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Abstract
We consider the existence of solutions for the following Hadamard-type fractional
differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HDαu(t) + q(t)f (t,u(t), HDβ1u(t), HDβ2u(t)) = 0, 1 < t < +∞,

u(1) = 0,
HDα–2u(1) =

∫ +∞
1 g1(s)u(s) dss ,

HDα–1u(+∞) =
∫ +∞
1 g2(s)u(s) dss ,

where 2 < α ≤ 3, 0 < β1 ≤ α – 2 < β2 ≤ α – 1, f : J×R
3 → R satisfies the

q-Carathéodory condition, q,g1,g2 : J →R
+ are nonnegative, where J = [1, +∞).

Nonlinear term f is dependent on the fractional derivative of lower order β1, β2,
which creates additional complexity to verify the existence of solutions. The
singularity occurring in our problem is associated with HDβ2u ∈ C(1, +∞) at the left
endpoint t = 1 (if β2 < α – 1).
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1 Introduction
Fractional differential equations arise from various applications including in a variety of
fields of mathematical and natural science. Fractional boundary value problems can more
accurately describe the nature of practical problems, they have solved a large number of
applications in different kinds of fields such as viscoelasticity, biomedical engineering, me-
chanical, anomalous diffusion, etc. Therefore, they have become a research hot-spot. A va-
riety of techniques, such as the method of mixed monotone operator, topological degree
method, monotone iterative technique, etc., have been applied to obtain the existence of
solutions for fractional boundary value problems (see [1–32]).
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Apart from the common differential equation with Riemann–Liouville and Caputo frac-
tional derivative, there are also several kinds of fractional derivatives: Hadamard, Erdelyi–
Kober, Hilfer, and so on. Here we emphasize that the studies about Hadamard fractional
differential equations are still at the early stage and need further investigation. More details
and recent contributions to the topic can be found in [33–51] and the references therein.

In [36], the author used the fixed point index to study the existence of positive solutions
for a system of nonlinear Hadamard fractional differential equations involving coupled
integral boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dβu(t) + f1(t, u(t), v(t)), t ∈ [1, e],

Dβv(t) + f2(t, u(t), v(t)), t ∈ [1, e],

u(1) = v(1) = u′(1) = v′(1) = 0,

u(e) =
∫ e

1 h(s)v(s) ds
s ,

v(e) =
∫ e

1 g(s)u(s) ds
s ,

where β ∈ (2, 3], f1, f2 are nonnegative continuous functions on [1, e] ×R
+ ×R

+.
Ardjouni in [45] employed the Schauder and Banach fixed point theorems and the

method of upper and lower solutions to show the existence and uniqueness of a positive
solution for nonlinear Hadamard fractional differential equations with integral boundary
conditions:

⎧
⎨

⎩

Dα
1 x(t) + f (t, x(t)) = Dβ

1 g(t, x(t)), t ∈ [1, e],

x(1) = 0, x(e) = 1
Γ (α–β)

∫ e
1 (log e

s )α–β–1g(s, x(s)) ds
s ,

where 1 < α ≤ 2, 0 < β ≤ α – 1, g, f : [1, e] × [0,∞) → [0,∞) are given continuous func-
tions, g is nondecreasing on x, and f does not require any monotone assumption.

In [46], Pei et al. investigated the following boundary value problem of Hadamard frac-
tional integro-differential equations on infinite domain:

⎧
⎨

⎩

HDαu(t) + f (t, u(t), HIγ u(t), HDα–1u(t)) = 0, 1 < α < 2, t ∈ (1,∞),

u(1) = 0, HDα–1u(∞) =
∑m

i=1 λi
HIβi u(η),

where γ ,βi,λi ≥ 0 (i = 1, 2, . . . , m) are given constants and η, βi, λi satisfy Γ (α) >
∑m

i=1
λiΓ (α)
Γ (α+βi)

× (log t)α+βi–1. The nonlinear term f is nondecreasing with respect to the
second, third, and last variables. By use of the monotone iterative method, the authors
obtained not only the existence of positive solutions for Hadamard fractional integro-
differential equations on infinite intervals, but also the minimal and maximal positive
solutions and two explicit monotone iterative sequences converging to the extremal solu-
tion.

El-Sayed and Gaafar [47] established the existence of positive solutions to the follow-
ing singular nonlinear Hadamard-type fractional differential equations with infinite-point
boundary conditions or integral boundary condition:

HDγ v(t) + f
(
t, v(t), HDδv(t), v′(t)

)
= 0, a.e. t ∈ (1, e),

v(1) = 0, v(e) = v0 + λ

∫ e

1
v
(
Φ(ξ )

)Φ ′(ξ )
Φ(ξ )

dξ ,
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or

v(1) = 0, v(e) = v0 + λ

∞∑

j=1

ajv
(
Φ(ηj)

)
,

where 1 < γ < 2, 0 < δ < 1, 1 ≤ γ – δ < 2, λ, v0, aj are nonnegative constants. f : [1, e]×R
+ ×

R
2 is an Lp Carathéodory positive function.
In [2], Hao et al. considered a boundary value problem of fractional differential equation

inclusions of Riemann–Liouville type on the infinite interval:

⎧
⎨

⎩

Dα
0+u(t) + f (t, u(t), Dα–2

0+ u(t), Dα–1
0+ u(t)) = 0, t ∈ (0,∞),

u(0) = u′(0) = 0, Dα–1u(∞) = ξ Iβ
0+u(η),

where 2 < α ≤ 3, β > 0, ξ ,η ≥ 0, Γ (α + β) > ξηα+β–1, f ∈ C([0, +∞] ×R×R×R,R). Under
suitable growth conditions of the nonlinear term f , by using the Schauder fixed point the-
orem and Banach contraction mapping principle, the authors showed the existence and
uniqueness results of solutions.

Inspired by the works mentioned above, we will study the existence of solutions for the
following boundary value problem for Hadamard fractional differential equations:

HDαu(t) + q(t)f
(
t, u(t), HDβ1 u(t), HDβ2 u(t)

)
= 0, 1 < t < +∞, (1.1)

supplemented with Hadamard integral boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

u(1) = 0,
HDα–2u(1) =

∫ +∞
1 g1(s)u(s) ds

s ,
HDα–1u(+∞) =

∫ +∞
1 g2(s)u(s) ds

s ,

(1.2)

2 < α ≤ 3, 0 < β1 ≤ α – 2 < β2 ≤ α – 1, q ∈ C(J ,R+), J = [1, +∞), and 0 <
∫ +∞

1 q(s) ds
s < +∞,

f : J × R
3 → R satisfies the q-Carathéodory condition, g1, g2 : J → R

+ are nonnegative
functions. HDα represents a Hadamard fractional derivative of order α.

We say that f satisfies the q-Carathéodory condition on J ×R
3 →R, if

(1) for each (u, v, w) ∈R
3, the mapping t → f (t, u, v, w) is measurable on J ;

(2) for a.e. t ∈ J , the mapping
(u, v, w) → f (t, (1 + (log t)α–1)u, (1 + (log t)α–β1–1)v, (1 + (log t)α–β2 ) w

(log t)2+β2–α ) is
continuous on R

3;
(3) for each r > 0, there exists a nonnegative function fr satisfying

∫ ∞
1 q(s)fr(s) ds

s < +∞
such that, for any u, v, w ∈R with max{u, v, w} ≤ r,

∣
∣
∣
∣f

(

t,
(
1 + (log t)α–1)u,

(
1 + (log t)α–β1–1)v,

1 + (log t)α–β2

(log t)2+β2–α
w

)∣
∣
∣
∣ ≤ fr(t), for a.e. t ∈ J .

