
Senthil Kumar et al. Advances in Difference Equations        (2020) 2020:215 
https://doi.org/10.1186/s13662-020-02680-3

R E S E A R C H Open Access

Classical stabilities of multiplicative inverse
difference and adjoint functional equations
B.V. Senthil Kumar1* , Khalifa Al-Shaqsi1 and Hemen Dutta2

*Correspondence:
senthilkumar@nct.edu.om
1Department of Information
Technology, Nizwa College of
Technology, Nizwa, Oman
Full list of author information is
available at the end of the article

Abstract
The aim of this present article is to investigate various classical stability results of the
multiplicative inverse difference and adjoint functional equations
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in the framework of non-zero real numbers. A proper counter-example is illustrated to
prove the failure of the stability results for control cases. The relevance of these
functional equations in optics is also discussed.
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1 Introduction
The investigation of an approximate solution near to the exact solution of many mathe-
matical equations such as functional, differential, difference and algebraic equations is a
fascinating concept in the research domain of pure and applied mathematics. This the-
ory emanated from an inquisitive query proposed in [24] and was developed through
different versions, namely Ulam–Hyers Stability (UHS), Ulam–Hyers–T. Rassias Stability
(UHTRS), Ulam–Hyers-J. Rassias Stability (UHJRS) and Ulam–Hyers–Rassias–Gavruta
Stability (HURGS) by many mathematicians [1, 9, 10, 13, 14]. Recently, this theory has got
a lot of momentum in dealing with different types of rational and multiplicative inverse
functional equations with their applications in diversified fields, such as physics, electrical
engineering, digital image processing. There are more instigating and novel results con-
cerning this topic. For more information, refer to [2–7, 11, 12, 15, 18–22].
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The rational form of the reciprocal, reciprocal difference and reciprocal adjoint func-
tional equations
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were introduced and obtained their classical stability results in [16, 17].
The multiplicative inverse functional equation

m
(
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)
= m(r) + m(s), (1.4)

was dealt with in [23] to prove its non-Archimedean stabilities. For the first time in stability
theory, a functional equation involving function of a rational argument is considered. It is
easy to examine that the reciprocal mapping m(r) = 1

r is a solution of (1.4). Induced by the
solution of (1.4) and since the power of a thin lens is the multiplicative inverse of its focal
length, we focus on the following multiplicative inverse difference and adjoint functional
equations, respectively, to investigate their solutions and analytical stabilities:
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where md, ma : R� −→ R are mappings. We solve Eqs. (1.5) and (1.6). Then we show that
there exists an approximate solution near the exact solution of these equations via the
Ulam stability idea by considering different upper bounds. We present a suitable example
to prove the failure of stability results for singular cases. We also discuss the situations in
optics where Eqs. (1.5) and (1.6) could be utilized.

To avoid a singularity in the main results, throughout this paper, let us assume that rs
r+s �=

0 for all r, s ∈R
�.

2 Equivalency of Eqs. (1.5) and (1.6)
In the ensuing result, we will prove that Eqs. (1.5) and (1.6) are equivalent and we obtain
their solutions.

Theorem 2.1 Assume a mapping m : R� −→ R. Then the following statements are equiv-
alent.

(a) m satisfies (1.4).
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(b) m satisfies (1.5).
(c) m satisfies (1.6).

Hence, the solution of Eqs. (1.5) and (1.6) is a multiplicative inverse mapping.

Proof Initially, assume that m satisfies (1.4). Now, reinstating (r, s) by (2r, 2r) in (1.4) and
then dividing by 2, one finds that

m(2r) =
1
2

m(r) (2.1)

for all r ∈ R
�. Now, replacing (r, s) by (2r, 2s) in (1.4) and in lieu of (2.1) in the resultant,

one obtains
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for all r, s ∈ R
�. Now, subtracting (2.2) from (1.4), one arrives at (1.5). Next, let us assume

that m satisfies (1.5). If (r, s) is replaced by (2r, 2r) in (1.5), then the resultant produces (1.6).
Finally, let m satisfy (1.6). By a similar argument as above, substituting (2r, 2r) in place of
(r, s) in (1.6), and then employing the resulting outcome leads to (1.4). �

3 Stabilities of Eqs. (1.5) and (1.6)
In this fragment, we investigate various analytical stabilities associated with (1.5) and (1.6)
in the domain of non-zero real numbers. To obtain the main results in a simple approach,
consider the difference operators �md ,�ma : R� ×R

� −→R, defined respectively by
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for all r, s ∈R
�.

