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Abstract
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demonstrate the consistency to our key results.
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1 Introduction
As you know, we can introduce different kinds of modeling made by means of powerful
and logical tools in mathematics. One of these tools is formulas and relations defined in
the fractional calculus. Indeed, the importance and efficiency of this branch of mathemat-
ics has caused recent developments of FDEs or inclusions. Therefore, many researchers
have studied some results on the properties of solutions for fractional BVPs under gen-
eral boundary conditions. In this way, the authors use different approaches for their special
goals. In other words, some recent published works show the importance of fractional dif-
ferential equations in modeling of a variety of applied sciences (see, for example, [1–9]),
numerical computations (see [10–15]), and different views on this field (see, for example,
[16–51]).

Dhage and Lakshmikantham [52] designed a new category of differential equations
called hybrid differential equations and studied the properties of solution for this type of
differential equations. Two years later, Zhao et al. [53] provided an extension for Dhage’s
article to arbitrary real order and considered the related hybrid differential equation. Some
years later, Hilal and Kajouni [54] studied the existence of some extremal solutions for the
Caputo hybrid BVP given by

⎧
⎨

⎩

cDν( �(t)
w(t,�(t)) ) = Φ(t,�(t)) = 0, (t ∈ [0, T]),

a∗
1

�(0)
w(0,�(0)) + a∗

2
�(T)

w(T ,�(T)) = a∗
3,
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where ν ∈ (0, 1), a∗
1, a∗

2, and a∗
3 are three real constants with a∗

1 + a∗
2 �= 0, and two functions

Φ : [0, T] ×R → R and w : [0, T] ×R → R \ {0} are continuous. After that, Baleanu et al.
discussed existence theorems for the Caputo hybrid inclusion of arbitrary order

cDν

(
�(t)

w(t,�(t),J α1�(t), . . . ,J αn�(t))

)

∈ Ψ
(
t,�(t),J β1�(t), . . . ,J βk �(t)

)
,

(
t ∈ [0, 1]

)

with boundary value conditions �(0) = �∗
0 and �(1) = �∗

1 , J γ is the Riemann–Liouville
integral operator of fractional order γ ∈ {αj,βl} ⊂ (0,∞) for j = 1, . . . n and l = 1, . . . , k.
Moreover, cDν is the Caputo derivative operator of order 1 < ν ≤ 2 [55]. Recently, Derbazi
et al. derived several uniqueness and existence theorems for the following BVP of hybrid
type:

cDν

(
�(t) – g(t,�(t))

w(t,�(t))

)

= Φ
(
t,�(t)

)
,

(
t ∈ [0, T]

)

with boundary conditions

⎧
⎨

⎩

a1( �(t)–g(t,�(t))
w(t,�(t)) )|t=0 + b1( �(t)–g(t,�(t))

w(t,�(t)) )|t=T = λ∗
1,

a2
cDβ ( �(t)–g(t,�(t))

w(t,�(t)) )|t=η + b2
cDβ ( �(t)–g(t,�(t))

w(t,�(t)) )|t=T = λ∗
2,

where ν ∈ (1, 2], β ∈ (0, 1], η ∈ (0, T) and aj, bj, and λ∗
j are real constants for j = 1, 2 [56].

Also, all fractional derivatives given in the above problem are of Caputo type. The authors
proved their main results based on Dhage’s fixed point result for three operators [56].

By mixing and generalizing the above ideas, we are going to derive a new existence
theorem for solution functions �(t) of the following hybrid differential equation of order
ν :

cDν

(
�(t)

w(t,�(t))

)

= Φ
(
t,�(t)

)
,

(
t ∈ [0, 1]

)
(1)

with hybrid boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

( �(t)
w(t,�(t)) )|t=0 = 0,

D( �(t)
w(t,�(t)) )|t=0 = –( �(t)

w(t,�(t)) )|t=1 – D( �(t)
w(t,�(t)) )|t=1,

D2( �(t)
w(t,�(t)) )|t=0 = –D2( �(t)

w(t,�(t)) )|t=1 –c Dθ ( �(t)
w(t,�(t)) )|t=1,

(2)

where ν ∈ (2, 3], θ ∈ (1, 2], D = d
dt , D2 = d2

dt2 , and cDβ is the Caputo derivative of order
β ∈ {ν, θ}. Moreover, Φ is a real-valued continuous function defined on [0, 1] × R and
w ∈ CR([0, 1] × R) is a nonzero function. In the following, we intend to study the related
hybrid inclusion problem

cDν

(
�(t)

w(t,�(t))

)

∈ Ψ
(
t,�(t)

)
,

(
t ∈ [0, 1]

)
(3)
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with hybrid boundary value conditions

⎧
⎪⎪⎨

⎪⎪⎩

( �(t)
w(t,�(t)) )|t=0 = 0,

D( �(t)
w(t,�(t)) )|t=0 = –( �(t)

w(t,�(t)) )|t=1 – D( �(t)
w(t,�(t)) )|t=1,

D2( �(t)
w(t,�(t)) )|t=0 = –D2( �(t)

w(t,�(t)) )|t=1 –c Dθ ( �(t)
w(t,�(t)) )|t=1,

(4)

where Ψ : [0, 1] ×R →P(R) is a given set-valued map via some properties.
To reach the main purposes of this manuscript, the techniques of the fixed point the-

ory are employed to prove the theoretical results. Our investigations are two fold: we first
deal with a hybrid differential equation and then with its related hybrid differential inclu-
sion. It is worth mentioning that the proposed hybrid problems (1)–(2) and (3)–(4) differ
from the newly defined ones. In both hybrid problems (1)–(2) and (3)–(4), we consider
three boundary conditions of hybrid type in terminal points. We believe that our hybrid
problems involve some particular cases, which can be extended to more general hybrid
problems. The fractional hybrid modeling is of great significance in different engineer-
ing fields, and it can be a unique idea for the future combined research between various
applied sciences (see [57]). As a practical example of applicability of our results, we can
point out to our newly published work [58]. The fractional hybrid problem given in [58] is
a particular case of the proposed hybrid problem (1)–(2) in this work, in which a fractional
hybrid modeling of a thermostat is simulated.

The content of this article is arranged as follows: In Sect. 2, some required concepts
in this regard are recalled. Section 3 is devoted to proving the main theorems relying on
some mathematical inequalities and two versions of fixed point theorems due to Dhage.
At the end of the paper, we give two illustrative examples to support the applicability of
our findings.

