
Buvaneswari et al. Advances in Difference Equations        (2020) 2020:419 
https://doi.org/10.1186/s13662-020-02790-y

R E S E A R C H Open Access

On a system of fractional coupled hybrid
Hadamard differential equations with
terminal conditions
Karthikeyan Buvaneswari1, Panjaiyan Karthikeyan2 and Dumitru Baleanu3,4,5*

*Correspondence:
dumitru@cankaya.edu.tr
3Department of Mathematics,
Cankaya University, Ankara, Turkey
4Institute of Space Sciences, 06530
Magurele-Bucharest, Romania
Full list of author information is
available at the end of the article

Abstract
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1 Introduction
Differential Equations of Fractional Order (DEFO) gain huge attention among scientists
due to the applications which are not possible with integer order ordinary or partial dif-
ferential equations. In recent days, researchers in various fields pay more attention on the
existence of solutions of the aforesaid equations. In this regard, many literature surveys,
some notable developments (refer[13, 14]), and significant studies are available in the the-
ory of coupled systems with coupled boundary conditions in FDEs. For further references,
one can refer to [1, 3, 6–9, 12, 15, 16, 19]. This is because the aforesaid equations include
the perturbations of original differential equations in nonidentical ways.

The nonlinear hybrid Hadamard differential equations with initial conditions were dis-
cussed by Ahmad and Ntouyas in [4]. In 2015, Wang [22] proved the existence results for
the impulsive systems with Hadamard derivative. For more details, the interested readers
can refer to Wang et al. [21], where the authors used some classical methods to analyze
the Ulam–Hyers stability and proved existence results for Hadamard fractional differential
equations. Further, Samko et al. [20] proved the existence and uniqueness of the solution
of Cauchy problems for FDE involving Hadamard derivatives in a nonsequential setting.
In [17], the author studied the Hadamard-type fractional calculus.

We believe that only few literature studies are available which investigate coupled sys-
tems of FDEs of Hadamard type; see [23, 24] and the references therein. This paper will
definitely fill up the gap between the theories and applications of Hadamard FDEs.
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In[4], Ahmad et al. studied
⎧
⎨

⎩

HDα1 ( ν(t)
f1(t,ν(t)) ) = g1(t,ν(t)), 1 ≤ t ≤ T , 0 < α1 ≤ 1,

HJ1–α1ν(t)|t=1 = ζ ,
(1)

In 2015, the authors of [5] investigated the nonlocal boundary value problems for hybrid
FDEs and inclusions of Hadamard type as given below:

⎧
⎨

⎩

Dα1 ( ν(t)
f1(t,ν(t)) ) = g1(t,ν(t)), 1 ≤ t ≤ e, 1 < α1 ≤ 2,

ν(1) = 0, ν(e) = m(ν),
(2)

Ahmad et al. [2] in 2017 focused on the issues related to initial and boundary value prob-
lems for fractional differential equations of Hadamard type and studied mixed initial value
problems involving Hadamard derivatives.

The above mentioned works motivated us to study the following coupled Hadamard
FDEs with the boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dσ1 ( ϑ(t)
f1(t,ϑ(t),ν(t)) ) = h1(t,ϑ(t),ν(t)), 1 ≤ t ≤ e, 1 < σ1 ≤ 2,

Dδ1 ( ν(t)
f2(t,ϑ(t),ν(t)) ) = h2(t,ϑ(t),ν(t)), 1 ≤ t ≤ e, 1 < δ1 ≤ 2,

ϑ(1) = 0, ϑ(e) = m(ϑ),

ν(1) = 0, ν(e) = n(ν),

(3)

where Dσ1 , Dδ1 are the Hadamard fractional derivatives of order σ1 and δ1, respectively;
fi ∈ C([1, e] ×R×R,R \ {0}) and hi ∈ C([1, e] ×R×R,R), i = 1, 2, m, n : C([1, e],R) → R

are continuous functions.
The rest of the paper is organized as follows. In Sect. 2, some basic definitions and lem-

mas related to Hadamard fractional derivatives are presented. In Sect. 3, we establish suffi-
cient conditions for the existence of the coupled solutions to (3), and in Sect. 4, we present
a numerical example to illustrate our main result.

