M(γ )
. (8)

Using (3), (7), and (8) in (6) and writing state variables in terms of kernels, we obtain

Sp(t) = Sp(0) + Υ (γ )K1(t,Sp) + Φ(γ )
∫ t

a
K1(x,Sp) dx,

Ep(t) = Ep(0) + Υ (γ )K2(t,Ep) + Φ(γ )
∫ t

a
K2(x,Ep) dx,

Ip(t) = Ip(0) + Υ (γ )K3(t,Ip) + Φ(γ )
∫ t

a
K3(x,Ip) dx,

Ap(t) = Ap(0) + Υ (γ )K4(t,Ap) + Φ(γ )
∫ t

a
K4(x,Ap) dx,

Rp(t) = Rp(0) + Υ (γ )K5(t,Rp) + Φ(γ )
∫ t

a
K5(x,Rp) dx,

M(t) = M(0) + Υ (γ )K6(t,M) + Φ(γ )
∫ t

a
K6(x,M) dx.

(9)

The Picard iterations are given by

S j+1
p (t) = Υ (γ )K1

(
t,S j

p
)

+ Φ(γ1)
∫ t

a
K1

(
x,S j

p
)

dx,

E j+1
p (t) = Υ (γ2)K2

(
t,E j

p
)

+ Φ(γ2)
∫ t

a
K2

(
x,E j

p
)

dx,

Ij+1
p (t) = Υ (γ3)K3

(
t,Ij

p
)

+ Φ(γ3)
∫ t

a
K3

(
x,Ij

p
)

dx,

Aj+1
p (t) = Υ (γ4)K4

(
t,Aj

p
)

+ Φ(γ4)
∫ t

a
K4

(
x,Aj

p
)

dx,

Rj+1
p (t) = Υ (γ5)K5

(
t,Rj

p
)

+ Φ(γ5)
∫ t

a
K5

(
x,Rj

p
)

dx,

Mj+1(t) = Υ (γ6)K6
(
t,Mj) + Φ(γ6)

∫ t

a
K6

(
x,Mj)dx.

(10)

In order to show the existence and uniqueness of solution of model (5), we make use of
fixed point theory and Picard–Lindelöf technique. First, we re-write model (5) in the fol-
lowing way:

⎧⎨
⎩

CFDγ ψ(t) = K(t,ψ(t)),

ψ(0) = ψ0, 0 < t < T < ∞.
(11)
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The vector ψ(t) = (Sp,Ep,Ip,Ap,Rp,M) and K in (10) represent the state variables and a
continuous vector function respectively defined as follows:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1

K2

K3

K4

K6

K6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∧
p –ωpSp(t) – ζpSp(t)(Ip(t)+Ψ Ap(t))

Np(t) – ωwSp(t)M(t)
ζpSp(t)(Ip(t)+Ψ Ap(t))

Np(t) + ωwSp(t)M(t) – (1 – Θp)ηpEp(t) – Θp
pEp(t)
–Θp
pEp(t) – ωpEp(t)

(1 – Θp)ηpEp(t) – (τp – ωp)Ip(t)
Θp
PEp(t) – (τap – ωp)Ap(t)
τpIp(t) + τapAp(t) – ωpRp(t)
φpIp(t) + pAp(t) – ϕM(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

with the initial conditions ψ0(t) = (Sp(0),Ep(0),Ip(0),Ap(0),Rp(0),M(0)). Corresponding
to (11), the integral equation is given by

ψ(t) = ψ0 + Υ (γ )K
(
t,ψ(t)

)
+ Φ(γ )

∫ t

a
K

(
x,ψ(x)

)
dx. (13)

Moreover, K satisfies the Lipschitz condition given by

∥∥K
(
t,ψ1(t)

)
– K

(
t,ψ2(t)

)∥∥ ≤ Ω
∥∥ψ1(t) – ψ2(t)

∥∥. (14)

Theorem 1 Assuming (14), there exists a unique solution of (11) if

(
Υ (γ ) + TΦ(γ )

)
Ω < 1. (15)

Proof Consider A = [0, T], X = C(A,R6) and the Picard operator T : X →X defined by

T
[
ψ(t)

]
= ψ0 + Υ (γ )K

(
t,ψ(t)

)
+ Φ(γ )