2 Preliminaries
Prior to proceeding to the main objectives, we here recall some essential auxiliary concepts
which are needed in the sequel. Let ν ∈R

+ so that ν ∈ (n – 1, n] and assume that the real-
valued function � is integrable on [a, b]. In this case, the Riemann–Liouville integral of
the function � of order ν is given by

J ν�(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
�(τ ) dτ ,

provided that the integral is finite-valued [59, 60]. With the same assumptions, the Caputo
derivative of order ν for a function � ∈ C(n)

R
([a, b]) is given by

cDν�(t) =
∫ t

0

(t – τ )n–ν–1

Γ (n – ν)
�(n)(τ ) dτ ,

provided that the integral is finite-valued and n = 1 + [ν] [59, 60]. According to the exist-
ing propositions, if we solve the fractional homogeneous differential equation cDν

0�(t) = 0,
then its general solution is obtained as �(t) = b0 + b1t + b2t2 + · · · + bn–1tn–1, where
b0, . . . , bn–1 ∈ R and n = 1 + [ν] [59, 60]. For every � ∈ CR([0, T]) with T > 0, the linear
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equation

(
J ν cDν

)
�(t) = �(t) +

n–1∑

j=0

bjtj = �(t) + b0 + b1t + b2t2 + · · · + bn–1tn–1

holds, where b0, . . . , bn–1 ∈R and n = 1 + [ν] [59, 60].
Here, consider the normed space (X ,‖ · ‖X ). Then the collection of all subsets of X , the

collection of closed subsets of X , the collection of bounded subsets of X , the collection
of convex subsets of X , and the collection of compact subsets of X are denoted by P(X ),
Pcl(X ), Pb(X ), Pcv(X ), and Pcp(X ), respectively. A set-valued map Ψ is convex-valued if
for each � ∈X the set Ψ (�) is convex. The set-valued map Ψ has an upper semi-continuity
property whenever, for every �∗ ∈ X , Ψ (ρ∗) belongs to Pcl(X ) and for each open set O
with Ψ (�∗) ⊂ O there is at least a neighborhood V∗

0 of �∗ provided that Ψ (V∗
0 ) ⊆ O [61].

Moreover, �∗ ∈ X is a fixed point for the set-valued map Ψ : X → P(X ) whenever �∗ ∈
Ψ (�∗) [61]. The notation Fix(Ψ ) denotes the set of all fixed points of set-valued Ψ [61].

Consider the metric space X furnished with the metric dX . For every E1, E2 ∈P(X ), the
Pompeiu–Hausdorff metric PHd : P(X ) ×P(X ) →R∪ {∞} is defined by

PHdX (E1, E2) = max
{

sup
a1∈E1

dX (a1, E2), sup
a2∈E2

dX (E1, a2)
}

,

where dX (E1, a2) = infa1∈E1 dX (a1, a2) and dX (a1, E2) = infa2∈E2 dX (a1, a2) [61]. We say
that the set-valued function Ψ : X → Pcl(X ) is Lipschitzian if PHdX (Ψ (�1),Ψ (�2)) ≤
l∗dX (�1,�2) holds for each �1,�2 ∈X , where l∗ > 0 is a Lipschitz constant. A Lipschitz map
Ψ is said to be a contraction whenever 0 < l∗ < 1 [61]. Furthermore, Ψ : [0, 1] →Pcl(R) is a
measurable function if the mapping t �−→ dX (r,Ψ (t)) = inf{|r –λ| : λ ∈ Ψ (t)} is measurable
for all r ∈ R [61, 62]. The graph of Ψ : X → Pcl(Q) is defined by Graph(Ψ ) = {(�1,�2) ∈
X × Q : s∗ ∈ Ψ (�)} [61]. Note that the graph of Ψ is closed if for arbitrary sequences
{�n}n≥1 belonging to X and {sn}n≥1 belonging to Q with �n → z0, sn → s0, and sn ∈ Ψ (�n),
we have s0 ∈ Ψ (�0) [62].

A set-valued operator Ψ has the complete continuity property if the set Ψ (W) has the
relative compactness property for all W ∈ Pb(X ). Let Ψ : X → Pcl(Q) have the upper
semi-continuity property. Then Graph(Ψ ) ⊆ X × Q is a closed set. On the other hand,
assume that Ψ has a closed graph with the complete continuity property. Then Ψ has the
upper semi-continuity property [61]. We say that Ψ : [0, 1] ×R →P(R) is a Caratheodory
set-valued map if the mapping � �→ Ψ (t,�) is upper semi-continuous for almost all t ∈
[0, 1] and t �→ Ψ (t,�) is measurable for each � ∈ R [61, 62]. In addition, a Caratheodory
set-valued map Ψ : [0, 1] ×R → P(R) is called L1-Caratheodory if for each r > 0 there is
φr ∈L1

R+ ([0, 1]) provided that

∥
∥Ψ (t,�)

∥
∥ = sup

t∈[0,1]

{|q| : q ∈ Ψ (t,�)
} ≤ φr(t)

for almost all t ∈ [0, 1] and for each |�| ≤ r [61, 62]. The collection of all selections of Ψ at
� ∈ CR([0, 1]) is defined by

(SEL)Ψ ,� :=
{
ϑ ∈L1

R

(
[0, 1]

)
: ϑ(t) ∈ Ψ

(
t,�(t)

)
, a.e. t ∈ [0, 1]

}
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[61, 62]. As it has been proved before in [61], (SEL)Ψ ,� �= ∅ for all � ∈ CX ([0, 1]) whenever
dimX < ∞. We need the following results.

Theorem 1 ([63]) Let X be a Banach algebra, Vε(0) and Vε(0) be an open ball and its
closure for all ε ∈ R

+, respectively. Assume that Υ1 : X → X and Υ2 : Vε(0) → X are two
operators satisfying:

(a1) Υ1 is Lipschitzian where l∗ is a Lipschitz constant,
(a2) Υ2 is completely continuous,
(a3) l∗K∗

0 < 1, where K∗
0 = ‖Υ2(Vε(0))‖X = sup{‖Υ2�‖X : � ∈ Vε(0)}.

Then either (b1) there exists v∗ ∈ X with ‖v∗‖X = ε so that μΥ1v∗Υ2v∗ = v∗ for some 0 <
μ < 1 or (b2) the equation Υ1�Υ2� = � has a solution belonging to Vε(0).

Theorem 2 ([64]) Assume that X is a separable Banach space, Ψ : [0, 1] ×X →Pcp,cv(X )
is an L1-Carathéodory multifunction and Ξ : L1

X ([0, 1]) → CX ([0, 1]) is a linear contin-
uous mapping. Then Ξ ◦ (SEL)Ψ : CX ([0, 1]) → Pcp,cv(CX ([0, 1])) is an operator which
belongs to CX ([0, 1]) × CX ([0, 1]) defined by � �→ (Ξ ◦ (SEL)Ψ )(�) = Ξ ((SEL)Ψ ,�) having
the closed graph.