Theorem 3.1 Assume a fixed constant μ = ±1 and a mapping md : R� −→ R. Suppose
ζ : R� ×R

� −→ [0,∞) is a function satisfying

∣∣�md (r, s)
∣∣ ≤ ζ (r, s) (3.1)

for all r, s ∈ R
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�. Then a unique multiplicative inverse mapping Md : R� −→ R exists and
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Proof Firstly, let us prove it for the case μ = 1. Switching (r, s) to (r, r) in (3.1), we obtain
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for all r ∈ R
�. Now, replacing r with r

2�μ in (3.4) and then multiplying by | 1
2 |�μ, we get
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Letting � → ∞ in (3.5) and using (3.2), we see that { 1
2�μ md( r

2(�+1)μ )} is a Cauchy sequence.
In lieu of completeness of R, the sequence { 1
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Now, we claim that Md satisfies (1.5). Plugging (r, s) into ( r
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2�μ ) in (3.1) and then in the
resultant, dividing by 2�μ on its both sides, we obtain
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for all r, s ∈ R
� and for all positive integers �. Now, using (3.2), (3.6) in (3.7), we find that

Md satisfies (1.5) for all r, s ∈R
�. For each r ∈R
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Applying (3.6) and letting � → ∞, we obtain (3.3). Next we prove that Md is unique. For
this, let us consider M′

d : R� −→ R to be an alternative multiplicative inverse mapping
satisfying (1.5) and (3.3). Therefore
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for all r ∈R
�. It can be noticed that Md is unique by allowing � to ∞ in (3.8). This completes

the proof for μ = 1. The proof for the case μ = –1 is similar to the above arguments. �

The subsequent results are various stabilities pertinent to HUS, HUTRS and HUJRS of
Eq. (1.5). The proofs directly follow from Theorem 3.1 for μ = –1. Hence, we omit the
proofs. In the ensuing results, let md : R� −→R be a mapping.

Corollary 3.2 Suppose there exists a constant η ≥ 0 (independent of r and s) such that the
inequality

∣∣�md (r, s)
∣∣ ≤ η

2

holds for all r, s ∈R
�. Then the limit
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�→∞
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)

exists for all r ∈R
�, � ∈ N and Md : R� −→ R is the unique multiplicative inverse mapping

exists and satisfies (1.5) with the result that
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�.

Corollary 3.3 For any fixed η1 ≥ 0 and θ �= –1, let the mapping md satisfy
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for all r, s ∈ R
�. Then a unique multiplicative inverse mapping Md : R� −→ R exists and

satisfies (1.5) with the result that
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�.

Corollary 3.4 Suppose the constants γ , δ exist such that θ = γ +δ �= –1 and η2 ≥ 0. Assume
the mapping md satisfies

∣∣�md (r, s)
∣∣ ≤ η2|r|γ |s|δ

for all r, s ∈ R
�. Then there exists a unique multiplicative inverse mapping Md : R� −→ R

satisfying (1.5) with the result that

∣∣md(r) – Md(r)
∣∣ ≤ 2μη2

|2μ(θ+1) – 1| |r|
θ for θ �= –1

and satisfies (1.5) for all r, s ∈R
�.
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Inspired by the counter-example in [8], we prove that Eq. (1.5) fails to be stable for θ = –1
in Corollary 3.3 in the domain of non-zero real numbers. For this, the function defined
below is used to present a suitable counter-example.

Let a function ν : R∗ −→ R be defined as

ν(r) =

⎧⎨
⎩

α
r for r ∈ (1,∞),

α elsewhere.
(3.9)

Let md : R∗ −→R be defined by

md(r) =
∞∑

k=0

2–kν
(
2–kr

)
(3.10)

for all r ∈R
�. Then the function md turns into a suitable example to illustrate that (1.5) is

unstable for θ = –1 in Corollary 3.3 in the subsequent theorem.

Theorem 3.5 Assume that the function md : R∗ −→ R described in (3.9) satisfies the in-
equality

|�md (r, s)| ≤ 12α
(|r|–1 + |s|–1) (3.11)

for all r, s ∈R
�. Then a multiplicative inverse mapping Md : R∗ −→ R and a constant K > 0

do not exist such that

∣∣md(r) – Md(r)
∣∣ ≤ K |r|–1 (3.12)

for all r ∈R
∗.