Compared with [2], in this paper, the nonlinear term f contains lower Hadamard frac-
tional derivatives HDβ1 , HDβ2 , which are not only the particular case HDα–1, HDα–2. Fur-
thermore, when β2 < α –1, limt→1+(HDβ2 u)(t) = ∞, the singularity creates additional com-
plexity to verify the existence of solutions.
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This paper is organized as follows. Section 2 contains some important lemmas, which
play a key role in the study, and presents some properties of Green’s functions that are
used to define an operator. In Sect. 3, the existence of solution for (1.1), (1.2) is established
by using the fixed point theory in cones. In Sect. 4, the main results are illustrated by an
example.

2 Some preliminaries and lemmas
Let ACn

δ (J ,R) = {y : J → R, δn–1y ∈ AC(J ,R)}, where δ = t d
dt and AC(J ,R) is the space of

absolutely continuous functions from J into R.

Definition 2.1 ([1]) The Hadamard fractional integral of order α > 0 for a function g ∈
L1(J ,R) is defined as

HIαg(t) =
1

Γ (α)

∫ t

1

(

log
t
s

)α–1

g(s)
ds
s

,

where log(·) = loge(·).

Definition 2.2 ([1]) The Hadamard derivative of fractional order α > 0 for a function
g ∈ ACn

δ (J ,R) is defined as

HDαg(t) = δn(HIn–αg
)
(t) =

1
Γ (n – α)

(

t
d
dt

)n ∫ t

1

(

log
t
s

)n–α–1

g(s)
ds
s

,

where n – 1 < α < n, n = [α] + 1, [α] denotes the integer part of the real number α.

Lemma 2.1 ([1]) If β – 1 > γ > 0, then
(1) HIγ log(t)β–1 = Γ (β)

Γ (β+γ ) (log t)β+γ –1,
(2) HDγ log(t)β–1 = Γ (β)

Γ (β–γ ) (log t)β–γ –1.

Lemma 2.2 ([1]) For α > 0, n = [α] + 1 and x ∈ C(J) ∩ L1(J), the solution of Hadamard
fractional differential equation HDαx(t) = 0 is x(t) =

∑n
i=1 ci(log t)α–i, where ci ∈ R (i =

1, 2, . . . , n).

Lemma 2.3 ([1]) Let α > 0. If u ∈ L1(J), then the equality HDα(HIαu)(t) = u(t) holds a.e.
on J .

Lemma 2.4 ([1]) If u ∈ C(J) and HDαu ∈ L1(J), then

HIα
(HDαu

)
(t) = u(t) + c1(log t)α–1 + c2(log t)α–2 + · · · + cn(log t)α–n,

where ci ∈R (i = 1, 2, 3 . . . , n), n = [α] + 1.

For further analysis, we introduce the following denotations:

l1 =
1

Γ (α)

∫ +∞

1
g1(t)(log t)α–1 dt

t
, l2 =

1
Γ (α – 1)

∫ +∞

1
g2(t)(log t)α–2 dt

t
,

δ1 =
1

Γ (α – 1)

∫ +∞

1
g1(t)(log t)α–2 dt

t
, δ2 =

1
Γ (α)

∫ +∞

1
g2(t)(log t)α–1 dt

t
,
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δ =
1

(1 – δ1)(1 – δ2) – l1l2
, ϕλ(t) =

(log t)λ–1

Γ (λ)
,

Gλ(t, s) =
1

Γ (λ)

⎧
⎨

⎩

(log t)λ–1 – (log t
s )λ–1, 1 ≤ s ≤ t < +∞,

(log t)λ–1, 1 ≤ t ≤ s < +∞,
(2.1)

T1,λ(t) = ϕλ(t)δl2 + ϕλ–1(t)δ(1 – δ2), T2,λ(t) = ϕλ(t)δ(1 – δ1) + ϕλ–1(t)δl1, (2.2)

Kλ(t, s) = Gλ(t, s) + T1,λ(t)
∫ ∞

1
g1(t)Gα(t, s)

dt
t

+ T2,λ(t)
∫ ∞

1
g2(t)Gα(t, s)

dt
t

. (2.3)

We will use the following conditions:
(H1) q ∈ C(J ,R+), f : J ×R

3 →R satisfies q-Carathéodory condition;
(H2) g1, g2 ∈ L1(J ,R+), l1, δ2 < +∞, and (1 – δ1)(1 – δ2) – l1l2 > 0.

Lemma 2.5 Let h ∈ C(J) ∩ L1(J) with 0 <
∫ ∞

1 h(s) ds
s < ∞, then the solution of Hadamard

type fractional differential equation

HDαu(t) + h(t) = 0, (2.4)

subject to the same condition (1.2) can be expressed by

u(t) =
∫ +∞

1
Kα(t, s)h(s)

ds
s

,

where Kα(t, s) is denotation (2.3) with λ = α.

Proof Due to Lemma 2.4, the solution of Hadamard fractional differential equation
HDαu(t) + h(t) = 0 can be written as

u(t) = –HIαh(t) + c1(log t)α–1 + c2(log t)α–2 + c3(log t)α–3, (2.5)

where ci ∈ R (i = 1, 2, 3) are arbitrary constants. From u(1) = 0, we have c3 = 0. By
Lemma 2.1, we have

HDα–2u(t) = –HI2h(t) + c1
Γ (α)
Γ (2)

(log t) + c2
Γ (α – 1)

Γ (1)
.

Using the condition HDα–2u(1) =
∫ +∞

1 g1(s)u(s) ds
s , we conclude that c2 = 1

Γ (α–1)
∫ +∞

1 g1(t) ×
u(t) dt

t .
Similarly, we get

HDα–1u(t) = –HI1h(t) + c1
Γ (α)
Γ (1)

.

From the condition HDα–1u(+∞) =
∫ +∞

1 g2(s)u(s) ds
s , we conclude that

c1 =
1

Γ (α)

∫ +∞

1
h(t)

dt
t

+
1

Γ (α)

∫ +∞

1
g2(t)u(t)

dt
t

.
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Consequently,

u(t) = –HIαh(t) + c1(log t)α–1 + c2(log t)α–2

= –
1

Γ (α)

∫ t

1

(

log
t
s

)α–1

h(s)
ds
s

+
1

Γ (α)

∫ ∞

1
(log t)α–1h(s)

ds
s

+
(log t)α–1

Γ (α)

∫ ∞

1
g2(s)u(s)

ds
s

+
(log t)α–2

Γ (α – 1)

∫ ∞

1
g1(s)u(s)

ds
s

=
∫ ∞

1
Gα(t, s)h(s)

ds
s

+
(log t)α–1

Γ (α)

∫ ∞

1
g2(s)u(s)

ds
s

+
(log t)α–2

Γ (α – 1)

∫ ∞

1
g1(s)u(s)

ds
s

. (2.6)

Multiplying both sides of (2.6) by g1(t)
t and integrating from 1 to +∞, we get

∫ +∞

1
u(t)g1(t)

dt
t

=
∫ +∞

1
g1(t)

(∫ ∞

1
Gα(t, s)h(s)

ds
s

)
dt
t

+
1

Γ (α)

∫ +∞

1
g1(t)(log t)α–1 dt

t

∫ ∞

1
g2(s)u(s)

ds
s

+
1

Γ (α – 1)

∫ +∞

1
g1(t)(log t)α–2 dt

t

∫ ∞

1
g1(s)u(s)

ds
s

. (2.7)

Similarly,

∫ +∞

1
u(t)g2(t)

dt
t

=
∫ +∞

1
g2(t)

(∫ ∞

1
Gα(t, s)h(s)

ds
s

)
dt
t

+
1

Γ (α)

∫ +∞

1
g2(t)(log t)α–1 dt

t

∫ ∞

1
g2(s)u(s)

ds
s

+
1

Γ (α – 1)

∫ +∞

1
g2(t)(log t)α–2 dt

t

∫ ∞

1
g1(s)u(s)

ds
s

. (2.8)

For convenience, we denote

X1 =
∫ +∞

1
g1(t)u(t)

dt
t

, X2 =
∫ +∞

1
g2(t)u(t)

dt
t

,

A1 =
∫ +∞

1

(∫ ∞

1
g1(t)Gα(t, s)

dt
t

)

h(s)
ds
s

, A2 =
∫ +∞

1

(∫ ∞

1
g2(t)Gα(t, s)

dt
t

)

h(s)
ds
s

.

