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Abstract
In this article, an unconditionally stable compact high-order iterative finite difference
scheme is developed on solving the two-dimensional fractional Rayleigh–Stokes
equation. A relationship between the Riemann–Liouville (R–L) and
Grunwald–Letnikov (G–L) fractional derivatives is used for the time-fractional
derivative, and a fourth-order compact Crank–Nicolson approximation is applied for
the space derivative to produce a high-order compact scheme. The stability and
convergence for the proposed method will be proven; the proposed method will be
shown to have the order of convergence O(τ + h4). Finally, numerical examples are
provided to show the high accuracy solutions of the proposed scheme.

Keywords: Two-dimensional fractional Rayleigh–Stokes; Crank Nicolson; High-order
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1 Introduction
The interest in fractional calculus has increased in recent years because of its applicabil-
ity in various fields of science and engineering [1–10]. Many physical phenomena from
fluid mechanics, viscoelasticity, physics and other sciences can be modeled mathemati-
cally with the help of fractional differential equations (FDEs) which represents the phys-
ical phenomena more appropriately than ordinary differential equations. In most cases,
it is difficult to find the analytical solution of the FDE due to its complexity. Therefore
researchers resorted to different numerical methods with a variety of stability and con-
vergence properties to solve various FDEs [11–25]. The Rayleigh–Stokes problem (RSP)
is one of the most extensively researched FDEs over the last few years. This equation plays
an important role in representing the behavior of some non-Newtonian fluids and the frac-
tional derivative is also used in this model problem to capture the visco-elastic behavior of
the flow [26, 27]. Also, fractional calculus has described the visco-elastic model more ac-
curately than the non-fractional model, which is why we considered the Rayleigh–Stokes
problem with fractional derivative.
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In this paper, we considered the two-dimensional (2D) RSP with fractional derivative of
the form:

∂w(x, y, t)
∂t

= 0D1–γ
t

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2

+
∂2w(x, y, t)

∂y2 + f (x, y, t) (1)

having initial and boundary conditions

w(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω ,

w(x, y, 0) = h(x, y), (x, y) ∈ Ω ,
(2)

where 0 < γ < 1, Ω = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ L} and 0D1–γ
t represents the Riemann–

Liouville fractional derivative of order, which is define as

0D1–γ
t =

1
Γ (γ )

∂

∂t

∫ t

0

w(x, y, ξ )
(t – ξ )1–γ

dξ . (3)

The 2D RSP defined in (1) has been solved by several researchers such as Chen et al. [28]
solved the RSP using implicit and explicit of finite differences methods; also Fourier anal-
ysis is used for the convergence and stability of the proposed schemes. The convergence of
both schemes were found to be of order O(τ + �x2 + �y2). Zhuang and Liu [29] solved the
same problem by an implicit numerical approximation scheme, and its stability and con-
vergence were also established with the order of convergence O(τ +�x2 +�y2). Mohebbi et
al. [30] used a higher-order implicit finite difference scheme for (1), and they discussed its
convergence and stability by Fourier analysis. The convergence order of their scheme was
shown to be O(τ + �x4 + �y4). Although available, higher-order schemes for solving the
two-dimensional Rayleigh–Stokes with better accuracy and simplicity are still very lim-
ited. Motivated by this, we try to further formulate another high-order stable numerical
method for the Rayleigh–Stokes problem for a heated generalized second-grade fluid with
fractional derivative (1) with given boundary and initial conditions (2)–(3) but with better
accuracy than the schemes in [30]. This paper aims to propose an unconditionally stable
compact iterative scheme for solving (1) having order of convergence O(τ + �x4 + �y4).
A fourth-order Crank–Nicolson difference scheme is applied for the discretization of the
space derivative and a relationship between the Grunwald–Letnikov, and the Riemann–
Liouville fractional derivative is used for the fractional time derivative. The stability and
convergence analysis of this proposed method will be established using Fourier analysis.

The paper is organized as follows: in Sect. 2, we discuss the formulation of the proposed
scheme, followed by the stability of the proposed scheme in Sect. 3. The convergence anal-
ysis is discussed in Sect. 4. In Sect. 5, some numerical examples are presented with dis-
cussion, and finally, the conclusion is presented in Sect. 6.

2 Formulation of proposed method
First, we define the following notations:

δ2
x wk

i,j = wk
i+1,j – 2wk

i,j + wk
i–1,j, δ2

y wk
i,j = wk

i,j+1 – 2wk
i,j + wk

i,j–1,
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xi = i�x, i = 0, 1, 2, . . . , M, yj = j�y, j = 0, 1, 2, . . . , M,

tk = kτ , k = 0, 1, 2, . . . , N ,

where �x = �y = h = L
M used for space steps and τ = T

N .
The compact fourth-order difference operator Uxx is defined as [3]

δ2
x

�x2(1 + 1
12δ2

x )
wk

i,j =
∂2w
∂x2

∣∣∣∣
k

i,j
–

1
240

∂4w
∂x4

∣∣∣∣
k

i,j
+ O

(
h6) (4)

and similarly

δ2
y

�y2(1 + 1
12δ2

y )
wk

i,j =
∂2w
∂y2

∣∣∣∣
k

i,j
–

1
240

∂4w
∂y4

∣∣∣∣
k

i,j
+ O

(
h6). (5)

We have the relationship between the Grunwald–Letnikov and the Riemann–Liouville
fractional derivative [30]

0D1–γ

l f (t) =
1

τ 1–γ

[ t
τ ]∑

k=0

ω
1–γ

k f (t – kτ ) + O
(
τ p), (6)

where ω
1–γ

k are the coefficients of the generated function that is, ω(z,γ ) =
∑∞

k=0 ω
γ

k zk . We
consider ω(z,γ ) = (1 – z)γ for p = 1, so the coefficients are ω

γ
0 = 1 and

ω
γ

k = (–1)k

(
γ

k

)
= (–1)k γ (γ – 1) · · · (γ – k + 1)

k!

