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Abstract
We apply the analytic method and the properties of the classical Gauss sums to study
the computational problem of a certain hybrid power mean of the trigonometric
sums and to prove several new mean value formulae for them. At the same time, we
also obtain a new recurrence formula involving the Gauss sums and two-term
exponential sums.
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1 Introduction
For any integer m and odd prime p ≥ 3, the cubic Gauss sums A(m, p) = A(m) are defined
as follows:

A(m) =
p–1∑

a=0

e
(

ma3

p

)
,

where, as usual, e(y) = e2π iy.
We found that several scholars studied the hybrid mean value problems of various

trigonometric sums and obtained many interesting results. For example, Chen and Hu
[1] studied the computational problem of the hybrid power mean

Sk(p) =
p–1∑

m=1

( p–1∑

a=0

e
(

ma3

p

))k

·
∣∣∣∣∣

p–1∑

c=1

e
(

mc + c
p

)∣∣∣∣∣

2

,

where c denotes the multiplicative inverse of c mod p, that is, c · c ≡ 1 mod p.
For p ≡ 1 mod 3, they proved an interesting third-order linear recurrence formula for

Sk(p).
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Li and Hu [2] studied the computational problem of the hybrid power mean

p–1∑

b=1

∣∣∣∣∣

p–1∑

a=0

e
(

ba4

p

)∣∣∣∣∣

2

·
∣∣∣∣∣

p–1∑

c=1

e
(

bc + c
p

)∣∣∣∣∣

2

(1)

and proved an exact computational formula for (1).
Zhang and Zhang [3] proved the identity

p–1∑

m=1

∣∣∣∣∣

p–1∑

a=0

e
(

ma3 + na
p

)∣∣∣∣∣

4

=

⎧
⎨

⎩
2p3 – p2 if 3 � p – 1,

2p3 – 7p2 if 3 | p – 1.

Other related contents can also be found in [4–12], which will not be repeated here.
In this paper, inspired by [1] and [2], we consider the following mean value:

Hk(c, p) =
p–1∑

m=1

( p–1∑

a=0

e
(

cma3

p

))k

·
( p–1∑

a=0

e
(

ma3 + a
p

))3

. (2)

We do not know whether there exists a precise computational formula for (2), where c
is any integer with (c, p) = 1, and p ≡ 1 mod 3.

Actually, there also exists a third-order linear recurrence formula of Hk(c, p) for all inte-
gers k ≥ 1 and c. But for some integers c, the initial value of Hk(c, p) is very simple, whereas
for other c, the initial value of Hk(c, p) is more complex. So a satisfactory recursive formula
for Hk(c, p) is not available.

The main purpose of this paper is using an analytic method and the properties of clas-
sical Gauss sums to give an effective calculation method for Hk(c, p) with some special
integers c. We will prove the following two theorems.

Theorem 1 Let p be a prime with p ≡ 1 mod 3. If 3 is not a cubic residue mod p, then we
have

p–1∑

m=1

( p–1∑

a=0

e
(

3ma3

p

))( p–1∑

b=0

e
(

mb3 + b
p

))3

= 3p2 + dp2,

p–1∑

m=1

( p–1∑

a=0

e
(

ma3

p

))2( p–1∑

b=0

e
(

mb3 + b
p

))3

= p2(3p – 5d),

and

p–1∑

m=1

( p–1∑

a=0

e
(

3ma3

p

))3( p–1∑

b=0

e
(

mb3 + b
p

))3

= p2(5dp + 9p – d2).

Theorem 2 Let p be an odd prime with p ≡ 1 mod 3. If 3 is a cubic residue mod p, then
for any integer k ≥ 3, we have the third-order linear recurrence formula

Hk(1, p) = 3pHk–2(1, p) + dpHk–3(1, p),

where the first three terms are H0(1, p) = 2p2 – pd, H1(1, p) = p2(d – 6), and H2(1, p) =
p2(6p – 5d).
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Some notes: First, in Theorem 1, if (3, p – 1) = 1, then the question we are discussing is
trivial, because in this case, we have

p–1∑

a=0

e
(

ma3

p

)
=

p–1∑

a=0

e
(

ma
p

)
= 0.

Second, in the first and third formulas of Theorem 1, we take c = 3 (and c = 1 in the
second formula). These are all for getting the exact value of the mean value. Otherwise,
the results will not be pretty.

2 Several lemmas
To complete the proofs of our theorems, several lemmas are essential. Hereafter, we will
use related properties of the classical Gauss sums and the third-order character mod p, all
of which can be found in books concerning elementary number theory or analytic number
theory, such as [13] and [14]. First we have the following:

Lemma 1 Let p be a prime with p ≡ 1 mod 3. Then for any third-order character ψ mod p,
we have the identity

p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))3

= ψ(3)pτ 2(ψ) – 3pτ (ψ).