From (2.7), (2.8) we can deduce

(
1 – δ1 –l1

–l2 1 – δ2

)(
X1

X2

)

=

(
A1

A2

)

.

Thus,

X1 =
(1 – δ2)A1 + l1A2

(1 – δ1)(1 – δ2) – l1l2
= δ

(
(1 – δ2)A1 + l1A2

)
,

X2 =
l2A1 + (1 – δ1)A2

(1 – δ1)(1 – δ2) – l1l2
= δ

(
l2A1 + (1 – δ1)A2

)
.
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Substituting X1, X2 into (2.6), we can conclude

u(t) =
∫ ∞

1
Gα(t, s)h(s)

ds
s

+
(log t)α–1

Γ (α)
δ
(
l2A1 + (1 – δ1)A2

)

+
(log t)α–2

Γ (α – 1)
δ
(
(1 – δ2)A1 + l1A2

)

=
∫ ∞

1
Gα(t, s)h(s)

ds
s

+
[

(log t)α–1

Γ (α)
δl2 +

(log t)α–2

Γ (α – 1)
δ(1 – δ2)

]

A1

+
[

(log t)α–1

Γ (α)
δ(1 – δ1) +

(log t)α–2

Γ (α – 1)
δl1

]

A2

=
∫ ∞

1
Gα(t, s)h(s)

ds
s

+ T1,α(t)A1 + T2,α(t)A2

=
∫ ∞

1

[

Gα(t, s) + T1,α(t)
∫ ∞

1
g1(t)Gα(t, s)

dt
t

+ T2,α(t)
∫ ∞

1
g2(t)Gα(t, s)

dt
t

]

h(s)
ds
s

=
∫ ∞

1
Kα(t, s)h(s)

ds
s

. �

Lemma 2.6 The functions Gλ, ϕλ, T1,λ, T2,λ defined in (2.1), (2.2) satisfy
(1) Gλ is continuous in J × J and 0 ≤ Gλ(t, s) ≤ 1

Γ (λ) (log t)λ–1, ∀t, s ∈ J × J , λ ≥ 1;
(2) Gλ(t,s)

1+(log t)λ–1 ≤ 1
Γ (λ) , ∀t, s ∈ J × J , λ ≥ 1;

(3) If λ ≥ 2, for any t ∈ J , ϕλ(t)
1+(log t)λ–1 ≤ 1

Γ (λ) , ϕλ–1(t)
1+(log t)λ–1 ≤ 1

Γ (λ–1) ;
(4) If 1 < λ < 2, for any t, s ∈ J ,

(log t)2–λ

1 + (log t)λ
Gλ(t, s) ≤ 1

Γ (λ)
,

(log t)2–λ

1 + (log t)λ
ϕλ(t) ≤ 1

Γ (λ)
,

(log t)2–λ

1 + (log t)λ
ϕλ–1(t) ≤ 1

Γ (λ – 1)
;

(5) For any t ∈ J , λ ≥ 2,

T1,λ(t)
1 + (log t)λ–1 ≤ δl2

Γ (λ)
+

δ(1 – δ2)
Γ (λ – 1)

,
T2,λ(t)

1 + (log t)λ–1 ≤ δ(1 – δ1)
Γ (λ)

+
δl1

Γ (λ – 1)
.

Proof By the definition, conclusions (1) and (2) can be easily obtained.
(3) If λ ≥ 2, for ∀t ∈ J , ϕλ(t)

1+(log t)λ–1 = (log t)λ–1

1+(log t)λ–1
1

Γ (λ) ≤ 1
Γ (λ) ,

ϕλ–1(t)
1 + (log t)λ–1 =

(log t)λ–2

1 + (log t)λ–1
1

Γ (λ – 1)

≤
⎧
⎨

⎩

(log t)λ–1

1+(log t)λ–1
1

Γ (λ–1) , t ≥ e,
1

1+(log t)λ–1
1

Γ (λ–1) , 1 ≤ t ≤ e

≤ 1
Γ (λ – 1)

.

(4) If 1 < λ < 2, for any t, s ∈ J , (log t)2–λ

1+(log t)λ Gλ(t, s) ≤ log t
1+(log t)λ

1
Γ (λ) ≤ 1

Γ (λ) ,

(log t)2–λ

1 + (log t)λ
ϕλ(t) =

log t
1 + (log t)λ

1
Γ (λ)

≤ 1
Γ (λ)

,
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(log t)2–λ

1 + (log t)λ
ϕλ–1(t) =

1
1 + (log t)λ

1
Γ (λ – 1)

≤ 1
Γ (λ – 1)

.

On the basis of (3), conclusion (5) can be easily deduced. �

Remark 1 From Lemma 2.1 and 0 < β1 ≤ α – 2 < β2 ≤ α – 1, we can calculate

HDβ1 T1,α(t) = T1,α–β1 (t), H Dβ1 T2,α(t) = T2,α–β1 (t),

HDβ2 T1,α(t) =

⎧
⎨

⎩

T1,α–β2 (t), β2 < α – 1,

δl2, β2 = α – 1,

HDβ2 T2,α(t) =

⎧
⎨

⎩

T2,α–β2 (t), β2 < α – 1,

δ(1 – δ1), β2 = α – 1.

Define the function spaces

X =
{

u ∈ C(J) : sup
t∈J

|u(t)|
1 + (log t)α–1 < +∞

}

with the form ‖u‖X = supt∈J
|u(t)|

1+(log t)α–1 and

Y =
{

u ∈ X : HDβ1 u ∈ C(J), HDβ2 u ∈ C(1, +∞), sup
t∈J

|HDβ1 u(t)|
1 + (log t)α–β1–1 < +∞,

sup
t∈J

(log t)2+β2–α

1 + (log t)α–β2

∣
∣HDβ2 u(t)

∣
∣ < +∞

}

with the norm

‖u‖Y = max

{

sup
t∈J

|u(t)|
1 + (log t)α–1 , sup

t∈J

|H Dβ1 u(t)|
1 + (log t)α–β1–1 , sup

t∈J

(log t)2+β2–α

1 + (log t)α–β2

∣
∣HDβ2 u(t)

∣
∣

}

.

By a standard method, we can show that (Y ,‖ · ‖Y ) is a Banach space.

According to the same method in [46, 49], we can get the following lemma.