2 Auxiliary results
In this section we list some basic definitions and lemmas of fractional calculus.

We define the nonhomogeneous boundary value problems of coupled hybrid fractional
differential equations of Hadamard type of the function space X = C([1, e],R) of continu-
ous real valued functions f1 : [1, e] → R. Clearly, X = C([1, e],R) is a Banach space under
the supremum norm

‖ϑ‖ = sup
{∣
∣ϑ(t)

∣
∣ : t ∈ [1, e]

}
(4)

which is again a Banach algebra with respect to the multiplication “·” defined by

(ϑ · ν)(t) = ϑ(t) · ν(t). (5)

The product space E = X × X is a Banach space under the norm

∥
∥(ϑ ,ν)

∥
∥ = ‖ϑ‖ + ‖ν‖. (6)
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Then the normed linear space (E ,‖(·, ·)‖) is a Banach space which further becomes a Ba-
nach algebra with respect to the multiplication “·” defined by

(
(ϑ ,ν) · (ū, v̄)

)
(t) = (ϑ ,ν)(t) · (ū, v̄)(t) =

(
ϑ(t)ū(t),ν(t)v̄(t)

)
(7)

for all t ∈ [1, e], where (ϑ ,ν), (ū, v̄) ∈ X × X = E . The following result concerning this fact
of algebraic structure of the product space E = X×X is proved by Dhage in [11]. But first
we need

Definition 2.1 ([18]) The Hadamard fractional derivative of order β1 for a continuous
function h1 : [1,∞] →R is defined as

Dβ1 h1(t) =
1

Γ (n – β1)

(

t
d
dt

)n ∫ t

1

(

ln
t
s

)n–β1–1 h1(s)
s

ds, n – 1 < β1 < n,

where n = [β1] + 1, [β1] denotes the integer part of the real number β1 and ln(·) = loge(·).

Definition 2.2 ([18]) The Hadamard fractional integral of order β1 for a function h1:
[1,∞) →R is defined as

Iβ1 h1(t) =
1

Γ (β1)

∫ t

1

(

ln
t
s

)β1–1 h1(s)
s

ds, β1 > 0, t > 1,

provided the integral exists.

Definition 2.3 (Dhage [11]) Let E be a Banach space. An operator T : E → E is called
Lipschitz if there exists a constant LT > 0 such that

∥
∥T (ϑ) – T (ν)

∥
∥ ≤ LT ‖ϑ – ν‖

for all elements ϑ ,ν ∈ X.

Lemma 2.4 (Dhage [11]) The product space E is a Banach algebra with respect to the norm
‖(·, ·)‖ and the multiplication “·” defined by (6) and (7), respectively.

Proof Let (ϑ ,ν) and (ū, v̄) be any two elements of E then, by definition of the norm ‖(·, ·)‖
and the multiplication “·” in E , we obtain

∥
∥(ϑ ,ν) · (ū, v̄)

∥
∥ =

∥
∥(ϑ ū,νv̄)

∥
∥ = ‖ϑ ū‖ + ‖νv̄‖ ≤ ‖ϑ‖‖ū‖ + ‖ν‖‖v̄‖ (8)

and

∥
∥(ϑ ,ν)

∥
∥
∥
∥(ū, v̄)

∥
∥ =

[‖ϑ‖ + ‖ū‖][‖ν‖ + ‖v̄‖]. (9)

Now from (8) and (9), it follows that

∥
∥
(
(ϑ ,ν)(ū, v̄)

)∥
∥ ≤ ∥

∥(ϑ ,ν)
∥
∥
∥
∥(ū, v̄)

∥
∥.
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This shows that (E ,‖(·, ·)‖) is a Banach algebra and the proof of lemma is complete. �

We employ the following fixed point theorem as a basic tool for proving our main exis-
tence result for a coupled system of the proposed problem (3).

Theorem 2.5 (Dhage [10]) Let S be a nonempty subset of a Banach algebra, which is
bounded, convex and closed. Assume also that the operators A and B are such that
A : X → X and B : S → X, and satisfy the following conditions:

(a1) A is Lipschitzian with LA as a Lipschitz constant,
(a2) B is completely continuous,
(a3) ϑ = AϑBν �⇒ ∀ν ∈ S �⇒ ϑ ∈ S , and
(a4) MB < 1, where MB = ‖B(S)‖ = sup{‖Bϑ‖ : ϑ ∈ S}.
Then the operator equation ϑ = AϑBϑ has a solution in S.