Theorem 3 ([65]) Let X be a Banach algebra. Assume that there are a set-valued map
Υ2 : X →Pcp,cv(X ) and a single-valued map Υ1 : X →X satisfying:

(a′1) Υ1 is Lipschitzian where l∗ is a Lipschitz constant,
(a′2) Υ2 is compact and upper semi-continuous,
(a′3) 2l∗K∗

0 < 1 with K∗
0 = ‖Υ2(X )‖.

Then either (b′1) Y∗ = {v∗ ∈ X |μv∗ ∈ Υ1v∗Υ2v∗,μ > 1} is an unbounded set or (b′2) there
exists a solution belonging to X for the inclusion � ∈ Υ1�Υ2�.

3 Main results
In this part of the paper, we intend to state our main theoretical findings on the exis-
tence results. To reach this aim, we consider X = {�(t) : �(t) ∈ CR([0, 1])} equipped with
the supremum norm ‖�‖X = supt∈[0,1] |�(t)| and the multiplication action on the space X
defined by (� · �′)(t) = �(t)�′(t) for all �,�′ ∈ X . Then an ordered triple (X ,‖ · ‖X , ·) is a
Banach algebra. In this moment, we present an essential lemma which converts fractional
BVP (1)–(2) into integral equation.

Lemma 4 Assume that g belongs to X . Then �0 is a solution function for the hybrid equa-
tion of fractional order

cDν

(
�(t)

w(t,�(t))

)

= g(t)
(
ν ∈ (2, 3], θ ∈ (1, 2], t ∈ [0, 1]

)
(5)

with hybrid boundary value conditions

(
�(t)

w(t,�(t))

)∣
∣
∣
∣
t=0

= 0,

D
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=0

= –
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=1

– D
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=1

,

D2
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=0

= –D2
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=1

–c Dθ

(
�(t)

w(t,�(t))

)∣
∣
∣
∣
t=1

(6)
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iff the function �0 is a solution for the following integral equation of fractional order:

�(t) = w
(
t,�(t)

)
[∫ t

0

(t – τ )ν–1

Γ (ν)
g(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
g(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
g(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
g(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
g(τ ) dτ

]

. (7)

Proof Let �0 be a solution for hybrid equation (5). Then the general solution of homo-
geneous equation (5) is obtained by the equality �0(t)

w(t,�0(t)) = Iνg(t) + b∗
0 + b∗

1t + b∗
2t2, where

b∗
0, b∗

1, b∗
2 ∈R. That is,

�0(t) = w
(
t,�0(t)

)
[∫ t

0

(t – τ )ν–1

Γ (ν)
g(τ ) dτ + b∗

0 + b∗
1t + b∗

2t2
]

. (8)

Now, we employ the Caputo derivative of arbitrary orders on both sides of equation (8),
and we get

D
(

�0(t)
w(t,�0(t))

)

=
∫ t

0

(t – τ )ν–2

Γ (ν – 1)
g(τ ) dτ + b∗

1 + 2b∗
2t,

D2
(

�0(t)
w(t,�0(t))

)

=
∫ t

0

(t – τ )ν–3

Γ (ν – 2)
g(τ ) dτ + 2b∗

2,

cDθ

(
�0(t)

w(t,�0(t))

)

=
∫ t

0

(t – τ )ν–θ–1

Γ (ν – θ )
g(τ ) dτ + b∗

2
2t2–θ

Γ (3 – θ )
,

where 1 < θ ≤ 2. Corresponding to the boundary value conditions, we obtain b∗
0 = 0 and

b∗
1 = –

1
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
g(τ ) dτ –

1
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
g(τ ) dτ

+
Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
g(τ ) dτ

+
Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
g(τ ) dτ

and b∗
2 = –Γ (3–θ )

2+4Γ (3–θ )
∫ 1

0
(1–τ )ν–3

Γ (ν–2) g(τ ) dτ – Γ (3–θ )
2+4Γ (3–θ )

∫ 1
0

(1–τ )ν–θ–1

Γ (ν–θ ) g(τ ) dτ . By putting the values b∗
0,

b∗
1, and b∗

2 in equation (8), we have

�0(t) = w
(
t,�0(t)

)
[∫ t

0

(t – τ )ν–1

Γ (ν)
g(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
g(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
g(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
g(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
g(τ ) dτ

]

.

This means that �0 is a solution for integral equation (7). On the contrary, it is easy to
check that �0 satisfies the fractional hybrid BVP (5)–(6) if �0 is a solution for the integral
equation of fractional order (7). �
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Theorem 5 Suppose that w is a nonzero continuous real-valued function on [0, 1]×R and
Φ ∈ CR([0, 1] ×R). Furthermore, assume that the following statements hold:

(A1) There exists a bounded real-valued map s : [0, 1] →R
+ so that |w(t,�1) – w(t,�∗

1)| ≤
s(t)|�1 – �∗

1 | for all �1,�∗
1 ∈R;

(A2) There exist a nondecreasing and continuous map ξ : R≥0 → R
+ and a continuous

map h : [0, 1] → R
+ provided that |Φ(t,�)| ≤ h(t)ξ (‖�‖) for each � ∈ R and t ∈

[0, 1];
(A3) There exists a number ε ∈ R

+ so that

ε >
W ∗�∗H∗ξ (‖�‖)

1 – s∗�∗H∗ξ (‖�‖)
, (9)

where W ∗ = supt∈[0,1] |w(t, 0)|, H∗ = supt∈[0,1] |h(t)|, s∗ = supt∈[0,1] |s(t)|, and

�∗ =
4 + ν

3Γ (ν + 1)

+
Γ (3 – θ )

(2 + 4Γ (3 – θ ))Γ (ν – 1)
+

Γ (3 – θ )
(2 + 4Γ (3 – θ ))Γ (ν – θ + 1)

. (10)

If s∗�∗H∗ξ (‖�‖) < 1, then the hybrid fractional problem (1)–(2) has a solution on [0, 1].

Proof We construct the closed ball Vε(0) := {� ∈X : ‖�‖X ≤ ε}, where ε satisfies inequal-
ity (9). Consider the operators Υ1,Υ2 : Vε(0) →X given by (Υ1�)(t) = w(t,�(t)) and

(Υ2�)(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
Φ

(
τ ,�(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
Φ

(
τ ,�(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
Φ

(
τ ,�(τ )

)
dτ .