Lemma 2.7 Let U ⊂ Y be a bounded set, then U is relatively compact in Y if the following
conditions hold:

(1) For any u ∈ U , u(t)
1+(log t)α–1 ,

H Dβ1 u(t)
1+(log t)α–β1–1 , and (log t)2+β2–α

1+(log t)α–β2 (HDβ2 u)(t) are equicontinuous
on any compact interval of J ;

(2) For any ε > 0, there exists a constant L = L(ε) > 0 such that

∣
∣
∣
∣

u(t1)
1 + (log t1)α–1 –

u(t2)
1 + (log t2)α–1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

HDβ1 u(t1)
1 + (log t1)α–β1–1 –

HDβ1 u(t2)
1 + (log t2)α–β1–1

∣
∣
∣
∣ < ε,

and
∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2

(HDβ2 u
)
(t1) –

(log t2)2+β2–α

1 + (log t2)α–β2

(HDβ2 u
)
(t2)

∣
∣
∣
∣ < ε,

for any t1, t2 ≥ L and u ∈ U .
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Lemma 2.8 (Schauder’s fixed point theorem) Let C be a compact, closed, bounded, and
convex subset of a Banach space X. Suppose that T : C → C is a continuous and compact
mapping. Then T has at least one fixed point in C.

3 Main results
In this section, we shall establish the existence result of at least one solution of (1.1), (1.2).
For convenience, we denote Fu(s) = f (s, u(s), HDβ1 u(s), HDβ2 u(s)).

We define an operator A : Y → C(J ,R) as follows:

Au(t) =
∫ +∞

1
Kα(t, s)q(s)Fu(s)

ds
s

, t ∈ J . (3.1)

By Lemma 2.5, we can show that u(t) is a solution of boundary value problem (1.1), (1.2)
if and only if it is the fixed point of A.

From Lemma 2.1 and Remark 1, we have

HDβ1 Au(t) = HDβ1

(∫ +∞

1
Kα(t, s)q(s)Fu(s)

ds
s

)

= HDβ1

(

–
1

Γ (α)

∫ t

1

(

log
t
s

)α–1

q(s)Fu(s)
ds
s

+
(log t)α–1

Γ (α)

∫ ∞

1
q(s)Fu(s)

ds
s

+ T1,α(t)
∫ ∞

1

(∫ ∞

1
g1(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

+ T2,α(t)
∫ ∞

1

(∫ ∞

1
g2(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

)

= –H Iα–β1 q(t)Fu(t) +
(log t)α–β1–1

Γ (α – β1)

∫ ∞

1
q(s)Fu(s)

ds
s

+ T1,α–β1 (t)
∫ ∞

1

(∫ ∞

1
g1(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

+ T2,α–β1 (t)
∫ ∞

1

(∫ ∞

1
g2(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

=
∫ +∞

1
Kα–β1 (t, s)q(s)Fu(s)

ds
s

. (3.2)

Similarly, if β2 < α – 1,

HDβ2 Au(t) =
∫ +∞

1
Kα–β2 (t, s)q(s)Fu(s)

ds
s

; (3.3)

if β2 = α – 1,

HDβ2 Au(t) = HDβ2

(∫ +∞

1
Kα(t, s)q(s)Fu(s)

ds
s

)

= HDβ2

(

–
1

Γ (α)

∫ t

1

(

log
t
s

)α–1

q(s)Fu(s)
ds
s

+
(log t)α–1

Γ (α)

∫ ∞

1
q(s)Fu(s)

ds
s

+ T1,α(t)
∫ ∞

1

(∫ ∞

1
g1(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s
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+ T2,α(t)
∫ ∞

1

(∫ ∞

1
g2(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

)

= –HI1q(t)Fu(t) +
∫ ∞

1
q(s)Fu(s)

ds
s

+ δl2

∫ ∞

1

(∫ ∞

1
g1(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

+ δ(1 – δ1)
∫ ∞

1

(∫ ∞

1
g2(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

=
∫ +∞

1
Kβ2 (t, s)q(s)Fu(s)

ds
s

, (3.4)

where Kβ2 (t, s) = G(t, s) + δl2
∫ ∞

1 g1(t)Gα(t, s) dt
t + δ(1 – δ1)

∫ ∞
1 g2(t)Gα(t, s) dt

t ,

G(t, s) =

⎧
⎨

⎩

0, 1 ≤ s ≤ t < +∞,

1, 1 ≤ t ≤ s < +∞.

Remark 2 In (2.3) we choose λ = α, λ = α – β1 respectively, from Lemma 2.6, we can easily
get the following inequalities:

Kα(t, s)
1 + (log t)α–1 ≤ 1

Γ (α)
+ l1

(
δl2

Γ (α)
+

δ(1 – δ2)
Γ (α – 1)

)

+ δ2

(
δ(1 – δ1)

Γ (α)
+

δl1

Γ (α – 1)

)

� 
1, ∀t, s ∈ J , (3.5)

Kα–β1 (t, s)
1 + (log t)α–β1–1 ≤ 1

Γ (α – β1)
+ l1

(
δl2

Γ (α – β1)
+

δ(1 – δ2)
Γ (α – β1 – 1)

)

+ δ2

(
δ(1 – δ1)
Γ (α – β1)

+
δl1

Γ (α – β1 – 1)

)

� 
2, ∀t, s ∈ J , (3.6)

when 1 < α – β2 < 2, for all t, s ∈ J , according to Lemma 2.6(2), (4), let λ = α – β2,

(log t)2+β2–α

1 + (log t)α–β2
Kα–β2 (t, s) =

(log t)2+β2–α

1 + (log t)α–β2
Gα–β2 (t, s)

+
(log t)2+β2–α

1 + (log t)α–β2
T1,α–β2 (t)

∫ +∞

1
g1(s)Gα(t, s)

dt
t

+
(log t)2+β2–α

1 + (log t)α–β2
T2,α–β2 (t)

∫ +∞

1
g2(s)Gα(t, s)

dt
t

≤ 1
Γ (α – β2)

+
[

δl2

Γ (α – β2)
+

δ(1 – δ2)
Γ (α – β2 – 1)

]

l1

+
[

δ(1 – δ1)
Γ (α – β2)

+
δl1

Γ (α – β2 – 1)

]

δ2

� 
3 (3.7)
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when α – β2 = 1, we have the following inequality:

(log t)2+β2–α

1 + (log t)α–β2
Kβ2 (t, s) =

log t
1 + log t

Kβ2 (t, s) ≤ 1 + δl1l2 + δ(1 – δ1)δ2 � 
4. (3.8)

Lemma 3.1 The operator A : Y → Y is well defined.

Proof For any u ∈ Y , u �= θ , let ‖u‖Y = r > 0. In view of the definition of Y ,

sup
t∈J

|u(t)|
1 + (log t)α–1 ≤ r, sup

t∈J

|H Dβ1 u(t)|
1 + (log t)α–β1–1 ≤ r,

sup
t∈J

(log t)2+β2–α

1 + (log t)α–β2

∣
∣HDβ2 u(t)

∣
∣ ≤ r.

From the continuity of Kα , q, Fu, we know Au(t), H Dβ1 Au(t), and HDβ2 Au(t) are continu-
ous.

∣
∣Fu(s)

∣
∣ =

∣
∣f

(
s, u(s), HDβ1 u(s), HDβ2 u(s)

)∣
∣

=
∣
∣
∣
∣f

(

s,
(
1 + (log s)α–1) u(s)

1 + (log s)α–1 ,
(
1 + (log s)α–β1–1)

HDβ1 u(s)
1 + (log s)α–β1–1 ,

1 + (log s)α–β2

(log s)2+β2–α

(log s)2+β2–α

1 + (log s)α–β2
HDβ2 u(s)

)∣
∣
∣
∣

≤ fr(s).