3 Existence result
To prove the main existence result for a mild coupled solution of problem (3), we need to
prove the following lemma.

Lemma 3.1 Given ψ1,ψ2 ∈ C([1, e] ×R×R → R), the integral solution of the boundary
value problem

⎧
⎨

⎩

Dω1 ( ϑ(t)
ψ1(t,ϑ(t),ν(t)) ) = ψ2(t), 1 ≤ t ≤ e, 1 < ω1 ≤ 2,

ϑ(1) = 0, ϑ(e) = m(ϑ)
(10)

is given by

ϑ(t) = ψ1
(
t,ϑ(t),ν(t)

) ×
[

1
Γ (ω1)

∫ t

1

(

ln
t
s

)ω1–1
ψ2(s)

s
ds

+ (ln t)ω1–1
(

m(ϑ)
ψ1(e, m(ϑ),ν(e))

–
1

Γ (ω1)

∫ e

1

(

ln
e
s

)ω1–1
ψ2(s)

s
ds

)]

. (11)

Proof The solution of equation (10) can be written as

ϑ(t) = ψ1
(
t,ϑ(t),ν(t)

)
[

1
Γ (ω1)

∫ t

1

(

ln
t
s

)ω1–1
ψ2(s)

s
ds + c1(ln t)ω1–1

+ c2(ln t)ω1–2
]

(12)

where the arbitrary constants c1, c2 ∈ R and the boundary conditions given in (10) give
c2 = 0 and

c1 = (ln t)ω1–1
(

m(ϑ)
ψ1(e, m(ϑ),ν(e))

–
1

Γ (ω1)

∫ e

1

(

ln
e
s

)ω1–1
ψ2(s)

s
ds

)

.
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Substituting these values of c1 and c2 into (12), we get

ϑ(t) = ψ1
(
t,ϑ(t),ν(t)

) ×
[

1
Γ (ω1)

∫ t

1

(

ln
t
s

)ω1–1
ψ2(s)

s
ds

+ (ln t)ω1–1
(

m(ϑ)
ψ1(e, m(ϑ),ν(e))

–
1

Γ (ω1)

∫ e

1

(

ln
e
s

)ω1–1
ψ2(s)

s
ds

)]

.

Now, the proof is finished. �

Definition 3.2 A solution ϑ ∈ C([1, e],R,R) of the hybrid Hadamard fractional differ-
ential equation in (11) is called a mild solution of the FDE (10) defined on [1, e]. Simi-
larly, a mild coupled solution (ϑ ,ν) ∈ C([1, e],R) × C([1, e],R) of a system of the coupled
Hadamard differential equation (3) is defined on [1, e].

Theorem 3.3 Consider the following hypotheses (H1) to (H4):
(H1) For the continuous functions fi : [1, e] ×R×R→R�{0}, i = 1, 2 with constants

Lf1 > 0 and Lf2 > 0, we have

∣
∣f1(t,ϑ ,ν – f1(t, ϑ̄ , ν̄)

∣
∣ ≤ Lf1

(|ϑ – ϑ̄ | + |ν – ν̄|),

and

∣
∣f2(t,ϑ ,ν) – f2(t, ϑ̄ , ν̄)

∣
∣ ≤ Lf2

(|ϑ – ϑ̄ | + |ν – ν̄|),

for all t ∈ [1, e] and ϑ , ϑ̄ ,ν, ν̄ ∈R.
(H2) There exist constants M1 > 0 and M2 > 0 such that

∣
∣
∣
∣

m(ϑ)
f1(e, m(ϑ), n(ν))

∣
∣
∣
∣ ≤ M1 and

∣
∣
∣
∣

n(ν)
f2(e, m(ϑ), n(ν))

∣
∣
∣
∣ ≤ M2

and

F0 = sup
t∈[1,e]

∣
∣f1(t, 0, 0)

∣
∣, G0 = sup

t∈[1,e]

∣
∣f2(t, 0, 0)

∣
∣.