Obviously, � ∈ X as a solution for hybrid BVP (1)–(2) satisfies equation Υ1�Υ2� = �.
First, we want to show that the operator Υ1 is Lipschitzian on X with Lipschitz constant
s∗ = supt∈[0,1] |s(t)|. To check this, let �1,�2 ∈ Vε(0). By using assumption (A1), we have
|(Υ1�1)(t) – (Υ1�2)(t)| = |w(t,�1(t)) – w(t,�2(t))| ≤ s(t)|�1(t) – �2(t)| for all t ∈ [0, 1]. Hence,
‖Υ1�1 – Υ1�2‖X ≤ s∗‖�1 – �2‖X for all �1,�2 ∈ Vε(0). This inequality shows that Υ1 is Lip-
schitzian on Vε(0) with constant s∗. In the sequel, we have to show that Υ2 on Vε(0) is
completely continuous. In this way, we need to show the continuity of Υ2 on Vε(0). Con-
sider the convergent sequence {�n} in the ball Vε(0) with �n → �, where � is an arbitrary
member belonging to Vε(0). By the hypothesis, we know that Φ is continuous. Thus we
have limn→∞ Φ(t,�n(t)) = Φ(t,�(t)). In view of the dominated convergence theorem due
to Lebesgue, we have

lim
n→∞(Υ2�n)(t) =

∫ t

0

(t – τ )ν–1

Γ (ν)
lim

n→∞Φ
(
τ ,�n(τ )

)
dτ
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–
t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
lim

n→∞Φ
(
τ ,�n(τ )

)
dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
lim

n→∞Φ
(
τ ,�n(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
lim

n→∞Φ
(
τ ,�n(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
lim

n→∞Φ
(
τ ,�n(τ )

)
dτ

=
∫ t

0

(t – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
Φ

(
τ ,�(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
Φ

(
τ ,�(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
Φ

(
τ ,�(τ )

)
dτ

= (Υ2�)(t)

for any t ∈ [0, 1]. Therefore, Υ2�n → Υ2�, and so we deduce that Υ2 is continuous onVε(0).
Now, we check the uniform boundedness of Υ2 on Vε(0). By using assumption (A2), we
can write

∣
∣(Υ2�)(t)

∣
∣ =

∫ t

0

(t – τ )ν–1

Γ (ν)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ +

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

≤ tν

Γ (ν + 1)
h(t)ξ

(‖�‖) +
t

3Γ (ν + 1)
h(t)ξ

(‖�‖) +
t

3Γ (ν)
h(t)ξ

(‖�‖)

+
|t – t2|Γ (3 – θ )

(2 + 4Γ (3 – θ ))Γ (ν – 1)
h(t)ξ

(‖�‖)

+
|t – t2|Γ (3 – θ )

(2 + 4Γ (3 – θ ))Γ (ν – θ + 1)
h(t)ξ

(‖�‖)

for any t ∈ [0, 1] and � ∈ Vε(0). Hence ‖Υ2�‖X ≤ H∗ξ (‖�‖)�∗, where �∗ is defined in
(10). This means that Υ2(Vε(0)) is a uniformly bounded subset of X . Here, we proceed to
proving that the operator Υ2 is equicontinuous. Without loss of generality, let us assume
that 0 ≤ t1, t2 ≤ 1 provided that t1 < t2, and let � ∈ Vε(0). Then

∣
∣(Υ2�)(t2) – (Υ2�)(t1)

∣
∣

=
∣
∣
∣
∣

∫ t2

0

(t2 – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ –

∫ t1

0

(t1 – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ

∣
∣
∣
∣
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+
|t2 – t1|

3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
|t2 – t1|

3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
|(t2 – t1) – (t2 – t1)2|Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
|(t2 – t1) – (t2 – t1)2|Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ .

Letting t1 → t2, we observe that the right-hand side of the above inequality converges to
zero independently of � ∈ Vε(0). Thus |(Υ2�)(t2)–(Υ2�)(t1)| → 0 as t1 → t2. Consequently,
the operator Υ2 is equicontinuous. By utilizing the Arzela–Ascoli theorem, we arrive at
the desired aim, which is the complete continuity of Υ2 on Vε(0). In addition, because of
hypothesis (A3), we get

K∗
0 =

∥
∥Υ2

(
Vε(0)

)∥
∥
X

= sup
t∈[0,1]

{∣
∣(Υ2�)(t)

∣
∣ : � ∈ Vε(0)

}
= H∗ξ

(‖�‖)

×
[

4 + ν

3Γ (ν + 1)
+

Γ (3 – θ )
(2 + 4Γ (3 – θ ))Γ (ν – 1)

+
Γ (3 – θ )

(2 + 4Γ (3 – θ ))Γ (ν – θ + 1)

]

= H∗ξ
(‖�‖)�∗.

Setting l∗ = s∗, we get l∗H∗ < 1. Now, to complete the proof, we claim that one of conditions
(b1) or (b2) in Theorem 1 is valid. Let � = μΥ1�Υ2� for some constant 0 < μ < 1 and
‖�‖ = ε. Then we have the following estimate:

∣
∣�(t)

∣
∣ = μ

∣
∣(Υ1�)(t)

∣
∣
∣
∣(Υ2�)(t)

∣
∣

= μ
∣
∣w

(
t,�(t)

)∣
∣

×
∣
∣
∣
∣

∫ t

0

(t – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
Φ

(
τ ,�(τ )

)
dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
Φ

(
τ ,�(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
Φ

(
τ ,�(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
Φ

(
τ ,�(τ )

)
dτ

∣
∣
∣
∣

≤ (∣
∣w

(
t,�(t)

)
– w(t, 0)

∣
∣ +

∣
∣w(t, 0)

∣
∣
)

×
(∫ t

0

(t – τ )ν–1

Γ (ν)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ +

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

+
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ +

|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

×
∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ
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+
|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣Φ

(
τ ,�(τ )

)∣
∣dτ

)

≤ (
s(t)

∣
∣�(t)

∣
∣ + W ∗)�∗H∗ξ

(‖�‖)

≤ (
s∗‖�‖ + W ∗)�∗H∗ξ

(‖�‖),

and so ε ≤ W∗�∗H∗ξ (‖�‖)
1–s∗�∗H∗ξ (‖�‖) , which is a contradiction to inequality (9). It follows that condition

(b1) of Theorem 1 is not possible. Hence, condition (b2) is valid and so the mentioned
fractional hybrid problem (1)–(2) has a solution. �

In what follows, we are going to provide another essential result for the fractional hybrid
inclusion problem (3)–(4). Existence results herein are carried out in light of the assump-
tions of Theorem 3.

Definition 6 We say that the function � ∈ ACR([0, 1]) is a solution for the hybrid inclusion
BVP of fractional order (3)–(4) whenever there exists an integrable function ϑ ∈L1

R
([0, 1])

with ϑ(t) ∈ Ψ (t,�(t)) for almost all t ∈ [0, 1] satisfying ( �(t)
w(t,�(t)) )|t=0 = 0 and

D
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=0

= –
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=1

– D
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=1

,

D2
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=0

= –D2
(

�(t)
w(t,�(t))

)∣
∣
∣
∣
t=1

–c Dθ

(
�(t)

w(t,�(t))

)∣
∣
∣
∣
t=1

and

�(t) = w
(
t,�(t)

)
[∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ

]

for each t ∈ [0, 1].