Using (3.5)–(3.8) and the Caratheodory condition, we can deduce

sup
t∈J

∣
∣
∣
∣

Au(t)
1 + (log t)α–1

∣
∣
∣
∣ = sup

t∈J

∣
∣
∣
∣

∫ +∞

1

Kα(t, s)
1 + (log t)α–1 q(s)Fu(s)

ds
s

∣
∣
∣
∣ ≤ 
1

∫ +∞

1
q(s)fr(s)

ds
s

< +∞,

sup
t∈J

∣
∣
∣
∣

HDβ1 Au(t)
1 + (log t)α–β1–1

∣
∣
∣
∣ = sup

t∈J

∣
∣
∣
∣

∫ +∞

1

Kα–β1 (t, s)
1 + (log t)α–β1–1 q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
2

∫ +∞

1
q(s)fr(s)

ds
s

< +∞,

sup
t∈J

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Aun
)
(t)

∣
∣
∣
∣ = sup

t∈J

∣
∣
∣
∣

∫ +∞

1

(log t)2+β2–α

1 + (log t)α–β2
Kα–β2 (t, s)q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
3

∫ +∞

1
q(s)fr(s)

ds
s

< +∞, (β2 < α – 1),

and

sup
t∈J

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Aun
)
(t)

∣
∣
∣
∣ = sup

t∈J

∣
∣
∣
∣

∫ +∞

1

(log t)2+β2–α

1 + (log t)α–β2
Kβ2 (t, s)q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
4

∫ +∞

1
q(s)fr(s)

ds
s

< +∞, (β2 = α – 1).

From the definition of space Y , we know Au ∈ Y , which means operator A is well de-
fined. �
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Theorem 3.1 Assume that conditions (H1)–(H2) are satisfied. Further assume that the
following condition (H3) holds:

(H3) There exists a constant R > 0 such that fR(t) satisfies




∫ +∞

1
q(s)fR(s)

ds
s

≤ R,

where 
 = max{
1,
2,
3,
4}. Then boundary value problem (1.1), (1.2) has at
least one solution.

Proof The proof is divided into the following steps:
Step 1. We will prove that A : Y → Y is completely continuous.
Firstly we will show that A is a continuous operator. Let un, u ∈ Y (n = 1, 2, . . .) with

‖un – u‖Y → 0, n → ∞. For any t ∈ J , we have

un(t)
1 + (log t)α–1 → u(t)

1 + (log t)α–1 ,
HDβ1 un(t)

1 + (log t)α–β1–1 →
HDβ1 u(t)

1 + (log t)α–β1–1 ,

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 un(t)
) → (log t)2+β2–α

1 + (log t)α–β2

(HDβ2 u(t)
)
, n → ∞.

Meanwhile, there exists a constant r > 0 such that ‖un‖Y ≤ r, ‖u‖Y ≤ r, which means

sup
t∈J

∣
∣
∣
∣

un(t)
1 + (log t)α–1

∣
∣
∣
∣ ≤ r, sup

t∈J

∣
∣
∣
∣

u(t)
1 + (log t)α–1

∣
∣
∣
∣ ≤ r,

sup
t∈J

∣
∣
∣
∣

HDβ1 un(t)
1 + (log t)α–β1–1

∣
∣
∣
∣ ≤ r, sup

t∈J

∣
∣
∣
∣

HDβ1 u(t)
1 + (log t)α–β1–1

∣
∣
∣
∣ ≤ r,

sup
t∈J

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 un
)
(t)

∣
∣
∣
∣ ≤ r, sup

t∈J

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 u
)
(t)

∣
∣
∣
∣ ≤ r.

Due to the Caratheodory condition, for a.e. s ∈ J , we have

∣
∣Fun (s) – Fu(s)

∣
∣ → 0, (n → ∞)

∣
∣Fun (s) – Fu(s)

∣
∣ ≤ 2fr(s).

By the Lebesgue dominated convergence theorem, we obtain

∫ +∞

1

∣
∣Fun (s) – Fu(s)

∣
∣ds

s
→ 0, n → ∞.

Following the above method, we can also deduce

∣
∣
∣
∣
Aun(t) – Au(t)
1 + (log t)α–1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞

1

Kα(t, s)
1 + (log t)α–1 q(s)

(
Fun (s) – Fu(s)

)ds
s

∣
∣
∣
∣

≤ 
1

∫ +∞

1
q(s)

∣
∣Fun (s) – Fu(s)

∣
∣ds

s
→ 0, n → +∞,

∣
∣
∣
∣

HDβ1 Aun(t) – HDβ1 Au(t)
1 + (log t)α–β1–1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞

1

Kα–β (t, s)
1 + (log t)α–β–1 q(s)

(
Fun (s) – Fu(s)

)ds
s

∣
∣
∣
∣

≤ 
2

∫ +∞

1
q(s)

∣
∣Fun (s) – Fu(s)

∣
∣ds

s
→ 0, n → +∞,



Liu et al. Advances in Difference Equations        (2020) 2020:274 Page 13 of 22

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Aun
)
(t) –

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Au
)
(t)

∣
∣
∣
∣

≤ 
3

∫ +∞

1
q(s)

∣
∣Fun (s) – Fu(s)

∣
∣ds

s
→ 0, n → +∞ (β < α – 1),

and
∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Aun
)
(t) –

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Au
)
(t)

∣
∣
∣
∣

≤ 
4

∫ +∞

1
q(s)

∣
∣Fun (s) – Fu(s)

∣
∣ds

s
→ 0, n → +∞ (β = α – 1).

Thus, we conclude ‖Aun – Au‖Y → 0, (n → +∞), which means that A : Y → Y is a con-
tinuous operator.

Next, we will show that A is a compact operator. Let B be a nonempty bounded subset
of Y . There exists a positive number r1 such that ‖u‖Y ≤ r1, ∀u ∈ B, and there exists fr1 ∈
L1(J) such that |Fu(s)| ≤ fr1 (s).

1© For any u ∈ B, we can get

sup
t∈J

∣
∣
∣
∣

Au(t)
1 + (log t)α–1

∣
∣
∣
∣ ≤ 
1

∫ +∞

1
q(s)fr1 (s)

ds
s

< +∞,

sup
t∈J

∣
∣
∣
∣

HDβ1 Au(t)
1 + (log t)α–β1–1

∣
∣
∣
∣ ≤ 
2

∫ +∞

1
q(s)fr1 (s)

ds
s

< +∞,

sup
t∈J

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Aun
)
(t)

∣
∣
∣
∣ ≤ 
3

∫ +∞

1
q(s)fr1 (s)

ds
s

< +∞, (β2 < α – 1),

and

sup
t∈J

∣
∣
∣
∣

(log t)2+β2–α

1 + (log t)α–β2

(HDβ2 Au
)
(t)

∣
∣
∣
∣ ≤ 
4

∫ +∞

1
q(s)fr1 (s)

ds
s

< +∞, (β2 = α – 1).

Therefore ‖Au‖Y ≤ 

∫ +∞

1 q(s)fr1 (s) ds
s < +∞ and A(B) is bounded in Y .

2© For any b > 1, let J1 � [1, b]. Because Gα (t,s)
1+(log t)α–1 is continuous on J1 × J1 and (log t)α–1

1+(log t)α–1 ,
T1,α (t)

1+(log t)α–1 , T2,α (t)
1+(log t)α–1 are continuous on J1, then they are uniformly continuous. So, for any

ε > 0, there is a constant δ1 > 0 such that, for all t1, t2, s1, s2 ∈ J1, with |t1 – t2| < δ1, |s1 – s2| <
δ1,

∣
∣
∣
∣

Gα(t1, s)
1 + (log t1)α–1 –

Gα(t2, s)
1 + (log t2)α–1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

(log t1)α–1

1 + (log t1)α–1 –
(log t2)α–1

1 + (log t2)α–1

∣
∣
∣
∣ < Γ (α)ε,

∣
∣
∣
∣

T1,α(t1)
1 + (log t1)α–1 –

T1,α(t2)
1 + (log t2)α–1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

T2,α(t1)
1 + (log t1)α–1 –

T2,α(t2)
1 + (log t2)α–1

∣
∣
∣
∣ < ε.