∫ t

0
K

(
x,ψ(x)

)
dx, (16)

which turns equation (13) to

ψ(t) = T
[
ψ(t)

]
. (17)

Together with the supremum norm ‖ · ‖A on ψ given by

∥∥ψ(t)
∥∥

A = sup
t∈A

∥∥ψ(t)
∥∥, ψ(t) ∈X , (18)

X defines a Banach space.
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It is to be noted that the solution of the fractional order novel coronavirus (nCoV-2019)
model is bounded, i.e.,

∥∥T [
ψ(t)

]
– ψ0

∥∥
A =

∥∥∥∥Υ (γ )
(
K

(
t,ψ(t)

))
+ Φ(γ )

∫ t

0
K

(
x,ψ(x)

)
dx

∥∥∥∥
A

≤ Υ (γ )
∥∥K

(
t,ψ(t)

)∥∥
A + Φ(γ )

∫ t

0

∥∥K
(
x,ψ(x)

)∥∥
A dx

≤ (
Υ (γ ) + TΦ(γ )

)
Ω < 1.

Now using Picard operator equation (16), we have

∥∥T [
ψ1(t)

]
– T

[
ψ2(t)

]∥∥
A

=
∥∥∥∥Υ (γ )

(
K

(
t,ψ1(t)

)
– K

(
t,ψ2(t)

))
+ Φ(γ )

∫ t

0

(
K

(
x,ψ1(x)

)
– K

(
x,ψ1(x)

))
dx

∥∥∥∥
A

≤ Υ (γ )
∥∥K

(
t,ψ1(t)

)
– K

(
t,ψ2(t)

)∥∥
A + Φ(γ )

∫ t

0

∥∥K
(
x,ψ1(x)

)
– K

(
x,ψ1(x)

)∥∥
A dx

≤ Υ (γ )Ω
∥∥ψ1(t) – ψ2(t)

∥∥
A + Φ(γ )Ω

∫ t

0

∥∥ψ1(x) – ψ2(x)
∥∥

A dx

≤ (
Υ (γ ) + TΦ(γ )

)
Ω

∥∥ψ1(t) – ψ2(t)
∥∥

A

= A
∥∥ψ1(t) – ψ2(t)

∥∥
A,

where

A =
(
Υ (γ ) + TΦ(γ )

)
Ω .

This implies

∥∥T [
ψ1(t)

]
– T

[
ψ2(t)

]∥∥
A ≤A

∥∥ψ1(t) – ψ2(t)
∥∥

A. (19)

Thus the defined operator T is a contraction, and hence model (11) has a unique solu-
tion. �

Remark 1 We remark here that the stability by considering disease free equilibrium and
the endemic equilibrium for model (11) can be proved on the same lines as given in [25].

3 Generalized Hyers–Ulam stability
In this section, we explore the stability analysis of model (11).

Definition 4 Let 0 < γ < 1 and K : [0, T] × R
6 → R

6 be a continuous function. Then
(11) is Hyers–Ulam stable if there exist L > 0 and ε > 0 such that, for each solution ψ ∈
C([0, T],R6) of

∣∣CFDγ ψ(t) – K
(
t,ψ(t)

)∣∣ ≤ ε ∀ t ∈ [0, T], (20)
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there exists a solution ψ ′ ∈ C([0, T],R6) of (11) with

∣∣ψ(t) – ψ ′(t)
∣∣ ≤ Lε ∀ t ∈ [0, T]. (21)

Definition 5 Let 0 < γ < 1 and K : [0, T]×R
6 →R

6 and Π : [0, T] →R+ be a continuous
function. Then (11) is generalized Hyers–Ulam–Rassias stable with respect to Π if there
exists a constant CK ,Π > 0 such that, for each solution ψ ∈ C([0, T],R6) of

∣∣CFDγ ψ(t) – K
(
t,ψ(t)

)∣∣ ≤ Π (t) ∀ t ∈ [0, T], (22)

there exists a solution ψ ′ ∈ C([0, T],R6) of (11) with

∣∣ψ(t) – ψ ′(t)
∣∣ ≤ CK ,ΠΠ (t) ∀ t ∈ [0, T]. (23)

Assume the following:
[A1] K : [0, T] ×R

6 →R
6 is continuous;

[A2] there exists CK > 0 such that

∣∣K(t,ψ) – K
(
x,ψ ′)∣∣ ≤ CK

∣∣ψ – ψ ′∣∣

for all ψ ,ψ ′ ∈R
6, t ∈ [0, T];

[A3] let Π ∈ C([0, T],R+) be an increasing function, and let there exist λΠ > 0 such that

∫ t

0
Π (x) dx ≤ λΠΠ (t) (24)

for all x ∈ [0, T].