Here, we can formulate desired theorem on the existence of solution function of the
above form.

Theorem 7 Assume that the following statements are valid:
(A′1) There is a bounded real-valued function s : [0, 1] → R

+ such that |w(t,�1(t)) –
w(t,�2(t))| ≤ s(t)|�1(t) – �2(t)| for all �1,�2 ∈ R and t ∈ [0, 1];

(A′2) The convex and compact-valued multifunction Ψ : [0, 1] × R → Pcp,cv(R) has an
L1-Caratheodory property;

(A′3) There is a map σ ∈L1
R+ ([0, 1]) such that ‖Ψ (t,�)‖ = sup{|ϑ | : ϑ ∈ Ψ (t,�(t))} ≤ σ (t)

for any � ∈R and almost all t ∈ [0, 1]. Here, ‖σ‖L1 =
∫ 1

0 |σ (τ )|dτ ;
(A′4) There is a number ε̃ ∈R

+ such that

ε̃ >
W ∗�∗‖σ‖L1

1 – s∗�∗‖σ‖L1
, (11)

where W ∗ = supt∈[0,1] |w(t, 0)|, s∗ = supt∈[0,1] |s(t)| and �∗ is given in (10).



Etemad et al. Advances in Difference Equations        (2020) 2020:302 Page 11 of 19

If s∗�∗‖σ‖L1 < 1
2 , then the hybrid boundary value problem of fractional order (3)–(4) has

a solution.

Proof To transform the hybrid inclusion problem (3)–(4) into a fixed point problem, we
define K : X →P(X ) by K(�) = {δ ∈X : δ(t) = νϑ (t)t ∈ [0, 1]}, where ϑ ∈ (SEL)Ψ ,� and

νϑ (t) = w
(
t,�(t)

)
(∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ

)

.

It is clear that each fixed point of K is a solution for hybrid inclusion BVP (3)–(4). We split
the operator K into two parts as Υ1 : X → X and Υ2 : X → P(X ) defined by (Υ1�)(t) =
w(t,�(t)) and (Υ2�)(t) = {ζ ∈X : ζ (t) = φϑ (t), t ∈ [0, 1]}, where ϑ ∈ (SEL)Ψ ,� and

φϑ (t)
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ .

Note that K(�) = Υ1�Υ2�. We are going to prove that operators Υ1 and Υ2 satisfy all the
assumptions of Theorem 3. Obviously, in view of hypothesis (A′1) and in a similar way
used in Theorem 5, one can easily find that Υ1 is Lipschitzian on X . In the following,
we need to show that Υ2 is convex-valued. To do this, let �1,�2 ∈ Υ2�. Choose ϑ1,ϑ2 ∈
(SEL)Ψ ,� so that

�j(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑj(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑj(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑj(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑj(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑj(τ ) dτ

for all t ∈ [0, 1] (a.e.) and j = 1, 2. For any 0 < γ < 1, we obtain

γ �1(t) + (1 – γ )�2(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
[
γϑ1(τ ) + (1 – γ )ϑ2(τ )

]
dτ

–
t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
[
γϑ1(τ ) + (1 – γ )ϑ2(τ )

]
dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
[
γϑ1(τ ) + (1 – γ )ϑ2(τ )

]
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
[
γϑ1(τ ) + (1 – γ )ϑ2(τ )

]
dτ
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+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
[
γϑ1(τ ) + (1 – γ )ϑ2(τ )

]
dτ

for almost all t ∈ [0, 1]. By the hypothesis of theorem, Ψ has convex values. Thus (SEL)Ψ ,�

is convex-valued and γϑ1(t) + (1 – γ )ϑ2(t) ∈ (SEL)Ψ ,� for all t ∈ [0, 1] and so Υ2� is a
convex set for all � ∈ X . Now, to check the complete continuity of Υ2, we have to prove
that Υ2(X ) is uniformly bounded and equicontinuous. To reach this purpose, we show that
Υ2 maps all bounded sets into bounded subsets of the space X . For a number ε∗ ∈R

+, we
construct a bounded ball Vε∗ = {� ∈X : ‖�‖X ≤ ε∗}. For every � ∈ Vε∗ and ζ ∈ Υ2�, there
exists ϑ ∈ (SEL)Ψ ,� so that

ζ (t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ

for each t ∈ [0, 1]. Then we have the following estimate for function ζ :

∣
∣ζ (t)

∣
∣ ≤

∫ t

0

(t – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣ϑ(τ )

∣
∣dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣ϑ(τ )

∣
∣dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣ϑ(τ )

∣
∣dτ

≤
∫ t

0

(t – τ )ν–1

Γ (ν)
σ (τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
σ (τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
σ (τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
σ (τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
σ (τ ) dτ

≤
[

4 + ν

3Γ (ν + 1)
+

Γ (3 – θ )
(2 + 4Γ (3 – θ ))Γ (ν – 1)

+
Γ (3 – θ )

(2 + 4Γ (3 – θ ))Γ (ν – θ + 1)

]

× ‖σ‖L1 = �∗‖σ‖L1 ,

where �∗ is given in (10). Thus, ‖ζ‖ ≤ �∗‖σ‖L1 and this means that the set Υ2(X ) is
uniformly bounded. The next step in this part of the proof is to show that Υ2 maps bounded
sets into equicontinuous sets. Let � ∈ Vε∗ and ζ ∈ Υ2�. Choose ϑ ∈ (SEL)Ψ ,� provided
that

ζ (t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ
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+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ

for all t ∈ [0, 1]. We may assume that 0 ≤ t1, t2 ≤ 1 with t1 < t2. Then we have

∣
∣ζ (t2) – ζ (t1)

∣
∣

≤
∣
∣
∣
∣

∫ t2

0

(t2 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

∫ t1

0

(t1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

∣
∣
∣
∣

+
|t2 – t1|

3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ

+
|t2 – t1|

3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣ϑ(τ )

∣
∣dτ

+
|(t2 – t1) – (t2 – t1)2|Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣ϑ(τ )

∣
∣dτ

+
|(t2 – t1) – (t2 – t1)2|Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣ϑ(τ )

∣
∣dτ

≤
∫ t1

0

(
[(t2 – τ )ν–1 – (t1 – τ )ν–1]

Γ (ν)

)

σ (τ ) dτ +
∫ t2

t1

(t2 – τ )ν–1

Γ (ν)
σ (τ ) dτ

+
|t2 – t1|

3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
σ (τ ) dτ +

|t2 – t1|
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
σ (τ ) dτ

+
|(t2 – t1) – (t2 – t1)2|Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
σ (τ ) dτ

+
|(t2 – t1) – (t2 – t1)2|Γ (3 – θ )

2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
σ (τ ) dτ .