(H3) There exist constants Mhi > 0 such that

∣
∣hi(t,ϑ ,ν)

∣
∣ ≤ Mhi

for all (t,ϑ ,ν) ∈ [1, e] ×R×R and i = 1, 2.
(H4) The constants in hypotheses (H1) through (H3) satisfy the following conditions:

Ω = Lf1

(

M1 +
2Mh1

Γ (σ1 + 1)

)

+ Lf2

(

M2 +
2Mh2

Γ (δ1 + 1)

)

< 1.

If these conditions hold, then the coupled system (3) has a coupled solution defined on
[1, e] × [1, e].
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Proof Using Lemma 3.1 for (3), we get

ϑ(t) = f1
(
t,ϑ(t),ν(t)

) ×
[

1
Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 h1(s)
s

ds

+ (ln t)σ1–1
(

m(ϑ)
f1(e, m(ϑ), n(ν))

–
1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 h1(s)
s

ds
)]

(13)

and

z(t) = f2
(
t,ϑ(t),ν(t)

) ×
[

1
Γ (δ1)

∫ t

1

(

ln
t
s

)δ1–1 h2(s)
s

ds

+ (ln t)δ1–1
(

n(ν)
f2(e, m(ϑ), n(ν))

–
1

Γ (δ1)

∫ e

1

(

ln
e
s

)δ1–1 h2(s)
s

ds
)]

. (14)

Choose

ρ ≥ F0(M1 + 2Mh1
Γ (σ1+1) ) + G0(M2 + 2Mh2

Γ (δ1+1) )
1 – Ω

and define a subset S of the Banach space X × X by

S =
{

(ϑ ,ν) ∈ X × X :
∥
∥(ϑ ,ν)

∥
∥ ≤ ρ

}
. (15)

Clearly, S is a closed, convex and bounded subset of the Banach space E = X × X. Define
the operators A = (A1,A2) : E → E and B = (B1,B2) : S → E by

⎧
⎨

⎩

A1(ϑ ,ν) = f1(t,ϑ(t),ν(t)), t ∈ [1, e],

A2(ϑ ,ν) = f2(t,ϑ(t),ν(t)), t ∈ [1, e],
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B1(ϑ ,ν) = [ 1
Γ (σ1)

∫ t
1 (ln t

s )σ1–1 h1(s)
s ds

+ (ln t)σ1–1( m(ϑ)
f1(e,m(ϑ),n(ν)) – 1

Γ (σ1)
∫ e

1 (ln e
s )σ1–1 h1(s)

s ds)],

B2(ϑ ,ν) = [ 1
Γ (δ1)

∫ t
1 (ln t

s )δ1–1 h2(s)
s ds

+ (ln t)δ1–1( n(ν)
f2(e,m(ϑ),n(ν)) – 1

Γ (δ1)
∫ e

1 (ln e
s )δ1–1 h2(s)

s ds)].

(16)

Now, the system of equations in (13) and (14) becomes

A(ϑ ,ν)(t)B(ϑ ,ν)(t) = (ϑ ,ν)(t), t ∈ [1, e], (17)

which further, in view of the multiplication (7) of two elements in E , yields

(
A1(ϑ ,ν)(t)B1(ϑ ,ν)(t),A2(ϑ ,ν)(t)B2(ϑ ,ν)(t)

)
= (ϑ ,ν)(t), t ∈ [1, e]. (18)

This further implies that

⎧
⎨

⎩

A1(ϑ ,ν)(t)B1(ϑ ,ν)(t) = ϑ(t), t ∈ [1, e],

A2(ϑ ,ν)(t)B2(ϑ ,ν)(t) = ν(t), t ∈ [1, e].
(19)
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Now we prove that the operators A and B satisfy the conditions of Theorem 2.5 in a
series of steps.