=
(

1 –
2 – γ

k

)
ω

γ

k–1, k ≥ 1. (7)

Let ηl = ω
1–γ

l then

η0 = 1 and ηl = (–1)l

(
1 – γ

l

)
=

(
1 –

2 – γ

k

)
ηl–1, k ≥ 1.

From (6), we can obtain the following:

0D1–γ
t

∂2w(x, y, t)
∂x2 = τ γ –1

[ t
τ ]∑

l=0

ηl
∂2w(x, y, t – lτ )

∂x2 + O(τ ), (8)

0D1–γ
t

∂2w(x, y, t)
∂y2 = τ γ –1

[ t
τ ]∑

l=0

ηl
∂2w(x, y, t – lτ )

∂y2 + O(τ ). (9)

The Crank–Nicolson scheme for (1) is

∂w(x, y, t)
∂t

∣∣∣∣
k+ 1

2

i,j
= 0D1–γ

t

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)∣∣∣∣
k+ 1

2

i,j

+
∂2w(x, y, t)

∂x2

∣∣∣∣
k+ 1

2

i,j
+

∂2w(x, y, t)
∂y2

∣∣∣∣
k+ 1

2

i,j
+ f (x, y, t)

∣∣k+ 1
2

i,j , (10)
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or simply we can write (10) as

∂w
∂t

∣∣∣∣
k+ 1

2

i,j
= 0D1–γ

t

(
∂2

∂x2 +
∂2

∂y2

)
w

∣∣∣∣
k+ 1

2

i,j
+

∂2w
∂x2

∣∣∣∣
k+ 1

2

i,j
+

∂2w
∂y2

∣∣∣∣
k+ 1

2

i,j
+ f

∣∣k+ 1
2

i,j . (11)

By using (4), (5), (8) and (9), we get

uk+1
i,j – uk

i,j

τ
=

τ 1–γ

2h2

k+1∑
l=0

ηl

(
δ2

x

(1 + 1
12δ2

x )
+

δ2
y

(1 + 1
12δ2

y )

)
uk–l+1

i,j

+
τ 1–γ

2h2

k∑
l=0

ηl

(
δ2

x

(1 + 1
12δ2

x )
+

δ2
y

(1 + 1
12δ2

y )

)
uk–l

i,j

+
δ2

x

h2(1 + 1
12δ2

x )
uk+ 1

2
i,j +

δ2
y

h2(1 + 1
12δ2

y )
uk+ 1

2
i,j + f k+ 1

2
i,j ,

(
1 +

1
12

δ2
x

)(
1 +

1
12

δ2
y

)(
wk+1

i,j – wk
i,j
)

=
τ 2

2h2

( k+1∑
l=0

ηl

(
δ2

y

(
1 +

1
12

δ2
x

)
+ δ2

x

(
1 +

1
12

δ2
y

))
wk+1–l

i,j

)

+
τ 2

2h2

( k∑
l=0

ηl

(
δ2

y

(
1 +

1
12

δ2
x

)
+ δ2

x

(
1 +

1
12

δ2
y

))
wk–l

i,j

)

+
τ

2h2

(
δ2

y

(
1 +

1
12

δ2
x

)
+ δ2

x

(
1 +

1
12

δ2
y

))(
wk+1

i,j + wk
i,j
)

+ τ

(
1 +

1
12

δ2
x

)(
1 +

1
12

δ2
y

)
f k+ 1

2
i,j .

After simplification and rearranging

Awk+1
i,j = B

(
wk+1

i+1,j + wk+1
i–1,j + wk+1

i,j+1 + wk+1
i,j–1

)
+ C

(
wk+1

i+1,j+1 + wk+1
i–1,j+1

+ wk+1
i+1,j–1 + wk+1

i–1,j–1
)

+ Dwk
i,j + E

(
wk

i+1,j + wk
i–1,j + wk

i,j+1 + wk
i,j–1

)

+ F
(
wk

i+1,j+1 + wk
i–1,j+1 + wk

i+1,j–1 + wk
i–1,j–1

)
+

25τ

36
f k+ 1

2
i,j +

5τ

72
(
f k+ 1

2
i+1,j

+ f k+ 1
2

i–1,j + f k+ 1
2

i,j+1 + f k+ 1
2

i,j–1
)

+
τ

144
(
f k+ 1

2
i+1,j+1 + f k+ 1

2
i–1,j+1 + f k+ 1

2
i+1,j–1 + f k+ 1

2
i–1,j–1

)

+ S1

[ k+1∑
l=2

ηl

(
–10

3
wk+1–l

i,j +
2
3
(
wk+1–l

i+1,j + wk+1–l
i–1,j + wk+1–l

i,j+1 + wk+1–l
i,j–1

))

+
S1

6
(
wk+1–l

i+1,j+1 + wk+1–l
i–1,j+1 + wk+1–l

i+1,j–1 + wk+1–l
i–1,j–1

)]

+ S1

[ k∑
l=1

ηl

(
–10

3
wk–l

i,j +
2
3
(
wk–l

i+1,j + wk–l
i–1,j + wk–l

i,j+1 + wk–l
i,j–1

))

+
S1

6
(
wk–l

i+1,j+1 + wk–l
i–1,j+1 + wk–l

i+1,j–1 + wk–l
i–1,j–1

)]
, (12)
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where

S1 =
τ γ

2h2 , S2 =
τ

2h2 , H = S1 + S2,

A =
5

36
(5 + 24H), B =

1
144

(–10 + 96H), C =
1

144
(–1 + 24H),

D =
1

144
(
100 – 480(H + S1η1)

)
, E =

1
144

(
10 + 96(H + S1η1)

)
,

F =
1

144
(
1 + 24(H + S1η1)

)
.

Lemma 1 ([31]) The coefficients ηl satisfy the following:

(1) η0 = 1, η1 = γ – 1, ηl < 0, l = 1, 2, . . . ,

(2)
∞∑
l=0

ηl = 0, –
n∑

l=1

ηl < 1, ∀n ∈ N .