Letting t1 → t2, one can see that the above inequality converges to 0 independently of
� ∈ Vε∗ . It follows from the Arzela–Ascoli theorem that Υ2 : CR([0, 1]) → P(CR([0, 1]))
is a completely continuous operator. Here, we claim that Υ2 has a closed graph. Then,
because of the complete continuity of Υ2, we find that Υ2 is upper semi-continuous. For
this aim, suppose that �n ∈ Vε∗ and ζn ∈ Υ2�n are such that �n → �∗ and ζn → ζ ∗. We can
verify that ζ ∗ ∈ Υ2�

∗. Indeed, for each n ≥ 1 and ζn ∈ Υ2�n, select ϑn ∈ (SEL)Ψ ,�n such
that

ζn(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑn(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑn(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑn(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑn(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑn(τ ) dτ

for any t ∈ [0, 1]. In this case, we have to show that there is v∗ ∈ (SEL)Ψ ,�∗ such that

ζ ∗(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ∗(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ∗(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ∗(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ∗(τ ) dτ
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+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ∗(τ ) dτ

for all t ∈ [0, 1]. Define the continuous linear operator Ξ : L1
R

([0, 1]) →X = CR([0, 1]) by

Ξ (ϑ)(t) = �(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ

for each t ∈ [0, 1]. Then we have

∥
∥ζn(t) – ζ ∗(t)

∥
∥ =

∥
∥
∥
∥

∫ t

0

(t – τ )ν–1

Γ (ν)
(
ϑn(τ ) – ϑ∗(τ )

)
dτ

–
t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
(
ϑn(τ ) – ϑ∗(τ )

)
dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
(
ϑn(τ ) – ϑ∗(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
(
ϑn(τ ) – ϑ∗(τ )

)
dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
(
ϑn(τ ) – ϑ∗(τ )

)
dτ

∥
∥
∥
∥.

Letting n → ∞, the above estimate yields ‖ζn(t) – ζ ∗(t)‖ → 0. Hence with due attention to
Theorem 2, one can deduce that Ξ ◦(SEL)Ψ is an operator having a closed graph property.
As ζn ∈ Ξ ((SEL)Ψ ,�n ) and �n → �∗, so there exists ϑ∗ ∈ (SEL)Ψ ,�∗ such that

ζ ∗(t) =
∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ∗(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ∗(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ∗(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ∗(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ∗(τ ) dτ

for all t ∈ [0, 1]. Hence, ζ ∗ ∈ Υ2�
∗ and so Υ2 has a closed graph. Therefore, the upper semi-

continuity of the operator Υ2 is fulfilled. By utilizing the assumption of theorem, we know
that Υ2 has compact values. Consequently, Υ2 is an upper semi-continuous and compact
operator. Now, under assumption (A′3), we have

K∗
0 =

∥
∥Υ2(X )

∥
∥

= sup
t∈[0,1]

{|Υ2�| : � ∈X
}

=
[

4 + ν

3Γ (ν + 1)
+

Γ (3 – θ )
(2 + 4Γ (3 – θ ))Γ (ν – 1)

+
Γ (3 – θ )

(2 + 4Γ (3 – θ ))Γ (ν – θ + 1)

]

× ‖σ‖L1 = �∗‖σ‖L1 .
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By putting l∗ = s∗, we obtain l∗K∗
0 < 1

2 . Hence, all the assumptions of Theorem 3 hold for
Υ1. Here, we claim that only one of conditions (b′1) or (b′2) is valid. By applying Theorem 3
and assumption (A′4), consider an arbitrary element � of Y∗ with ‖�‖ = ε̃. Then μ�(t) ∈
Υ1�(t)Υ2�(t) for each μ > 1. Select the related function ϑ ∈ (SEL)Ψ ,� . Then, for each μ > 1,
we obtain

�(t) =
1
μ

w
(
t,�(t)

)
[∫ t

0

(t – τ )ν–1

Γ (ν)
ϑ(τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
ϑ(τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
ϑ(τ ) dτ +

(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
ϑ(τ ) dτ

+
(t – t2)Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
ϑ(τ ) dτ

]

for all t ∈ [0, 1]. Thus, we have

∣
∣�(t)

∣
∣ =

1
μ

∣
∣w

(
t,�(t)

)∣
∣

[∫ t

0

(t – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣ϑ(τ )

∣
∣dτ +

|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣ϑ(τ )

∣
∣dτ

+
|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣ϑ(τ )

∣
∣dτ

]

≤ [∣
∣w

(
t,�(t)

)
– w(t, 0)

∣
∣ +

∣
∣w(t, 0)

∣
∣
]

×
[∫ t

0

(t – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
∣
∣ϑ(τ )

∣
∣dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
∣
∣ϑ(τ )

∣
∣dτ +

|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
∣
∣ϑ(τ )

∣
∣dτ

+
|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
∣
∣ϑ(τ )

∣
∣dτ

]

≤ [
s∗‖�‖ + W ∗]

[∫ t

0

(t – τ )ν–1

Γ (ν)
σ (τ ) dτ –

t
3

∫ 1

0

(1 – τ )ν–1

Γ (ν)
σ (τ ) dτ

–
t
3

∫ 1

0

(1 – τ )ν–2

Γ (ν – 1)
σ (τ ) dτ +

|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–3

Γ (ν – 2)
σ (τ ) dτ

+
|t – t2|Γ (3 – θ )
2 + 4Γ (3 – θ )

∫ 1

0

(1 – τ )ν–θ–1

Γ (ν – θ )
σ (τ ) dτ

]

≤ [
s∗ε̃ + W ∗]�∗‖σ‖L1

for any t ∈ [0, 1]. By simple computations, we get ε̃ ≤ W∗�∗‖σ‖L1
1–s∗�∗‖σ‖L1

. According to condition
(11), we find that condition (b′1) of Theorem 3 is not possible and condition (b′2) is valid.
Therefore, the operator inclusion � ∈ Υ1�Υ2� has a solution, and so the hybrid inclusion
BVP (3)–(4) has a solution. This ends the proof. �

To demonstrate the consistency and the applicability of the obtained results, two illus-
trative numerical examples are provided herein.
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Example 1 Corresponding to the proposed hybrid BVP (1)–(2), we define the hybrid dif-
ferential equation of fractional order

cD2.74
(

�(t)
0.3t|�(t)|4
7+|�(t)|4 + 0.378

)