Step I. First we show that A = (A1,A2) is Lipschitz on E with constant (Lf1 + Lf2 ). Let
(ϑ ,ν), (ϑ̄ , ν̄) ∈ E be arbitrary. Then, using (H1), we have

|A1(ϑ ,ν)(t) – A1(ϑ̄ , ν̄)(t) =
∣
∣f1

(
t,ϑ(t),ν(t)

)
– f1

(
t, ϑ̄(t), ν̄(t)

)∣
∣

≤ Lf1
(∣
∣ϑ(t) – ϑ̄(t)

∣
∣ +

∣
∣ν(t) – ν̄(t)

∣
∣
)

≤ Lf1
(‖ϑ – ϑ̄‖ + ‖ν – ν̄‖)

for all t ∈ [1, e]. Taking the supremum over t, we obtain

∥
∥A1(ϑ ,ν) – A1(ϑ̄ , ν̄)

∥
∥ ≤ Lf1

(‖ϑ – ϑ̄‖ + ‖ν – ν̄‖)

for all (ϑ ,ν), (ϑ̄ , ν̄) ∈ E . Similarly, we obtain

∥
∥A2(ϑ ,ν) – A2(ϑ̄ , ν̄)

∥
∥ ≤ Lf2

(‖ϑ – ϑ̄‖ + ‖ν – ν̄‖)

for all (ϑ ,ν), (ϑ̄ , ν̄) ∈ E . Therefore, by definition of the operator A, we obtain

∥
∥A(ϑ ,ν) – A(ϑ̄ , ν̄)

∥
∥

=
∥
∥
(
A1(ϑ ,ν),A2(ϑ ,ν)

)
–

(
A1(ϑ̄ , ν̄),A2(ϑ̄ , ν̄)

)∥
∥

=
∥
∥
(
A1(ϑ ,ν) – A1(ϑ̄ , ν̄),A2(ϑ ,ν) – A2(ϑ̄ , ν̄)

)∥
∥

≤ ∥
∥A1(ϑ ,ν) – A1(ϑ̄ , ν̄)

∥
∥ +

∥
∥A2(ϑ ,ν) – A2(ϑ̄ , ν̄)

∥
∥

≤ Lf1
(‖ϑ – ϑ̄‖ + ‖ν – ν̄‖) + Lf2

(‖ϑ – ϑ̄‖ + ‖ν – ν̄‖)

= (Lf1 + Lf2 )
(‖ϑ – ϑ̄‖ + ‖ν – ν̄‖),

for all (ϑ ,ν), (ϑ̄ , ν̄) ∈ E , where LA = (Lf1 + Lf2 ).
Step II. In this step we prove that B = (B1,B2) from S into E is a compact and continuous

operator. For continuity of B, take any sequence of points (ϑn,νn) in S converging to a
point (ϑ ,ν) ∈ S . Then, by Lebesgue dominated convergence theorem, we have

lim
n→∞B1(ϑn,νn)(t)

= lim
n→∞

[
1

Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 h1(s,ϑn(s),νn(s))
s

ds

+ (ln t)σ1–1
(

m(ϑ)
f1(e, m(x), n(ν))

–
1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 h1(s,ϑn(s),νn(s))
s

ds
)]

=
1

Γ (σ1)

∫ t

1

(

ln
e
s

)σ1–1

lim
n→∞

h1(s,ϑn(s),νn(s))
s

ds

+ (ln t)σ1–1
(

m(ϑ)
f1(e, m(x), n(ν))
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–
1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1

lim
n→∞

h1(s,ϑn(s),νn(s))
s

ds
)

=
1

Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 h1(s,ϑn(s),ν(s))
s

ds

+ (ln t)σ1–1
(

m(ϑ)
f1(e, m(ϑ), n(ν))

–
1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 h1(s,ϑ(s),ν(s))
s

ds
)

= B1(ϑ ,ν)(t)

for all t ∈ [1, e]. Similarly, we prove

lim
n→∞B2(ϑn,νn)(t) = B2(ϑ ,ν)(t)

for all t ∈ [1, e]. Hence B(ϑn,νn) = (B1(ϑn,νn);B2(ϑn,νn)) converges to B(ϑ ,ν) pointwise
on [1, e]. This shows that B is continuous.