3 Stability of the proposed scheme
Let wk

i,j (i, j = 0, 1, 2, . . . , n, k = 0, 1, 2, . . . , l) be the approximate solution and W k
i,j be the exact

solution of (1), then the error εk
i,j = W k

i,j – wk
i,j will also satisfy (1), so from (12)

Aεk+1
i,j = B

(
εk+1

i+1,j + εk+1
i–1,j + εk+1

i,j+1 + εk+1
i,j–1

)
+ C

(
εk+1

i+1,j+1 + εk+1
i–1,j+1

+ εk+1
i+1,j–1 + εk+1

i–1,j–1
)

+ Dεk
i,j + E

(
εk

i+1,j + εk
i–1,j + εk

i,j+1 + εk
i,j–1

)
+ F

(
εk

i+1,j+1 + εk
i–1,j+1 + εk

i+1,j–1 + εk
i–1,j–1

)

+ S1

[ k+1∑
l=2

ηl

(
–10

3
εk+1–l

i,j +
2
3
(
εk+1–l

i+1,j + εk+1–l
i–1,j + εk+1–l

i,j+1 + εk+1–l
i,j–1

))]

+
S1

6
(
εk+1–l

i+1,j+1 + εk+1–l
i–1,j+1 + εk+1–l

i+1,j–1 + εk+1–l
i–1,j–1

)

+ S1

[ k∑
l=1

ηl

(
–10

3
εk–l

i,j +
2
3
(
εk–l

i+1,j + εk–l
i–1,j + εk–l

i,j+1 + εk–l
i,j–1

))]

+
S1

6
(
εk–l

i+1,j+1 + εk–l
i–1,j+1 + εk–l

i+1,j–1 + εk–l
i–1,j–1

)
, (13)

where ηl = (–1)l(1–γ

l
)

= (1 – 2–γ

k )ηl–1, l = 1, 2, . . . , k + 1.
Assume the error function at initial and boundary value are defined by

εk
0 = εk

M = ε0
i,j = 0 (14)

and the error function for the grid function when k = 0, 1, 2, . . . , N – 1 is defined as

εk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εk
i,j when xi– �x

2
< x ≤ xi+ �x

2
, yi– �y

2
< y ≤ yi+ �y

2
,

0 when 0 ≤ x ≤ �x
2 , L – �x

2 ≤ x ≤ L,

0 when 0 ≤ y ≤ �y
2 , L – �y

2 ≤ y ≤ L.

(15)
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Then we can express εk(x, y) by a Fourier series as

εk(x, y) =
∞∑

l1,l2=–∞
υk(l1, l2)e2

√
–1π ( l1x

L + l2y
L ), (16)

where

υk(l1, l2) =
1
L

∫ L

0

∫ L

0
εk(x, y)e–2

√
–1π ( l1x

L + l2y
L ) dx dy.

The relationship between the Parseval equality and the L2 norm is

∥∥εk∥∥2
l2 =

M–1∑
i=1

M–1∑
j=1

�x�y
∣∣εk

i,j
∣∣2 =

∞∑
l1,l2=–∞

∣∣υk(l1, l2)
∣∣2. (17)

Now suppose that

εk
i,j = υkeI(βi�x+αj�y), I =

√
–1, (18)

where β = 2π l1
L , α = 2π l2

L .
Substituting (18) into (13), and after simplification we get

υk+1 =
(

D + 2Eλ1 + 4Fλ2

A + 2Bλ1 + 4Cλ2

)
υk + S1

k+1∑
l=2

ηl

( –10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
υk+1–l

+ S1

k∑
l=1

ηl

( – 10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
υk–l, (19)

where λ1 = Cos(β�x) + Cos(α�y) and λ2 = Cos(β�x) Cos(α�y).

Proposition 1 If υk+1, k = 1, 2, 3, . . . , N satisfy (19), then

∣∣υk+1∣∣ ≤ ∣∣υ0∣∣.

Proof By using mathematical induction, when k = 0

∣∣υ1∣∣ =
( |D + 2Eλ1 + 4Fλ2|

|A + 2Bλ1 + 4Cλ2|
)∣∣υ0∣∣.

Let φ1 = sin2 ( β�x
2 ) + sin2 ( α�y

2 ) and φ2 = sin2 ( β�x
2 ) sin2 ( α�y

2 ), then λ1 = 1 – φ1 and λ2 =
1 – 2φ1 + 4φ2, therefore

∣∣υ1∣∣ =
( |D + 2E(1 – φ1) + 4F(1 – 2φ1 + 4φ2)|

|A + 2B(1 – φ1) + 4C(1 – 2φ1 + 4φ2)

)∣∣υ0∣∣, (20)

where φ1 ∈ (0, 2) and φ2 ∈ (0, 1).
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After simplifying (20), we have

∣∣υ1∣∣ =
∣∣∣∣49 – 28φ1 + 16φ2 – 24H(16φ1 – (16φ2 – 7)) – 24S1(16φ1 – (16φ2 – 7))(1 – γ )

49 – 28φ1 + 16φ2 + 24H(16φ1 – (16φ2 – 7))

∣∣∣∣
× ∣∣υ0∣∣. (21)

Comparing the nominator and denominator in (21) we find

nominator = 49 – 28φ1 + 16φ2 – 24H
(
16φ1 – (16φ2 – 7)

)
– 24S1

(
16φ1 – (16φ2 – 7)

)
(1 – γ ),

denominator = 49 – 28φ1 + 16φ2 + 24H
(
16φ1 – (16φ2 – 7)

)
,

where S1 > 0, φ1 ≥ φ2, therefore nominator < denominator, so

∣∣υ1∣∣ ≤ ∣∣υ0∣∣. (22)

Now assume that

∣∣υs∣∣ ≤ ∣∣υ0∣∣, for s = 2, 3, . . . , k (23)

and we need to prove it for s = k + 1:

υk+1 =
(

D + 2Eλ1 + 4Fλ2

A + 2Bλ1 + 4Cλ2

)
υk + S1

k+1∑
l=2

ηl

( –10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
υk+1–l

+ S1

k∑
l=1

ηl

( – 10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
υk–l, (24)

using (23), we have

∣∣υk+1∣∣ ≤
∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣∣∣υ0∣∣

+ s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣

×
k+1∑
l=2

ηl
∣∣υ0∣∣ + s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
k∑

l=1

ηl
∣∣υ0∣∣,

∣∣υk+1∣∣ ≤
∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
∣∣υ0∣∣

+ s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣

×
( k+1∑

l=1

ηl – η1 +
k∑

l=1

ηl

)∣∣υ0∣∣,
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∣∣υk+1∣∣ ≤
∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
∣∣υ0∣∣

+ s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
× (–η1 – 2)

∣∣υ0∣∣ ∵ using Lemma 1,

(25)

∣∣υk+1∣∣ ≤
∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
∣∣υ0∣∣

+ s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
× (–γ – 1)

∣∣υ0∣∣,
∣∣υk+1∣∣ ≤

∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
∣∣υ0∣∣

+ s1

∣∣∣∣
10
3 (γ + 1) – 16

3 (γ + 1)[1 – φ1] – 8
3 (γ + 1)[1 – 2φ1 + 4φ2]

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
× ∣∣υ0∣∣ ∵ using Lemma 1,

∣∣υk+1∣∣ ≤
∣∣∣∣g0 – 24Hg1 – 24s1g1(1 – γ ) – 24(1 + γ )g1

g0 + 24Hg1

∣∣∣∣
∣∣υ0∣∣,

where g0 = 49 – 28φ1 + 16φ2, g1 = 16φ1 – (16φ2 – 7), γ ∈ (0, 1) and s1 > 0.
By comparing the numerator and denominator in (25)

numerator = g0 – 24Hg1 – 24s1g1(1 – γ ) – 24(1 + γ )g1,

denominator = g0 + 24Hg1,

numerator < denominator, therefore

∣∣υk+1∣∣ ≤ ∣∣υ0∣∣. �

Theorem 1 The C–N high-order compact finite difference scheme (12) is unconditionally
stable.

Proof Using (17) and Proposition 1, we have

∥∥εk+1∥∥ ≤ ∥∥ε0∥∥, k = 0, 1, 2, 3, . . . , N – 1.

This shows C–N high-order compact finite difference scheme (12) is unconditionally sta-
ble. �

4 Convergence of the proposed scheme
Let us denote the truncation error at point u(xi, yj, tk+ 1

2
) by Rk+ 1

2
i,j , then from the proposed

scheme we know

∣∣Rk+ 1
2

i,j
∣∣ ≤ O

(
τ + h4). (26)
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Suppose that wk
i,j and W k

i,j (i, j = 0, 1, 2, . . . , n; k = 0, 1, 2, . . . , l) be the approximate and exact
solution of (1), respectively, then the error ψk

i,j = W k
i,j – wk

i,j will also satisfy (1), so from (12)

Aψk+1
i,j = B

(
ψk+1

i+1,j + ψk+1
i–1,j + ψk+1

i,j+1 + ψk+1
i,j–1

)
+ C

(
ψk+1

i+1,j+1 + ψk+1
i–1,j+1

+ ψk+1
i+1,j–1 + ψk+1

i–1,j–1
)

+ Dψk
i,j + E

(
ψk

i+1,j + ψk
i–1,j + ψk

i,j+1 + ψk
i,j–1

)
+ F

(
ψk

i+1,j+1 + ψk
i–1,j+1 + ψk

i+1,j–1 + ψk
i–1,j–1

)

+ S1

[ k+1∑
l=2

ηl

(
–10

3
ψk+1–l

i,j +
2
3
(
ψk+1–l

i+1,j + ψk+1–l
i–1,j + ψk+1–l

i,j+1 + ψk+1–l
i,j–1

))

+
S1

6
(
ψk+1–l

i+1,j+1 + ψk+1–l
i–1,j+1 + ψk+1–l

i+1,j–1 + ψk+1–l
i–1,j–1

)]

+ S1

[ k∑
l=1

ηl
(

–10
3

ψk–l
i,j +

2
3
(
ψk–l

i+1,j + ψk–l
i–1,j + ψk–l

i,j+1 + ψk–l
i,j–1

))

+
S1

6
(
ψk–l

i+1,j+1 + ψk–l
i–1,j+1 + ψk–l

i+1,j–1 + ψk–l
i–1,j–1

)]
(27)

with error initial and boundary conditions

ψ0
i,j = 0, i = 1, 2, . . . , M, j = 1, 2, . . . , M, and

ψk
0 = ψk

M = 0, k = 1, 2, . . . , N – 1.
(28)

Also define the grid functions when k = 0, 1, 2, . . . , N ,

ψk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψk
i,j when xi– �x

2
< x ≤ xi+ �x

2
, yi– �y

2
< y ≤ yi+ �y

2
,

0 when 0 ≤ x ≤ �x
2 , L – �x

2 ≤ x ≤ L,

0 when 0 ≤ y ≤ �y
2 , L – �y

2 ≤ y ≤ L,

and

Rk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rk
i,j when xi– �x

2
< x ≤ xi+ �x

2
, yi– �y

2
< y ≤ yi+ �y

2
,

0 when 0 ≤ x ≤ �x
2 , L – �x

2 ≤ x ≤ L,

0 when 0 ≤ y ≤ �y
2 , L – �y

2 ≤ y ≤ L.