=
t sin(�(t)) cos2(π (t))

3040
(
t ∈ [0, 1]

)
(12)

with hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=0 = 0,

D( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=0 = –( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=1

–D( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=1,

D2( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=0 = –D2( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=1

–cD1.37( �(t)
0.3t|�(t)|4
7+|�(t)|4 +0.378

)|t=1,

(13)

where ν = 2.74 and θ = 1.37. Consider the nonzero continuous real-valued map w on
[0, 1] ×R defined by w(t,�(t)) = 0.3t|�(t)|4

7+|�(t)|4 + 0.378 with W ∗ = supt∈[0,1] |w(t, 0)| = 0.378. De-

fine the continuous map Φ : [0, 1] × R → R
+ by Φ(t,�(t)) = t sin(�(t)) cos2(π (t))

3040 . As s(t) =
0.3t, so we get s∗ = supt∈[0,1] |κ(t)| = 0.3. Put h(t) = t

3040 . Hence H∗ = supt∈[0,1] |h(t)| =
1

3040 and ξ (‖�‖) = 1. Thus, we obtain �∗ � 0.8227. Choose ε > 0.0000995. In this case,
s∗�∗H∗ξ (‖ρ‖) � 0.0000078 < 1. Hence all the hypotheses of Theorem 5 are valid, and so
the hybrid differential equation (12)–(13) has a solution.

Example 2 Corresponding to the proposed hybrid BVP (3)–(4), we consider the hybrid
inclusion problem of fractional order

cD2.83
(

�(t)
t

200 sin�(t) + 89

)

∈
[ |�(t)|

6(1 + |�(t)|) +
1
2

,
| cos�(t)|

7(1 + | cos�(t)|) +
6
7

]

(
t ∈ [0, 1]

)
(14)

with hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( �(t)
t

200 sin�(t)+89 )|t=0 = 0,

D( �(t)
t

200 sin�(t)+89 )|t=0 = –( �(t)
t

200 sin�(t)+89 )|t=1

–D( �(t)
t

200 sin�(t)+89 )|t=1,

D2( �(t)
t

200 sin�(t)+89 )|t=0 = –D2( �(t)
t

200 sin�(t)+89 )|t=1

–cD1.55( �(t)
t

200 sin�(t)+89 )|t=1,

(15)

where ν = 2.83 and θ = 1.55. Define the continuous map w : [0, 1] × R → R \ {0} by
w(t,�(t)) = t

200 sin�(t) + 89 with W ∗ = supt∈[0,1] |w(t, 0)| = 89. Further, we define the set-
valued map Ψ : [0, 1]×R →P(R) by Ψ (t,�(t)) = [ |�(t)|

6(1+|�(t)|) + 1
2 , | cos�(t)|

7(1+| cos�(t)|) + 6
7 ]. If s(t) = t

200 ,

then s∗ = supt∈[0,1] |s(t)| = 1
200 . As |ζ | ≤ max[ |�(t)|

6(1+|�(t)|) + 1
2 , | cos�(t)|3

7(1+| cos�(t)|3) + 6
7 ] ≤ 1 for all � ∈R
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and ζ ∈ Ψ (t,�(t)), we get ‖Ψ (t,�(t))‖ = sup{|ϑ | : ϑ ∈ Ψ (t,�(t))} ≤ 1. Setting σ (t) = 1 for
all t ∈ [0, 1], we obtain ‖σ‖L1 = 1 and �∗ � 0.76. We can find ε̃ > 0 with ε̃ > 67.898. Note
that s∗�∗‖σ‖L1 � 0.0038 < 1

2 . In view of Theorem 7, we conclude that the hybrid inclusion
BVP of fractional order (14)–(15) has a solution.

4 Conclusion
Nowadays, it is a vital goal that we could model most phenomena in the real world. For
example, modeling of chemical reactions using some modern software to reduce the use
of materials in chemical laboratories. This will contribute to environmental protection.
Thus, we should endeavor to increase our creativity to study the complicated modeling
of differential equations and inclusions. In the present research work, we design a novel
fractional hybrid differential equation and its related inclusion version with hybrid con-
ditions. To reach the desired findings, some analytical techniques are adopted from the
concepts of nonlinear analysis. Finally, to demonstrate the consistency and applicability
of the obtained results, two illustrative numerical examples are provided. We believe that
our hybrid problems involve some particular cases, which can extend to more general
hybrid problems. The fractional hybrid modeling is of great significance in different en-
gineering fields, and it can be a unique idea for the future combined research between
various applied sciences. So we leave the new abstract idea for interested researchers as
future projects.
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28. Agarwal, R.P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional

differential equations. J. Math. Anal. Appl. 371(1), 57–68 (2010). https://doi.org/10.1016/j.jmaa.2010.04.034
29. Jiang, M., Zhong, S.: Existence of solutions for nonlinear fractional q-difference equations with Riemann–Liouville

type q-derivatives. J. Appl. Math. Comput. 47(1–2), 429–459 (2015). https://doi.org/10.1007/s12190-014-0784-3
30. Zhang, X., Zhong, Q.: Multiple positive solutions for nonlocal boundary value problems of singular fractional

differential equations. Bound. Value Probl. 2016, 65 (2016). https://doi.org/10.1186/s13661-016-0572-0
31. Zhou, H., Alzabut, J., Yang, L.: On fractional Langevin differential equations with anti-periodic boundary conditions.

Eur. Phys. J. Spec. Top. 226, 3577–3590 (2017). https://doi.org/10.1140/epjst/e2018-00082-0
32. Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional

differential equation. Nonlinear Anal. 71, 4676–4688 (2009). https://doi.org/10.1016/j.na.2009.03.030
33. Ahmad, B., Nieto, J.J.: Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral

boundary conditions. Bound. Value Probl. 2011, 36 (2011). https://doi.org/10.1186/1687-2770-2011-36
34. Su, X., Zhang, S.: Solutions to boundary value problems for nonlinear differential equations of fractional order.

Electron. J. Differ. Equ. 2009(26), 1 (2009)
35. Ragusa, M.A.: Cauchy–Dirichlet problem associated to divergence form parabolic equations. Commun. Contemp.