For ∀u ∈ B, t1, t2 ∈ J1, with t1 < t2, |t1 – t2| < δ1,

∣
∣
∣
∣

Au(t1)
1 + (log t1)α–1 –

Au(t2)
1 + (log t2)α–1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

1

(
Gα(t1, s)

1 + (log t1)α–1 –
Gα(t2, s)

1 + (log t2)α–1

)

q(s)Fu(s)
ds
s
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+
∫ +∞

1

(
T1,α(t1)

1 + (log t1)α–1 –
T1,α(t2)

1 + (log t2)α–1

)(∫ +∞

1
g1(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

+
∫ +∞

1

(
T2,α(t1)

1 + (log t1)α–1 –
T2,α(t2)

1 + (log t2)α–1

)(∫ +∞

1
g2(t)Gα(t, s)

dt
t

)

q(s)Fu(s)
ds
s

∣
∣
∣
∣

≤
∫ t2

1

∣
∣
∣
∣

Gα(t1, s)
1 + (log t1)α–1 –

Gα(t2, s)
1 + (log t2)α–1

∣
∣
∣
∣q(s)fr1 (s)

ds
s

+
1

Γ (α)

∫ +∞

t2

∣
∣
∣
∣

(log t1)α–1

1 + (log t1)α–1 –
(log t2)α–1

1 + (log t2)α–1

∣
∣
∣
∣q(s)fr1 (s)

ds
s

+ εl1

∫ +∞

1
q(s)fr1 (s)

ds
s

+ εδ2

∫ +∞

1
q(s)fr1 (s)

ds
s

≤ ε(1 + l1 + δ2)
∫ +∞

1
q(s)fr1 (s)

ds
s

.

Similarly, Gα–β1 (t,s)
1+(log t)α–β1–1 is continuous on J1 × J1, and (log t)α–β1–1

1+(log t)α–β1–1 , T1,α–β1 (t)
1+(log t)α–β1–1 , T2,α–β1 (t)

1+(log t)α–β1–1

are continuous on J1. For above ε > 0, there is a constant δ2 > 0 such that, for all t1, t2 ∈ J1

with t1 < t2, |t1 – t2| < δ2,

∣
∣
∣
∣

HDβ1 Au(t1)
1 + (log t1)α–β1–1 –

HDβ1 Au(t2)
1 + (log t2)α–β1–1

∣
∣
∣
∣ ≤ ε(1 + l1 + δ2)

∫ +∞

1
q(s)fr1 (s)

ds
s

.

When β2 < α – 1, (log t)2+β2–α

1+(log t)α–β2 Gα–β2 (t, s) is continuous on J1 × J1, and log t
1+(log t)α–β2 ,

(log t)2+β2–α

1+(log t)α–β2 T1,α–β2 (t), (log t)2+β2–α

1+(log t)α–β2 T2,α–β2 (t) are continuous on J1. For above ε > 0, there is
a constant δ3 > 0 such that, for all t1, t2 ∈ J1 with t1 < t2, |t1 – t2| < δ3,

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2

(HDβ2 Au
)
(t1) –

(log t2)2+β2–α

1 + (log t2)α–β2

(HDβ2 Au
)
(t2)

∣
∣
∣
∣

≤
∫ t2

1

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2
Gα–β2 (t1, s) –

(log t2)2+β2–α

1 + (log t2)α–β2
Gα–β2 (t2, s)

∣
∣
∣
∣q(s)fr1 (s)

ds
s

+
1

Γ (α – β2)

∫ +∞

t2

∣
∣
∣
∣

log t1

1 + (log t1)α–β2
–

log t2

1 + (log t2)α–β2

∣
∣
∣
∣q(s)fr1 (s)

ds
s

+
∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2
T1,α–β2 (t1) –

(log t2)2+β2–α

1 + (log t2)α–β2
T1,α–β2 (t2)

∣
∣
∣
∣l1

∫ +∞

1
q(s)fr1 (s)

ds
s

+
∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2
T2,α–β2 (t1) –

(log t2)2+β2–α

1 + (log t2)α–β2
T2,α–β2 (t2)

∣
∣
∣
∣δ2

∫ +∞

1
q(s)fr1 (s)

ds
s

≤ ε(1 + l1 + δ2)
∫ +∞

1
q(s)fr1 (s)

ds
s

, (β2 < α – 1).

When β2 = α – 1, log t
1+log t G(t, s) is continuous on J1 × J1 and log t

1+log t is continuous on J1, there
exists δ4 > 0 such that, for all t1, t2 ∈ J1 with t1 < t2, |t1 – t2| < δ4,

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2

(HDβ2 Au
)
(t1) –

(log t2)2+β2–α

1 + (log t2)α–β2

(HDβ2 Au
)
(t2)

∣
∣
∣
∣

≤
∫ +∞

1

∣
∣
∣
∣

log t1

1 + log t1
G(t1, s) –

log t2

1 + log t2
G(t2, s)

∣
∣
∣
∣q(s)fr1 (s)

ds
s

+
∣
∣
∣
∣

log t1

1 + log t1
–

log t2

1 + log t2

∣
∣
∣
∣δl1l2

∫ +∞

1
q(s)fr1 (s)

ds
s
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+
∣
∣
∣
∣

log t1

1 + log t1
–

log t2

1 + log t2

∣
∣
∣
∣δ(1 – δ1)δ2

∫ +∞

1
q(s)fr1 (s)

ds
s

≤ ε
(
1 + δl1l2 + δ(1 – δ1)δ2

)
∫ +∞

1
q(s)fr1 (s)

ds
s

.

Hence, Au(t)
1+(log t)α–1 ,

H Dβ1 Au(t)
1+(log t)α–β1–1 , (log t)2+β2–α

1+(log t)α–β2 (HDβ2 Au)(t) are equicontinuous on J1.
3© Now we indicate that the second condition (2) of Lemma 2.7 holds. Since

lim
t→+∞

T1,α(t)
1 + (log t)α–1 =

δl2

Γ (α)
, lim

t→+∞
T2,α(t)

1 + (log t)α–1 =
δ(1 – δ1)

Γ (α)
,

for any ε > 0, there exists a constant T1 > 1 such that ∀t1, t2 > T1,

∣
∣
∣
∣

T1,α(t1)
1 + (log t1)α–1 –

T1,α(t2)
1 + (log t2)α–1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

T2,α(t1)
1 + (log t1)α–1 –

T2,α(t2)
1 + (log t2)α–1

∣
∣
∣
∣ < ε.

On the other hand, for ∀u ∈ B, we have

∫ +∞

1
q(s)

∣
∣Fu(s)

∣
∣ds

s
≤

∫ +∞

1
q(s)fr1 (s)

ds
s

< +∞.

Hence, for given ε > 0, there exists a constant L > 0 such that
∫ +∞

L q(s)fr1 (s) ds
s < ε. Similarly,

due to

lim
t→+∞

Gα(t, s)
1 + (log t)α–1 = 0, 1 ≤ s ≤ L,

there exists a constant T2 > L such that, for any t1, t2 > T2, 1 ≤ s ≤ L, we have

∣
∣
∣
∣

Gα(t1, s)
1 + (log t1)α–1 –

Gα(t2, s)
1 + (log t2)α–1

∣
∣
∣
∣ < ε.