Next, we prove B is a compact operator on S. Let (ϑ ,ν) ∈ S be any point. Then, using
(H4), we have

∣
∣B1(ϑ ,ν)

∣
∣ =

∣
∣
∣
∣

1
Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 h1(s,ϑ(s),ν(s))
s

ds

+ (ln t)σ1–1
(

m(ϑ)
f1(e, m(ϑ), n(ν))

–
1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 h1(s,ϑ(s),ν(s))
s

ds
)∣

∣
∣
∣

≤ Mh1

Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 1
s

ds + M1 +
Mh1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 1
s

ds

≤ 2
Γ (σ1 + 1)

Mh1 + M1

for all t ∈ [1, e].
Taking the supremum for the above inequality, we get

∥
∥B1(ϑ ,ν)

∥
∥ ≤ 2

Γ (σ1 + 1)
Mh1 + M1

for all (ϑ ,ν) ∈ E . Hence B1 is a uniformly bounded operator on S . In a similar way, we
can prove B2 is also uniformly bounded operator on S . Hence B is a uniformly bounded
operator on S .

Next to prove that {B(ϑn,νn)} is an equicontinuous sequence of functions in E , assume
τ1, τ2 ∈ [1, e], provided τ1 < τ2, then

∣
∣B1(ϑ ,ν)(τ1) – B1(ϑ ,ν)(τ2)

∣
∣

≤ Mh1

Γ (σ1)

∣
∣
∣
∣

∫ τ1

1

(

ln
τ1

s

)σ1–1 1
s

ds –
∫ τ2

1

(

ln
τ2

s

)σ1–1 1
s

ds
∣
∣
∣
∣
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+
(

Mh1 + |(ln τ2)σ1–1 – (ln τ1)σ1–1|
Γ (σ1)

)∫ e

1

(

ln
e
s

)σ1–1 1
s

ds

≤ Mh1

Γ (σ1)

∣
∣
∣
∣

∫ τ1

1

[(

ln
τ1

s

)σ1–1

–
(

ln
τ2

s

)σ1–1]1
s

ds
∣
∣
∣
∣

+
Mh1

Γ (σ1)

∣
∣
∣
∣

∫ τ2

τ1

(

ln
τ2

s

)σ1–1 1
s

ds
∣
∣
∣
∣

+
Mh1

Γ (σ1)
∣
∣(ln τ2)σ1–1 – (ln τ1)σ1–1∣∣

∫ e

1

(

ln
e
s

)σ1–1 1
s

ds

→ 0 as τ1 → τ2,

uniformly for all (ϑ ,ν) ∈ E . Similarly we have

∣
∣B2(ϑ ,ν)(τ1) – B2(ϑ ,ν)(τ2)

∣
∣ → 0 as τ1 → τ2

uniformly for all (ϑ ,ν) ∈ S. This shows that B(S) ⊂ E is uniformly bounded, equicontin-
uous and compact, in view of Arzela–Ascoli theorem. Consequently, B is a compact and
continuous operator on E .

Step III. Now we prove that the third condition (a3) of Theorem 2.5 holds. Let (ϑ ,ν) and
(x̄, ȳ) ∈ E = X × X be such that

(ϑ ,ν) =
(
A1(ϑ ,ν)B1(x̄, ȳ),A2(ϑ ,ν)B2(x̄, ȳ)

)
.

Then, we have

∣
∣ϑ(t)

∣
∣ =

∣
∣A1(ϑ ,ν)(t)B1(x̄, ȳ)(t)

∣
∣

≤ ∣
∣A1(ϑ ,ν)(t)B1(x̄, ȳ)(t)

∣
∣

≤ [∣
∣f1(t,ϑ ,ν) – f1(t, 0, 0)

∣
∣ +

∣
∣f1(t, 0, 0)

∣
∣
]

× (
1

Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 h1(s, x̄(s), ȳ(s))
s

ds

+ (ln t)σ1–1
[

m(x̄)
f2(e, m(x̄), n(ȳ))

–
1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 h1(s, x̄(s), ȳ(s))
s

ds
]

≤ [
Lf1

(‖ϑ‖ + ‖ν‖) + F0
]

×
(

M1 +
Mh1

Γ (σ1)

∫ t

1

(

ln
t
s

)σ1–1 1
s

ds

+
Mh1

Γ (σ1)

∫ e

1

(

ln
e
s

)σ1–1 1
s

ds
)