The above grid functions can be expressed as ψk(x, y) and Rk(x, y) by Fourier series:

ψk(x, y) =
∞∑

l1,l2=–∞
ξ k(l1, l2)e2

√
–1π ( l1x

L + l2y
L ), k = 0, 1, 2, . . . , N , (29)

Rk(x, y) =
∞∑

l1,l2=–∞
μk(l1, l2)e2

√
–1π ( l1x

L + l2y
L ), k = 0, 1, 2, . . . , N , (30)
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where

ξ k(l1, l2) =
1
L

∫ L

0

∫ L

0
ψk(x, y)e–2

√
–1π ( l1x

L + l2y
L ) dx dy,

μk(l1, l2) =
1
L

∫ L

0

∫ L

0
Rk(x, y)e–2

√
–1π ( l1x

L + l2y
L ) dx dy.

Now by the Parseval equality

∥∥ψk∥∥2
l2 =

M–1∑
i=1

M–1∑
j=1

�x�y
∣∣ψk

i,j
∣∣2 =

∞∑
l1,l2=–∞

∣∣ξ k(l1, l2)
∣∣2, (31)

∥∥Rk∥∥2
l2 =

M–1∑
i=1

M–1∑
j=1

�x�y
∣∣Rk

i,j
∣∣2 =

∞∑
l1,l2=–∞

∣∣μk(l1, l2)
∣∣2. (32)

Based on the above, suppose that

ψk
i,j = ξ keI(βi�x+αj�y), I =

√
–1, (33)

Rk
i,j = μkeI(βi�x+αj�y), I =

√
–1, (34)

where β = 2π l1
L , α = 2π l2

L .
Substituting (33) and (34) into (27), we get

ξ k+1 =
(

D + 2Eλ1 + 4Fλ2

A + 2Bλ1 + 4Cλ2

)
ξ k + S1

k+1∑
l=2

ηl

( –10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
ξ k+1–l

+ S1

k∑
l=1

ηl

( – 10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
ξ k–l +

τ

A + 2Bλ1 + 4Cλ2
μk+ 1

2 . (35)

Proposition 2 Let ξ k+1 (k = 0, 1, 2, . . . , N ) satisfy (23), then

∣∣ξ k+1∣∣ ≤ kτ
∣∣μ 1

2
∣∣. (36)

Proof We know from (24) that ψ0
i,j = 0, which implies that ξ 0 = 0.

Using mathematical induction when k = 0:

ξ 1 =
(

D + 2Eλ1 + 4Fλ2

A + 2Bλ1 + 4Cλ2

)
ξ 0 +

τ

A + 2Bλ1 + 4Cλ2
μ

1
2 . (37)

After simplifying (37)

∣∣υ1∣∣ =
∣∣∣∣ τ

A + 2B(1 – φ1) + 4C(1 – 2φ1 + 4φ2)

∣∣∣∣
∣∣μ 1

2
∣∣ (38)

since φ2 ∈ (0, 1) and φ1 ∈ (0, 2). and A, B, C > 0, we have

∣∣υ1∣∣ ≤ τ
∣∣μ 1

2
∣∣. (39)
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Assume that

∣∣ξ s∣∣ ≤ sτ
∣∣μ 1

2
∣∣, s = 2, 3, . . . , k, (40)

and we will prove it for s = k + 1:

ξ k+1 =
(

D + 2Eλ1 + 4Fλ2

A + 2Bλ1 + 4Cλ2

)
ξ k + S1

k+1∑
l=2

ηl

( –10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
ξ k+1–l

+ S1

k∑
l=1

ηl

( – 10
3 + 4

3λ1 + 2
3λ2

A + 2Bλ1 + 4Cλ2

)
ξ k–l +

τ

A + 2Bλ1 + 4Cλ2
μk+ 1

2 ,

∣∣υk+1∣∣ =
∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣∣∣υk∣∣

+ s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
k+1∑
l=2

ηl
∣∣υk+1–l∣∣

+ s1

∣∣∣∣
–10

3 + 16
3 [1 – φ1] + 8

3 [1 – 2φ1 + 4φ2]
a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
k∑

l=1

ηl
∣∣υk–l∣∣

+
τ

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]
∣∣μk+ 1

2
∣∣,

(41)

using (40)

∣∣υk+1∣∣ ≤
(∣∣∣∣ d2 + 8e2[1 – φ1] + 16f2[1 – 2φ1 + 4φ2]

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

+ s1

10
3 (γ + 1) – 16

3 (γ + 1)[1 – φ1] – 8
3 (γ + 1)[1 – 2φ1 + 4φ2]

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

∣∣∣∣
)

τk
∣∣μ(k–1)+ 1

2
∣∣

+
τ

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]
∣∣μk+ 1

2
∣∣,

∣∣υk+1∣∣ ≤
∣∣∣∣
( (d2 + 10

3 s1(γ + 1)) + (8e2 – 16
3 s1(γ + 1))[1 – φ1]

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

+
(16f2 – 8

3 s1(γ + 1))[1 – 2φ1 + 4φ2] + ck

a2 + 8b2[1 – φ1] + 16c2[1 – 2φ1 + 4φ2]

)∣∣∣∣kτ
∣∣μk+ 1

2
∣∣.

(42)

After simplifying (42)

∣∣υk+1∣∣ ≤
∣∣∣∣g0 – 24Hg1 – 24s1g1(1 – γ ) – 24(1 + γ )g1 + ck

g0 + 24Hg1

∣∣∣∣kτ
∣∣μk+ 1

2
∣∣, (43)

where ck = 1
k .

Comparing the numerator and denominator in (43) we find

numerator = g0 – 24Hg1 – 24s1g1(1 – γ ) – 24(1 + γ )g1 + ck ,

denominator = g0 + 24Hg1,
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numerator < denominator, therefore

∣∣υk+1∣∣ ≤ kτ
∣∣μk+ 1

2
∣∣.

Hence, we proved the proposition. �

Theorem 2 The compact high-order Crank–Nicolson scheme is l2 convergent and its order
of convergence is O(τ + h4).