Let ∀t1, t2 > max{T1, T2}, by Lemma 2.6,

∣
∣
∣
∣

Au(t1)
1 + (log t1)α–1 –

Au(t2)
1 + (log t2)α–1

∣
∣
∣
∣

≤
∫ L

1

∣
∣
∣
∣

Gα(t1, s)
1 + (log t1)α–1 –

Gα(t2, s)
1 + (log t2)α–1

∣
∣
∣
∣q(s)

∣
∣Fu(s)

∣
∣ds

s

+
∫ +∞

L

∣
∣
∣
∣

Gα(t1, s)
1 + (log t1)α–1 –

Gα(t2, s)
1 + (log t2)α–1

∣
∣
∣
∣q(s)

∣
∣Fu(s)

∣
∣ds

s

+
∫ +∞

1

∣
∣
∣
∣

T1,α(t1)
1 + (log t1)α–1 –

T1,α(t2)
1 + (log t2)α–1

∣
∣
∣
∣

(∫ +∞

1
g1(t)Gα(t, s)

dt
t

)

q(s)
∣
∣Fu(s)

∣
∣ds

s

+
∫ +∞

1

∣
∣
∣
∣

T2,α(t1)
1 + (log t1)α–1 –

T2,α(t2)
1 + (log t2)α–1

∣
∣
∣
∣

(∫ +∞

1
g2(t)Gα(t, s)

dt
t

)

q(s)
∣
∣Fu(s)

∣
∣ds

s

≤ ε

∫ L

1
q(s)fr1 (s)

ds
s

+
2

Γ (α)
ε + εl1

∫ +∞

1
q(s)fr1 (s)

ds
s

+ εδ2

∫ +∞

1
q(s)fr1 (s)

ds
s

≤ ε(1 + l1 + δ2)
∫ +∞

1
q(s)fr1 (s)

ds
s

+
2

Γ (α)
ε.
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Similarly,

lim
t→+∞

T1,α–β1 (t)
1 + (log t)α–β1–1 =

δl2

Γ (α – β1)
, lim

t→+∞
T2,α–β1 (t)

1 + (log t)α–β1–1 =
δ(1 – δ1)
Γ (α – β1)

,

there exists a constant T3 > 1 such that ∀t1, t2 > T3,
∣
∣
∣
∣

T1,α–β1 (t1)
1 + (log t1)α–β1–1 –

T1,α–β1 (t2)
1 + (log t2)α–β1–1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

T2,α–β1 (t1)
1 + (log t1)α–β1–1 –

T2,α–β1 (t2)
1 + (log t2)α–β1–1

∣
∣
∣
∣ < ε.

From limt→+∞
Gα–β1 (t,s)

1+(log t)α–β1–1 = 0, 1 ≤ s ≤ L, there exists a constant T4 > L such that, for any

t1, t2 > T4, 1 ≤ s ≤ L, we have | Gα–β1 (t1,s)
1+(log t1)α–β1–1 – Gα–β1 (t2,s)

1+(log t2)α–β1–1 | < ε. Let ∀t1, t2 > max{T3, T4},

∣
∣
∣
∣

HDβ1 Au(t1)
1 + (log t1)α–β1–1 –

H Dβ1 Au(t2)
1 + (log t2)α–β1–1

∣
∣
∣
∣ ≤ ε(1 + l1 + δ2)

∫ +∞

1
q(s)fr1 (s)

ds
s

+
2

Γ (α – β1)
ε.

When β2 < α – 1,

lim
t→+∞

(log t)2+β2–α

1 + (log t)α–β2
T1,α–β2 (t) = 0,

lim
t→+∞

(log t)2+β2–α

1 + (log t)α–β2
T2,α–β2 (t) = 0,

there exists a constant T5 > 1 such that ∀t1, t2 > T5,

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2
T1,α–β2 (t1) –

(log t2)2+β2–α

1 + (log t2)α–β2
T1,α–β2 (t2)

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2
T2,α–β2 (t1) –

(log t2)2+β2–α

1 + (log t2)α–β2
T2,α–β2 (t2)

∣
∣
∣
∣ < ε.

From limt→+∞ (log t)2+β2–α

1+(log t)α–β2 Gα–β2 (t, s) = 0, 1 ≤ s ≤ L, there exists a constant T6 > L such that,
for any t1, t2 > T6, 1 ≤ s ≤ L, we have

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2
Gα–β2 (t1, s) –

(log t2)2+β2–α

1 + (log t2)α–β2
Gα–β2 (t1, s)

∣
∣
∣
∣ < ε.

Let ∀t1, t2 > max{T5, T6},

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2

(HDβ2 Au
)
(t1) –

(log t2)2+β2–α

1 + (log t2)α–β2

(HDβ2 Au
)
(t2)

∣
∣
∣
∣

≤ ε(1 + l1 + δ2)
∫ +∞

1
q(s)fr1 (s)

ds
s

+
2

Γ (α – β2)
ε.

When β2 = α – 1, limt→+∞ log t
1+log t = 1, there exists a constant T7 > 1 such that ∀t1, t2 > T7,

∣
∣
∣
∣

log t1

1 + log t1
–

log t2

1 + log t2

∣
∣
∣
∣ < ε,
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limt→+∞ log t
1+log t G(t, s) = 0, 1 ≤ s ≤ L, there exists a constant T8 > L such that, for any t1, t2 >

T8, 1 ≤ s ≤ L, we have

∣
∣
∣
∣

log t1

1 + log t1
G(t1, s) –

log t2

1 + log t2
G(t2, s)

∣
∣
∣
∣ < ε.

Let ∀t1, t2 > max{T7, T8},

∣
∣
∣
∣

(log t1)2+β2–α

1 + (log t1)α–β2

(HDβ2 Au
)
(t1) –

(log t2)2+β2–α

1 + (log t2)α–β2

(HDβ2 Au
)
(t2)

∣
∣
∣
∣

≤ ε
(
1 + δl1l2 + δ(1 – δ1)δ2

)
∫ +∞

1
q(s)fr1 (s)

ds
s

+ 2ε.

Combining 2© and 3©, from Lemma 2.7, we have A(B) is relatively compact. Therefore
we conclude that A is a compact operator. Hence, A is completely continuous in Y .

Step 2. A(ΩR) ⊂ ΩR, where ΩR = {u ∈ Y : ‖u‖ ≤ R}.
For any u ∈ ΩR, we know that

|u(t)|
1 + (log t)α–1 ≤ R,

|HDβ1 u(t)|
1 + (log t)α–β1–1 ≤ R,

(log t)2+β2–α

1 + (log t)α–β2

∣
∣HDβ2 u(t)

∣
∣ ≤ R.