≤ [
Lf1

(‖ϑ‖ + ‖ν‖) + F0
]
(

2Mh1

Γ (σ1 + 1)
+ M1

)

.
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Thus, by taking the supremum of the left-hand side, we get

‖ϑ‖ ≤ [
Lf1

(‖ϑ‖ + ‖ν‖) + F0
]
(

2Mh1

Γ (σ1 + 1)
+ M1

)

. (20)

Similarly, proceeding as before, we obtain

‖ν‖ ≤ [
Lf2

(‖ϑ‖ + ‖ν‖) + G0
]
(

2Mh2

Γ (δ1 + 1)
+ M2

)

. (21)

Adding inequalities (20) and (21), we obtain

∥
∥ϑ(t)

∥
∥ +

∥
∥ν(t)

∥
∥ ≤ [

Lf1
(‖ϑ‖ + ‖ν‖) + F0

]
(

2Mh1

Γ (σ1 + 1)
+ M1

)

+
[
Lf2

(‖ϑ‖ + ‖ν‖) + G0
]
(

2Mh2

Γ (δ1 + 1)
+ M2

)

≤ F0( 2Mh1
Γ (σ1+1) + M1) + G0( 2Mh2

Γ (δ1+1) + M2)

1 – ([Lf1 ( 2Mh1
Γ (σ1+1) + M1)] + [Lf2 ( 2Mh2

Γ (δ1+1) + M2)])

≤ F0( 2Mh1
Γ (σ1+1) + M1) + G0( 2Mh2

Γ (δ1+1) + M2)
1 – Ω

≤ ρ.

As ‖(ϑ ,ν)‖ = ‖ϑ‖ + ‖ν‖, we have that ‖(ϑ ,ν)‖ ≤ ρ and so condition (a3) of Theorem 2.5
holds.

Step IV. We now prove that MB < 1. Consider

MB =
∥
∥B(S)

∥
∥

= sup
{∥
∥B(ϑ ,ν)

∥
∥ : (ϑ ,ν) ∈ S

}

= sup
{∥
∥B1(ϑ ,ν)

∥
∥ +

∥
∥B2(ϑ ,ν)

∥
∥ : (ϑ ,ν) ∈ S

}

≤ 2Mh1

Γ (σ1 + 1)
+ M1 +

2Mh2

Γ (δ1 + 1)
+ M2

< 1.

From the above estimate, we conclude that condition (a4) of Theorem 2.5 also holds.
Thus, the operators A and B satisfy all the conditions of Theorem 2.5 and so, for the

considered values of h1 and h2, the coupled system of equations (3) has at least one solution
on [1, e]. �

4 An example
Example 4.1 Consider the following coupled system of Hadamard fractional differential
equations with boundary conditions:

D3/2
( |ϑ(t)|

1
2 (1 + | sinϑ(t)|)

)

=
|ϑ(t)|

(24 + i + t)(1 + |ϑ(t)| + |ν(t)|) , 1 ≤ t ≤ e,

D3/2
( |ν(t)|

1
2 (1 + | cosϑ(t)|)

)

=
|ν(t)|

(20 + i + t)|ϑ(t)| , 1 ≤ t ≤ e, (22)
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u(0) = 0, ϑ(e) =
1

16
sinϑ(η), η ∈ (0, 1)

ν(0) = 0, ν(e) =
1

18
cosν(ξ ), ξ ∈ (0, 1). (23)

Here

Lf1 = Lf2 =
1
2

, M1 =
1

16
,

M2 =
1

18
, Mh1 =

1
25

, Mh2 =
1

21
,

Lf1

(

M1 +
2Mh1

Γ (σ1 + 1)

)

+ Lf2

(

M2 +
2Mh2

Γ (δ1 + 1)

)

� 0.124936655 < 1.

Hence, all the conditions of Theorem 3.3 are satisfied; consequently, the problem (22) and
(23) has a solution on [1, e].

5 Conclusions
We have presented the existence result for boundary value problems of coupled hybrid
differential systems involving the Hadamard fractional derivative. The proof of the exis-
tence result is based on the fixed point theorem due to Dhage [10]. The present work can
be extended to coupled systems of nonlinear fractional differential equations involving
Caputo–Hadamard fractional derivative.
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