Proof From Proposition 2, (22), (27) and (28),

∥∥ψk+1∥∥
l2 ≤ kτ

∥∥R
1
2
∥∥

l2 ≤ kτQ
(
τ + h4),

where Q is the constant of proportionality, also kτ = T , then

∥∥ψk+1∥∥
l2 ≤ C1

(
τ + h4), C1 = TQ. �

5 Solvability of the proposed scheme
The C–N high-order compact finite difference scheme (23) can be written in matrix form:

G1W 1 = G2W 0 + G3ψ
1
2 , k = 0,

G1W k+1 = G2W k + G3ψ
k+ 1

2 + S1

k+1∑
l=2

ηlG4W k+1–l + S1

k∑
l=1

ηlG4W k–l, k ≥ 1,

W 0
i,j = a0(xi, yj), 1 ≤ i ≤ M, 1 ≤ j ≤ M,

W k
0,j = b1(0, yj), 1 ≤ i ≤ M, 0 ≤ k ≤ N ,

W k
L,j = b2(L, yj), 1 ≤ i ≤ M, 0 ≤ k ≤ N ,

W k
i,0 = b3(xi, 0), 1 ≤ j ≤ M, 0 ≤ k ≤ N ,

W k
i,L = b4(xi, L), 1 ≤ j ≤ M, 0 ≤ k ≤ N ,

(44)

where ψk = [ψk
0 ,ψk

1 ,ψk
2 , . . . ,ψk

n ]T , ψk+ 1
2 = f (xi, yj, tk+ 1

2
), and G1, G2, G3, G4 are in the form

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A –B · · · –B –C · · · 0

–B A –B –C –B –C
...

–B A –B · · · –C –B –C
... · · · –B A –B –C –B –C

–B A –B –C –B
... · · · –B A –B

–B A –B
–B A –B

0 · · · · · · –B A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



Khan and Ali Advances in Difference Equations        (2020) 2020:233 Page 13 of 21

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D E · · · E F · · · 0

E D E F E F
...

E D E · · · F E F
... · · · E D E F E F

E D E F E
... · · · E D E

E D E
E D E

0 · · · · · · E D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 r2 · · · r2 r3 · · · 0

r2 r1 r2 r3 r2 r3
...

r2 r1 r2 · · · r3 r2 r3
... · · · r2 r1 r2 r3 r2 r3

r2 r1 r2 r3 r2
... · · · r2 r1 r2

r2 r1 r2

r2 r1 r2

0 · · · · · · r2 r1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–10
3

2
3 · · · 2

3
1
6 · · · 0

2
3

–10
3

2
3

1
6

2
3

1
6

...
2
3

–10
3

2
3 · · · 1

6
2
3

1
6

... · · · 2
3

–10
3

2
3

1
6

2
3

1
6

2
3

–10
3

2
3

1
6

2
3

... · · · 2
3

–10
3

2
3

2
3

–10
3

2
3

2
3

–10
3

2
3

0 · · · · · · 2
3

–10
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where r1 = 35τ
36 , r2 = 5τ

72 and r2 = τ
144 .

Theorem 3 The difference equation (38) is uniquely solvable.

Proof Since A = 5
36 (5 + 24H), B = 1

144 (–10 + 96H) and C = 1
144 (–1 + 24H), we have

|A| =
25
36

+
10H

3

and

3| – B| + 2| – C| ≤ 2
9

+
7H
3

<
25
36

+
10H

3
= |A|.

Thus |A| > 3| – B| + 2| – C| and the matrix G1 is strictly diagonally dominant. Therefore,
A is a nonsingular matrix. Hence our result is proved. �
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6 Numerical results
In this section, we will show the effectiveness of our proposed method by performing
three numerical experiments on the two-dimensional fractional Rayleigh–Stokes problem
with the help of Core i7 Duo 3.40 GHz, Window 7 and 4 GB RAM using Mathematica
software. We used Successive Over-Relaxation (SOR) as the acceleration technique, also
for the convergence criterion a tolerance ζ = 10–5 is used for the maximum error (L∞).
The convergence order for the space variable and time variable is calculated with the help
of the C2-order of convergence and C1-order of convergence, respectively [31],

C2-order = log2

(‖L∞(16τ , 2h)‖
‖L∞(τ , h)‖

)
, (45)

C1-order = log2

(‖L∞(2τ , h)‖
‖L∞(τ , h)‖

)
, (46)

where h is the space step, τ is the time step and L∞ is the maximum error = ‖e‖l∞ =
max1≤i,j≤N–1 |W k

i,j – wk
i,j|.

The following test problems were used for the numerical experiments.

Test Problem 1 ([30])

∂w(x, y, t)
∂t

= 0D1–γ
1

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2

+
∂2w(x, y, t)

∂y2 + exp (x + y)
(

(1 + γ )tγ – 2
Γ (2 + γ )
Γ (1 + 2γ )

t2γ – 2t1+γ

)
,

where 0 < x, y < 1, and having initial and boundary conditions

w(x, y, 0) = 0,

w(0, y, t) = exp (y)t1+γ , w(x, 0, t) = exp (x)t1+γ ,

w(n, y, t) = exp (1 + y)t1+γ , w(x, n, t) = exp (1 + x)t1+γ ,

with exact solution

w(x, y, t) = exp (x + y)t1+γ .

Test Problem 2 ([30])

∂w(x, y, t)
∂t

= 0D1–γ
1

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2

+
∂2w(x, y, t)

∂y2 + exp

(
–

(x – 0.5)2

ν
–

(t – 0.5)2

ν

)
(1 + γ )tγ

+
(

(Γ (2 + γ ))
Γ (1 + 2γ )

t2γ + t1+γ

)(
4
ν

–
4(x – 0.5)2

ν2 –
4(y – 0.5)2

ν2

)
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where 0 < x, y < 1, and having initial and boundary conditions

w(x, y, 0) = 0,

w(0, y, t) = exp

(
–
(

0.25
ν

+
(y – 0.5)2

ν

))
t1+γ ,

w(x, 0, t) = exp

(
–
(

(x – 0.5)2

ν
+

0.25
ν

))
t1+γ ,

w(n, y, t) = exp

(
–
(

0.25
ν

+
(y – 0.5)2

ν

))
t1+γ ,

w(x, n, t) = exp

(
–
(

(x – 0.5)2

ν
+

0.25
ν

))
t1+γ ,

with exact solution

w(x, y, t) = exp

(
–
(

(x – 0.5)2

ν
+

(y – 0.5)2

ν

))
t1+γ .