Theorem 2 Assuming [A1]–[A3] hold, (11) is generalized Ulam–Hyers–Rassias stable
with respect to Π on [0, T] provided that Υ (γ )CK < 1.

Proof Let ψ ′ ∈ C([0, T],R6) be a solution of (11). Then, from Theorem 1, model (11) has
the unique solution

ψ(t) = ψ0 + Υ (γ )K
(
t,ψ(t)

)
+ Φ(γ )

∫ t

0
K

(
x,ψ(x)

)
dx, t ∈ [0, T]. (25)

From (22), we have

∣∣∣∣ψ ′(t) – ψ0 + Υ (γ )K
(
t,ψ ′(t)

)
+ Φ(γ )

∫ t

0
K

(
x,ψ ′(x)

)
dx

∣∣∣∣

≤ Υ (γ )Π (t) + Φ(γ )
∫ t

0
Π (x) dx

≤ (
Υ (γ ) + Φ(γ )λΠ

)
Π (t).
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Thus

∣∣ψ ′(t) – ψ(t)
∣∣

≤
∣∣∣∣ψ ′(t) – ψ0 – Υ (γ )K

(
t,ψ(t)

)
– Φ(γ )

∫ t

0
K

(
x,ψ(x)

)
dx

∣∣∣∣

≤
∣∣∣∣ψ ′(t) – ψ0 – Υ (γ )K

(
t,ψ ′(t)

)
– Φ(γ )

∫ t

0
K

(
x,ψ ′(x)

)
dx – Υ (γ )K

(
t,ψ(t)

)

– Φ(γ )
∫ t

0
K

(
x,ψ(x)

)
dx + Υ (γ )K

(
t,ψ ′(t)

)
+ Φ(γ )

∫ t

0
K

(
x,ψ ′(x)

)
dx

∣∣∣∣

≤
∣∣∣∣ψ ′(t) – ψ0 – Υ (γ )K

(
t,ψ ′(t)

)
– Φ(γ )

∫ t

0
K

(
x,ψ ′(x)

)
dx

∣∣∣∣
+ Υ (γ )

∣∣K(
t,ψ(t)

)
– K

(
t,ψ ′(t)

)∣∣

+ Φ(γ )
∫ t

0

∣∣K(
x,ψ(x)

)
– K

(
x,ψ ′(x)

)∣∣dx

≤ (
Υ (γ ) + Φ(γ )λΠ

)
Π (t) + Υ (γ )CK

∣∣ψ(t) – ψ ′(t)
∣∣ + Φ(γ )CK

∫ t

0

∣∣ψ(x) – ψ ′(x)
∣∣dx.

Now, Υ (γ )CK < 1, so

∣∣ψ(t) – ψ ′(t)
∣∣ ≤ (Υ (γ ) + Φ(γ )λΠ )Π (t)

1 – Υ (γ )
+

Φ(γ )CK

1 – Υ (γ )

∫ t

0

∣∣ψ(x) – ψ ′(x)
∣∣dx. (26)

From Gronwall’s inequality, we have

∣∣ψ(t) – ψ ′(t)
∣∣ ≤

[
Υ (γ ) + Φ(γ )λΠ

1 – Υ (γ )
exp(t)

]
Π (t).

Setting CK ,Π = [ Υ (γ )+Φ(γ )λΠ

1–Υ (γ ) exp(t)], we arrived at

∣∣ψ(t) – ψ ′(t)
∣∣ ≤ CK ,ΠΠ (t).

This completes the proof. �

4 Conclusion
In this paper, we discussed the novel corona virus model given in [25] within the Caputo–
Fabrizio fractional model, and we showed the existence and uniqueness of its solution
by applying the Banach contraction principle and Picard–Lindelöf technique. Utilizing
Gronwall’s inequality, we presented the generalized Hyers–Ulam stability of the fractional
model.
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