Math. 6(3), 377–393 (2004). https://doi.org/10.1142/S0219199704001392
36. Chidouh, A., Torres, D.: Existence of positive solutions to a discrete fractional boundary value problem and

corresponding Lyapunov-type inequalities. Opusc. Math. 38(1), 31–40 (2018).
https://doi.org/10.7494/OpMath.2018.38.1.31

https://doi.org/10.1186/s13662-020-02614-z
https://doi.org/10.1002/mma.5903
https://doi.org/10.1016/j.chaos.2019.109508
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.094
https://doi.org/10.1016/j.physa.2019.04.058
https://doi.org/10.1142/S1793524520500102
https://doi.org/10.1016/j.ijleo.2020.164507
https://doi.org/10.1098/rsta.2012.0144
https://doi.org/10.1186/s13661-018-1008-9
https://doi.org/10.1186/s13662-017-1258-3
https://doi.org/10.1006/jmaa.2000.7123
https://doi.org/10.1016/j.jmaa.2005.02.052
https://doi.org/10.1016/j.jmaa.2005.02.052
https://doi.org/10.1016/j.jmaa.2007.08.024
https://doi.org/10.1002/mana.201000043
https://doi.org/10.1016/j.jmaa.2010.04.034
https://doi.org/10.1007/s12190-014-0784-3
https://doi.org/10.1186/s13661-016-0572-0
https://doi.org/10.1140/epjst/e2018-00082-0
https://doi.org/10.1016/j.na.2009.03.030
https://doi.org/10.1186/1687-2770-2011-36
https://doi.org/10.1142/S0219199704001392
https://doi.org/10.7494/OpMath.2018.38.1.31


Etemad et al. Advances in Difference Equations        (2020) 2020:302 Page 19 of 19

37. Denton, Z., Ramírez, J.D.: Existence of minimal and maximal solutions to RL fractional integro-differential initial value
problems. Opusc. Math. 37(5), 705–724 (2017). https://doi.org/10.7494/OpMath.2017.37.5.705

38. Liu, Y.: A new method for converting boundary value problems for impulsive fractional differential equations to
integral equations and its applications. Adv. Nonlinear Anal. 8(1), 386–454 (2019).
https://doi.org/10.1515/anona-2016-0064

39. Wang, Y., Liu, L.: Necessary and sufficient condition for the existence of positive solution to singular fractional
differential equations. Adv. Differ. Equ. 2015, 207 (2015)

40. Wang, Y.: Positive solutions for a class of two-term fractional differential equations with multipoint boundary value
conditions. Adv. Differ. Equ. 2019, 304 (2019). https://doi.org/10.1186/s13662-019-2250-x

41. Wang, Y.: Necessary conditions for the existence of positive solutions to fractional boundary value problems at
resonance. Appl. Math. Lett. 97, 34–40 (2019). https://doi.org/10.1016/j.aml.2019.05.007

42. Bungardi, S., Cardinali, T., Rubbioni, P.: Nonlocal semi-linear integro-differential inclusions via vectorial measures of
non-compactness. Appl. Anal. 96(15), 2526–2544 (2015)

43. Ndaírou, F., Area, I., Nieto, J.J., Torres, D.F.M.: Mathematical modeling of COVID-19 transmission dynamics with a case
study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)

44. Kucche, K.D., Nieto, J.J., Venktesh, V.: Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dyn. Syst.
28(1), 1–17 (2020)

45. Ahmad, B., Alruwaily, Y., Alsaedi, A., Nieto, J.J.: Fractional integro-differential equations with dual anti-periodic
boundary conditions. Differ. Integral Equ. 33(3–4), 181–206 (2020)

46. Nisar, K.S., Suthar, D.L., Agarwal, R., Purohit, S.D.: Fractional calculus operators with Appell function kernels applied to
Srivastava polynomials and extended Mittag-Leffler function. Adv. Differ. Equ. 2020, 148 (2020)

47. Agarwal, R., Golev, A., Hristova, S., O’Regan, D., Stefanova, K.: Iterative techniques with computer realization for the
initial value problem for Caputo fractional differential equations. J. Appl. Math. Comput. 58(1–2), 433–467 (2018)

48. Hristova, S., Agarwal, R., O’Regan, D.: Explicit solutions of initial value problems for systems of linear Riemann–Liouville
fractional differential equations with constant delay. Adv. Differ. Equ. 2020, 180 (2020)

49. Wang, X., Li, X., Huang, N., O’Regan, D.: Asymptotical consensus of fractional-order multi-agent systems with current
and delay states. Appl. Math. Mech. 40(11), 1677–1694 (2019)

50. Song, J., Xia, Y., Bai, Y., Cai, Y., O’Regan, D.: A non-autonomous Leslie–Gower model with Holling type IV functional
response and harvesting complexity. Adv. Differ. Equ. 2019, 299 (2019)

51. Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations
involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, 249 (2018)

52. Dhage, B.C., Lakshmikantham, V.: Basic results on hybrid differential equation. Nonlinear Anal. Hybrid Syst. 4, 414–424
(2010)

53. Zhao, Y., Sun, S., Han, Z., Li, Q.: Theory of fractional hybrid differential equations. Comput. Math. Appl. 62(3),
1312–1324 (2011). https://doi.org/10.1016/j.camwa.2011.03.041

54. Hilal, K., Kajouni, A.: Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equ.
2015, 183 (2015)

55. Baleanu, D., Hedayati, V., Rezapour, S., Al Qurashi, M.M.: On two fractional differential inclusions. SpringerPlus 5(1), 882
(2016). https://doi.org/10.1186/s40064-016-2564-z

56. Derbazi, C., Hammouche, H., Benchohra, M., Zhou, Y.: Fractional hybrid differential equations with three-point
boundary hybrid conditions. Adv. Differ. Equ. 2019, 125 (2019)

57. Baleanu, D., Etemad, S., Pourrazi, S., Rezapour, S.: On the new fractional hybrid boundary value problems with
three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 473 (2019)

58. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value
conditions. Bound. Value Probl. 2020, 64 (2020)

59. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
60. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon &

Breach, Philadelphia (1993)
61. Deimling, K.: Multi-Valued Differential Equations. de Gruyter, Berlin (1992)
62. Aubin, J., Ceuina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984).

https://doi.org/10.1007/978-3-642-69512-4
63. Dhage, B.C.: Nonlinear functional boundary value problems involving Carathédory. Kyungpook Math. J. 46, 427–441

(2006)
64. Lasota, A., Opial, Z.: An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations.

Bull. Acad. Pol. Sci. Set. Sci. Math. Astronom. Phy. 13, 781–786 (1965)
65. Dhage, B.C.: Existence results for neutral functional differential inclusions in Banach algebras. Nonlinear Anal. 64,

1290–1306 (2006)

https://doi.org/10.7494/OpMath.2017.37.5.705
https://doi.org/10.1515/anona-2016-0064
https://doi.org/10.1186/s13662-019-2250-x
https://doi.org/10.1016/j.aml.2019.05.007
https://doi.org/10.1016/j.camwa.2011.03.041
https://doi.org/10.1186/s40064-016-2564-z
https://doi.org/10.1007/978-3-642-69512-4

	On a hybrid inclusion problem via hybrid boundary value conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