Test Problem 3 ([28])

∂w(x, y, t)
∂t

= 0D1–γ
1

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2

+
∂2w(x, y, t)

∂y2 + 2 exp (x + y)
(

t – t2 – 2
t1+γ

Γ (2 + γ )

)
,

where 0 < x, y < 1, and having initial and boundary conditions

w(x, y, 0) = 0,

w(0, y, t) = exp (y)t2, w(x, 0, t) = exp (x)t2,

w(n, y, t) = exp (1 + y)t2, w(x, n, t) = exp (1 + x)t2,

with exact solution

w(x, y, t) = exp (x + y)t2.

We solved Test problem 1, Test problem 2 and Test problem 3 using our proposed
method for the different values of γ , τ , h and L = T = 1. Table 1 and Table 2 shows the
C1-order of convergence for Test problem 1 and Test problem 3, respectively. Similarly,

Table 1 C1-order of convergence for Test problem 1, when h = 1
8

τ γ = 0.5 γ = 0.6

L∞ C1-order L∞ C1-order

τ = 1
10 6.9182× 10–3 – 5.5331× 10–3 –

τ = 1
20 3.5625× 10–3 0.96 2.9268× 10–3 0.92

τ = 1
40 1.8210× 10–3 0.97 1.5059× 10–3 0.98

τ = 1
80 9.3190× 10–4 0.97 7.5969× 10–4 0.99
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Table 2 C1-order of convergence for Test problem 3, when h = 1
8

τ γ = 0.5 γ = 0.6

L∞ C1-order L∞ C1-order

τ = 1
10 1.7170× 10–2 – 9.1171× 10–3 –

τ = 1
20 8.8342× 10–3 0.96 4.8390× 10–3 0.91

τ = 1
40 4.4698× 10–3 0.98 2.4948× 10–3 0.96

τ = 1
80 2.2719× 10–3 0.98 1.2749× 10–3 0.97

Table 3 C2-order of convergence for Test problem 1

γ = 0.4

h/τ Max error C2-order

h = τ = 1
2 3.750× 10–2 –

h = 1
4 , τ = 1

32 2.612× 10–3 3.84
h = τ = 1

4 1.966× 10–2 –
h = 1

8 , τ = 1
64 1.341× 10–3 3.87

γ = 0.5

h/τ Max error C2-order

h = τ = 1
2 4.207× 10–2 –

h = 1
4 , τ = 1

32 2.390× 10–3 4.13
h = τ = 1

4 1.931× 10–2 –
h = 1

8 , τ = 1
64 1.229× 10–3 3.97

γ = 0.6

h/τ Max error C2-order

h = τ = 1
2 4.065× 10–2 –

h = 1
4 , τ = 1

32 2.047× 10–3 4.31
h = τ = 1

4 1.665× 10–2 –
h = 1

8 , τ = 1
64 1.050× 10–3 3.98

γ = 0.8

h/τ Max error C2-order

h = τ = 1
2 2.258× 10–2 –

h = 1
4 , τ = 1

32 1.105× 10–3 4.35
h = τ = 1

4 6.946× 10–3 –
h = 1

8 , τ = 1
64 4.7880× 10–4 3.85

Table 4 C2-order of convergence for Test problem 3

γ = 0.1

h/τ Max error C2-order

h = τ = 1
2 9.293× 10–2 –

h = 1
4 , τ = 1

32 6.869× 10–3 3.76
h = τ = 1

4 4.962× 10–2 –
h = 1

8 , τ = 1
64 3.558× 10–3 3.80

γ = 0.2

h/τ Max error C2-order

h = τ = 1
2 8.200× 10–2 –

h = 1
4 , τ = 1

32 5.916× 10–3 3.78
h = τ = 1

4 4.298× 10–2 –
h = 1

8 , τ = 1
64 3.058× 10–3 3.81

γ = 0.3

h/τ Max error C2-order

h = τ = 1
2 7.092× 10–2 –

h = 1
4 , τ = 1

32 5.068× 10–3 3.81
h = τ = 1

4 3.643× 10–2 –
h = 1

8 , τ = 1
64 2.616× 10–3 3.80

γ = 0.4

h/τ Max error C2-order

h = τ = 1
2 5.966× 10–2 —

h = 1
4 , τ = 1

32 4.206× 10–3 3.83
h = τ = 1

4 2.996× 10–2 —
h = 1

8 , τ = 1
64 2.171× 10–4 3.80

γ = 0.5

h/τ Max error C2-order

h = τ = 1
2 4.824× 10–2 –

h = 1
4 , τ = 1

32 3.402× 10–3 3.82
h = τ = 1

4 2.359× 10–2 –
h = 1

8 , τ = 1
64 1.669× 10–3 3.82

γ = 0.6

h/τ Max error C2-order

h = τ = 1
2 3.668× 10–2 –

h = 1
4 , τ = 1

32 2.652× 10–3 3.79
h = τ = 1

4 1.735× 10–2 –
h = 1

8 , τ = 1
64 1.201× 10–3 3.85

Table 3 and Table 4 show C2-order of convergence for the Test problem 1 and Test prob-
lem 3, respectively, where Max error is L∞ error. From Table 1 to Table 4, it can be observed
that the computational order of convergence is in agreement with the theoretical order of
convergence, i.e. Order of convergence is O(τ + h4). Table 5, Table 6 and Table 7 show the
comparison between the Implicit compact method, the Radial basis function Meshless
Method (RMM) and our proposed method for (τ = 1