Proof Firstly, let us prove that the mapping md satisfies (3.11). Using the definition of md ,
we find |md(r)| = |∑∞

k=0 2–kν(2–kr)| ≤ ∑∞
k=0

α

2k = 2α, which indicates that md is bounded
by 2α on R. If |r|–1 + |s|–1 ≥ 1, then the expression on the left hand side of (3.11) is less than
12α. On the other hand, assume that 0 < |r|–1 + |s|–1 < 1. Hence, there exists an integer j > 0
such that

1
2j+1 ≤ |r|–1 + |s|–1 <

1
2j . (3.13)

As a result, Eq. (3.13) leads to 2j(|r|–1 + |s|–1) < 1, or equivalently; 2jr–1 < 1, 2js–1 < 1. So,
r
2j > 1, s

2j > 1. From the last inequalities, we observe that r
2j–1 > 2 > 1, s

2j–1 > 2 > 1 and as a
consequence, we have

1
2j–1 (r) > 1,

1
2j–1 (s) > 1,

1
2j–1 (rs) > 1,

1
2j–1 (r + s) > 1.

Thus, for every k = 0, 1, 2, . . . , j – 1, we acquire

1
2k (r) > 1,

1
2k (s) > 1,

1
2k (rs) > 1,

1
2k (r + s) > 1,
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and �md (2–kr, 2–ks) = 0 for k = 0, 1, 2, . . . , j – 1. By the application of (3.9) and using the
definition of the mapping md , we obtain
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for all r, s ∈ R
∗, which signifies that the inequality (3.11) holds. Now, we claim that Eq.

(1.5) fails to be stable for θ = –1 in Corollary 3.3. On the other hand, let us assume that a
multiplicative inverse mapping md : R∗ −→ R exists and satisfies (3.12). Then we arrive at

∣∣md(r)
∣∣ ≤ (K + 1)|r|–1. (3.14)

But we can find a positive integer m with mα > K + 1. If r ∈ (1, 2m–1) then 2–kr ∈ (1,∞) for
all k = 0, 1, 2, . . . , m – 1 and thus

∣∣md(r)
∣∣ =

∞∑
k=0

ν(2–kr)
2k ≥

m–1∑
k=0

2kα
r

2k =
mα

r
> (K + 1)r–1,

which contradicts (3.14). Hence we conclude that Eq. (1.5) fails to be stable for θ = –1 in
Corollary 3.3. �

Remark 3.6 We omit the proof of propositions needed for investigating various stabilities
of Eq. (1.6), since they are obtained by similar arguments as in the proof of stability results
concerning Eq. (1.5).

4 Occurrences of (1.5) and (1.6)
In manufacturing optical instruments, we come across compound lenses. Let the focal
lengths of two thin lenses be r and s. Then the combined focal length F is given by F = rs

r+s .
But the power P of a lens is the reciprocal of the focal length F . Suppose p1 = 1

r and p2 = 1
s

are powers of the above lenses, then the combined power P of the lenses is given by P =
r +s. In view of these theories, we can associate Eqs. (1.5) and (1.6) with the combined focal
length and power of lenses. A comparative study of Eqs. (1.1)–(1.6) in various situations
of optics is presented below.

• Equation (1.4) interprets the combined power of lenses with forcal length r and s to be
equal to half of arithmetic mean of powers of individual lenses; whereas Eq. (1.1)
shows that the power of a lens of focal length r + s is equal to half of the harmonic
mean of focal lengths r and s of individual lenses.

• Equation (1.5) implies that the difference between the combined power of lenses of
focal lengths r and s and the combined power of lenses of focal lengths 2r and 2s is
equal to the arithmetic mean of powers of individual lenses with focal lengths r and s;
while Eq. (1.2) indicates the difference between 2 times the power of a lens of focal
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length r + s and the power of a lens of focal length r + s is equal to half of the harmonic
mean of the focal lengths r and s of the individual lenses.

• Equation (1.6) indicates that the sum of the combined power of lenses of focal lengths
r and s and the combined power of lenses of focal lengths 2r and 2s is equal to 3 times
the arithmetic mean of the powers of the individual lenses with focal lengths r and s.
But Eq. (1.3) shows the sum of 2 times the power of a lens of focal length r + s and the
power of a lens of focal length r + s is equal to three-second of the harmonic mean of
the focal lengths r and s of the individual lenses.

5 Conclusion
In this study, we have proved that Eqs. (1.4), (1.5) and (1.6) are equivalent, which indi-
cates that the multiplicative inverse mapping is a solution of Eqs. (1.5) and (1.6). In this
investigation, zero is omitted to avoid singular cases in obtaining the stability results. We
conclude that the stability results of the multiplicative inverse difference and adjoint func-
tional equations hold good in the domain of non-zero real numbers. We have illustrated
a suitable example that the stability result of (1.5) fails to hold good for a critical case.
We have also discussed the occurrence of Eqs. (1.5) and (1.6) arising in various situations
where focal lengths and powers of thin lenses in optics are related.
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