From condition (H3) and (3.5)–(3.8), we have

∣
∣
∣
∣

Au(t)
1 + (log t)α–1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞

1

Kα(t, s)
1 + (log t)α–1 q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
1

∫ +∞

1
q(s)fR(s)

ds
s

≤ R. (3.9)

∣
∣
∣
∣

HDβ1 Au(t)
1 + (log t)α–β1–1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞

1

Kα–β1 (t, s)
1 + (log t)α–β1–1 q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
2

∫ +∞

1
q(s)fR(s)

ds
s

≤ R, (3.10)

(log t)2+β2–α

1 + (log t)α–β2

∣
∣HDβ2 Au(t)

∣
∣ =

∣
∣
∣
∣

∫ +∞

1

(log t)2+β2–α

1 + (log t)α–β2
Kα–β2 (t, s)q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
3

∫ +∞

1
q(s)fR(s)

ds
s

≤ R, (β2 < α – 1) (3.11)

(log t)2+β2–α

1 + (log t)α–β2

∣
∣HDβ2 Au(t)

∣
∣ =

∣
∣
∣
∣

∫ +∞

1

(log t)2+β2–α

1 + (log t)α–β2
Kβ2 (t, s)q(s)Fu(s)

ds
s

∣
∣
∣
∣

≤ 
4

∫ +∞

1
q(s)fR(s)

ds
s

≤ R, (β2 = α – 1), (3.12)

which means that ‖Au‖Y ≤ R, A(ΩR) ⊂ ΩR holds.
Step 3. We will show that A has at least one solution in Y .
By step 1 and step 2, we have A : ΩR → ΩR is completely continuous. ΩR is a nonempty,

closed, bounded, and convex subset of Y . According to the Schauder fixed point theorem,
we conclude that A has at least one fixed point in ΩR, then boundary value problem (1.1),
(1.2) has at least one solution. �
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Let J0 = (1, +∞), L(s) = max{1 + (log s)α–1, 1 + (log s)α–β1–1, 1+(log s)α–β2

(log s)2+β2–α }, s ∈ J0.

Y1 =
{

y ∈ L
(
J0,R+)

:
∫ +∞

1
y(s)L(s)q(s)

ds
s

< +∞
}

.

Corollary 3.1 Assume that conditions (H2)–(H3) are satisfied. Further assume that the
following condition (H4) holds:

(H4) f (t, u, v, w) is continuous on J ×R
3, and there exist nonnegative functions a, b, c, d ∈

Y1 such that, for all (u, v, w) ∈R
3 and t ∈ J ,

∣
∣f (t, u, v, w)

∣
∣ ≤ a(t) + b(t)|u| + c(t)|v| + d(t)|w|.

Then boundary value problem (1.1) and (1.2) has at least one solution.

Proof Let ΩR = {u ∈ Y : ‖u‖Y ≤ R}. For any u ∈ ΩR, s ∈ J , we have

∣
∣Fu(s)

∣
∣ =

∣
∣f

(
s, u(s), HDβ1 u(s), HDβ2 u(s)

)∣
∣

≤ a(s) + b(s)u(s) + c(s)HDβ1 u(s) + d(s)HDβ2 u(s)

= a(s) + b(s)
(
1 + (log s)α–1) u(s)

1 + (log s)α–1

+ c(s)
(
1 + (log s)α–β–1)

HDβu(s)
1 + (log s)α–β1–1

+ d(s)
1 + (log s)α–β2

(log s)2+β2–α

(log s)2+β2–α

1 + (log s)α–β2

(HDβ2 u
)
(s)

≤ a(s) + R
[

b(s)
(
1 + (log s)α–1) + c(s)

(
1 + (log s)α–β1–1) + d(s)

1 + (log s)α–β2

(log s)2+β2–α

]

� fR(s).

Obviously,

∫ +∞

1
a(s)q(s)

ds
s

≤
∫ +∞

1
a(s)L(s)q(s)

ds
s

< +∞,

∫ +∞

1
b(s)

(
1 + (log s)α–1)q(s)

ds
s

≤
∫ +∞

1
b(s)L(s)q(s)

ds
s

< +∞,

∫ +∞

1
c(s)

(
1 + (log s)α–β1–1)q(s)

ds
s

≤
∫ +∞

1
c(s)L(s)q(s)

ds
s

< +∞,

∫ +∞

1
d(s)

1 + (log s)α–β2

(log s)2+β2–α
q(s)

ds
s

≤
∫ +∞

1
d(s)L(s)q(s)

ds
s

< +∞,

hence
∫ +∞

1 q(s)fR(s) ds
s < +∞.

By Theorem 3.1, we get that problem (1.1), (1.2) has at least one solution. �
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4 Example
Example 4.1 Consider the Hadamard-type fractional boundary value problem on un-
bounded domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

HD 5
2 u(t) + e–t t2(log t)

3
4 u(t)(H D

1
4 u(t))(H D

5
4 u(t))

(1+(log t)
3
2 )((1+(log t)

5
4 )(1+(log t)

5
4 )

= 0, 1 < t < +∞,

u(1) = 0,
HD 1

2 u(1) =
∫ +∞

1
u(s)

s3(log s)
1
2

ds
s ,

HD 3
2 u(+∞) =

∫ +∞
1

u(s)

s3(log s)
1
2

ds
s .

(4.1)

Let α = 5
2 , β1 = 1

4 , β2 = 5
4 , q(t) = e–t , g1(t) = g2(t) = 1

t3(log t)
1
2

, fr(t) = t2r3,

f (t, u, v, w) =
t2(log t) 3

4 uvw

(1 + (log t) 3
2 )(1 + (log t) 5

4 )(1 + (log t) 5
4 )

.

Hence

f
(

t,
(
1 + (log t)

3
2
)
u,

(
1 + (log t)

5
4
)
v,

1 + (log t) 5
4

(log t) 3
4

w
)

= t2uvw ≤ t2r3 = fr(t),

∀t ∈ J1, 0 ≤ u, v, w ≤ r.

∫ +∞
1 fr(t)q(t) dt

t = r3 ∫ +∞
1 t2e–t dt = 5e–1r3.

l1 = δ2 =
1

Γ ( 5
2 )

∫ +∞

1

1
t3(log t) 1

2
(log t)

3
2

dt
t

=
1

9Γ ( 5
2 )

≈ 0.0836 < 1,

l2 = δ1 =
1

Γ ( 3
2 )

∫ +∞

1

1
t3(log t) 1

2
(log t)

1
2

dt
t

=
1

3Γ ( 3
2 )

≈ 0.3761 < 1,

and 1
δ

= (1 – δ1)(1 – δ2) – l1l2 ≈ 0.5403 > 0.


1 =
1

Γ (α)
+ l1

(
δl2

Γ (α)
+

δ(1 – δ2)
Γ (α – 1)

)

+ δ2

(
δ(1 – δ1)

Γ (α)
+

δl1

Γ (α – 1)

)

=
1

3Γ ( 3
2 )

(2 + 5l1δ) ≈ 1.0432,


2 =
1

Γ (α – β1)
+ l1

(
δl2

Γ (α – β1)
+

δ(1 – δ2)
Γ (α – β1 – 1)

)

+ δ2

(
δ(1 – δ1)
Γ (α – β1)

+
δl1

Γ (α – β1 – 1)

)

=
1

5Γ ( 5
4 )

(4 + 9l1δ) ≈ 1.1899,
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3 =
1

Γ (α – β2)
+ l1

(
δl2

Γ (α – β2)
+

δ(1 – δ2)
Γ (α – β2 – 1)

)

+ δ2

(
δ(1 – δ1)
Γ (α – β2)

+
δl1

Γ (α – β2 – 1)

)

=
4

5Γ ( 1
4 )

(

1 +
5
4

l1δ

)

≈ 1.3166,


4 = 1 + δl1l2 + δ(1 – δ1)δ2 = 1 + δl1 ≈ 1.1547.

Therefore, conditions (H1)(H2) hold. Choose 
 = max{
1,
2,
3,
4} = 
3, R ≤
√

e
5


,
then 


∫ +∞
1 fR(t)e–t dt

t = 5
e–1R3 ≤ R, so condition (H3) holds. By Theorem 3.1, BVP (4.1)
has at least one solution.
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