50 , γ = 0.25, ν = 0.1), (h = 1
20 , τ = 1

50 ,
ν = 1

30 ) and (γ = 0.25, ν = 1
30 ), respectively, from which it can be seen that our proposed
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Table 5 Comparison between proposed method when τ = 1
50 , γ = 0.25 with implicit compact and

radial basis functions method for Test problem 2

h C–N compact Implicit compact [30] RMM [30]

h = 1
8 6.2399× 10–3 7.3308× 10–3 1.6242× 10–1

h = 1
9 4.8848× 10–3 6.6368× 10–3 1.0562× 10–1

h = 1
11 1.4578× 10–3 5.6183× 10–3 5.3903× 10–2

Table 6 Comparison between proposed method when h = 1
20 , τ = 1

50 with implicit compact and
radial basis functions method for Test problem 2

γ C–N compact Implicit compact [30] RMM [30]

γ = 0.35 4.6946× 10–3 7.6029× 10–3 3.1012× 10–1

γ = 0.65 3.3817× 10–3 5.6471× 10–3 3.1032× 10–1

γ = 0.95 8.7138× 10–4 1.4673× 10–3 3.0986× 10–1

Table 7 Comparison between Proposed method when h = 1
16 , γ = 0.25 with Implicit compact and

radial basis functions method for Test problem 2

h/τ C–N compact Implicit compact [30] RMM [30]

τ = 1
2 , h =

1
16 3.2800× 10–2 8.4022× 10–2 4.0637× 10–1

τ = 1
4 , h =

1
16 2.3651× 10–2 4.7136× 10–2 2.8347× 10–1

τ = 1
8 , h =

1
16 9.7224× 10–3 2.5698× 10–2 1.9927× 10–1

Figure 1 The convergence of the proposed method
compared with the implicit method and RMM for
Test problem 2

method gives better results as compared to the Implicit compact method and the Radial
basis function Meshless Method (RMM), also it can be seen in Fig. 1 and Fig. 2. Similarly,
Tables 8–11 show the number of iterations, execuation time and errors (maximum and
average error) for the Test problem 1 and Test problem 2.

Figures 3–5 are the 3-D graphs of L∞ error, the approximate solution and exact solution
for the Test problem 1, respectively, when (h = τ = 1

30 , γ = 0.5), and similarly Figs. 6–8,
represent the 3-D graphs of L∞ error, the approximate solution and the exact solution for
the Test problem 1, respectively, when (h = τ = 1

25 , γ = 0.5, ν = 0.1). From Fig. 4, Fig. 5,
Fig. 7 and Fig. 8, it can be seen that Fig. 5 and Fig. 8 (the approximate solutions) are good
approximations to the exact solutions (Fig. 4 and Fig. 7).
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Figure 2 The convergence of the proposed method
compared with the implicit method and RMM for
Test problem 1

Table 8 The number of iterations, execution times (in sec) and errors of C–N high-order finite
difference method for Test problem 1, when γ = 0.1

h/τ Iteration Time Maximum error Average error

h = τ = 1
10 52 18.42 5.7562× 10–3 2.7256× 10–3

h = τ = 1
18 49 216.68 4.6550× 10–3 2.1446× 10–3

h = τ = 1
22 56 601.96 4.0416× 10–3 1.8512× 10–3

h = τ = 1
30 63 2577.19 3.0746× 10–3 1.4077× 10–3

Table 9 The number of iterations, execution times (in sec) and errors of C–N high-order finite
difference method for Test problem 1, when γ = 0.75

h/τ Iteration Time Maximum error Average error

h = τ = 1
10 53 19.23 3.9473× 10–3 2.2815× 10–3

h = τ = 1
14 48 71.19 3.0133× 10–3 1.6230× 10–3

h = τ = 1
18 52 220.02 2.4059× 10–3 1.2567× 10–3

h = τ = 1
22 57 603.56 2.0087× 10–3 1.0258× 10–3

h = τ = 1
30 65 2571.45 1.5053× 10–3 7.5067× 10–4

Table 10 The number of iterations, execution times (in sec) and errors of C–N high-order finite
difference method for Test problem 2, when γ = 0.75 and ν = 0.5

h/τ Iteration Time Maximum error Average error

h = τ = 1
14 39 63.38 6.9462× 10–3 1.9772× 10–3

h = τ = 1
18 45 196.07 5.4142× 10–3 1.5363× 10–3

h = τ = 1
22 41 421.71 4.4652× 10–3 1.2530× 10–3

h = τ = 1
30 37 1810.46 3.3150× 10–3 9.1040× 10–4

Table 11 The number of iterations, execution times (in sec) and errors of C–N high-order finite
difference method for Test problem 2, when γ = 0.5 and ν = 0.25

h/τ Iteration Time Maximum error Average error

h = τ = 1
10 38 15.68 1.7920× 10–2 5.3176× 10–3

h = τ = 1
18 44 201.84 9.6753× 10–3 2.7719× 10–3

h = τ = 1
22 38 416.85 7.9215× 10–3 2.2376× 10–3

h = τ = 1
30 37 1766.26 5.8344× 10–3 1.6210× 10–3
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Figure 3 Abolute maximum error for the Test
problem 1 when h= 1

30 , τ = 1
30

Figure 4 Exact solution for the Test problem 1
when h= 1

30 , τ = 1
30

Figure 5 Approximate solution for the Test
problem 1 when h= 1

30 , τ = 1
30

Figure 6 Abolute maximum error for the Test
problem 2 when h= 1

25 , τ = 1
25
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Figure 7 Exact solution for the Test problem 2
when h= 1

25 , τ = 1
25

Figure 8 Approximate solution for the Test
problem 2 when h= 1

25 , τ = 1
25

7 Conclusion
In this article, we solved the two-dimensional fractional RSP using a compact high-order
finite difference method. We proved that the Crank–Nicolson compact method is better in
accuracy as compared to the implicit compact and radial basis function meshless method.
The proposed method is unconditionally stable and convergent. The C1-order of conver-
gence and C2-order of convergence show that the theoretical and experimental order of
convergence agree for the time and space variables, respectively, i.e. O(τ + h4).
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