Proof First, applying the trigonometric identity

q∑

m=1

e
(

nm
q

)
=

⎧
⎨

⎩
q if q | n,

0 if q � n
(3)

and noting that ψ3 = χ0, the principal character mod p, we have

p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))2

+
p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))2( p–1∑

a=1

e
(

ma3 + a
p

))

= 2
p–1∑

m=1

ψ(m)
p–1∑

a=1

e
(

ma3 + a
p

)
+

p–1∑

m=1

ψ(m)

( p–1∑

a=1

e
(

ma3 + a
p

))2

+ τ (ψ)
p–1∑

a=0

p–1∑

b=0

p–1∑

c=1

ψ
(
a3 + b3 + c3)e

(
a + b + c

p

)

= –2τ (ψ) + τ (ψ)
p–1∑

a=1

ψ
(
a3 + 1

) p–1∑

b=1

e
(

b(a + 1)
p

)
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+ τ (ψ)
p–1∑

a=0

p–1∑

b=0

ψ
(
a3 + b3 + 1

) p–1∑

c=1

e
(

c(a + b + 1)
p

)

= –2τ (ψ) – τ (ψ)
p–1∑

a=1

ψ
(
a3 + 1

)
+ pτ (ψ)

p–1∑

a=0

p–1∑

b=0
a+b+1≡0 mod p

ψ
(
a3 + b3 + 1

)

– τ (ψ)
p–1∑

a=0

p–1∑

b=0

ψ
(
a3 + b3 + 1

)

= –2τ (ψ) – τ (ψ)
p–1∑

a=1

ψ
(
a3 + 1

)
+ pτ (ψ)

p–1∑

a=0

ψ
(
a3 – (a + 1)3 + 1

)

– τ (ψ)
p–1∑

a=0

p–1∑

b=0

ψ
(
a3 + b3 + 1

)
. (4)

Noting that ψ2 = ψ and τ (ψ)τ (ψ) = p, from the properties of Gauss sums we have

p–1∑

a=1

ψ
(
a3 + 1

)
=

p–1∑

a=1

ψ(a + 1)
(
1 + ψ(a) + ψ(a)

)

=
p–1∑

a=1

ψ(a + 1) +
p–1∑

a=1

ψ(1 + a) +
p–1∑

a=1

ψ
(
a2 + a

)

= –2 +
1

τ (ψ)

p–1∑

b=1

ψ(b)
p–1∑

a=1

ψ(a)e
(

b(a + 1)
p

)

= –2 +
τ 2(ψ)
τ (ψ)

= –2 +
τ 3(ψ)

p
, (5)

p–1∑

a=0

ψ
(
a3 – (a + 1)3 + 1

)
=

p–1∑

a=0

ψ
(
–3a(a + 1)

)

= ψ(3)
p–1∑

a=1

ψ
(
a(a + 1)

)
=

ψ(3)τ 3(ψ)
p

. (6)

Since ψ is a third-order character mod p, for any integer c with (c, p) = 1, from the prop-
erties of the classical Gauss sums we have

p–1∑

a=0

e
(

ca3

p

)
= 1 +

p–1∑

a=1

(
1 + ψ(a) + ψ(a)

)
e
(

ca
p

)
= ψ(c)τ (ψ) + ψ(c)τ (ψ). (7)

Applying (7), we have

p–1∑

a=0

p–1∑

b=0

ψ
(
a3 + b3 + 1

)
=

1
τ (ψ)

p–1∑

c=1

ψ(c)
p–1∑

a=0

p–1∑

b=0

e
(

ca3 + cb3 + c
p

)

=
1

τ (ψ)

p–1∑

c=1

ψ(c)e
(

c
p

)( p–1∑

a=0

e
(

ca3

p

))2
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=
1

τ (ψ)

p–1∑

c=1

ψ(c)e
(

c
p

)(
ψ(c)τ 2(ψ) + 2p + ψ(c)τ 2(ψ)

)

= τ (ψ)τ (ψ) + 2p –
τ 3(ψ)

p
= 3p –

τ 3(ψ)
p

. (8)

Combining (4), (5), (6), and (8), we have the identity

p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))3

= ψ(3)pτ 2(ψ) – 3pτ (ψ).

This proves Lemma 1. �

Lemma 2 Let p be a prime with p ≡ 1 mod 3, and let ψ be any third-order character
mod p. Then we have

τ 3(ψ) + τ 3(ψ) = dp,

where τ (ψ) denotes the classical Gauss sums, and d is uniquely determined by 4p = d2 +
27b2 and d ≡ 1 mod 3.

Proof See [4] or [9]. �

Lemma 3 Let p be a prime with p ≡ 1 mod 3. Then we have the identity

p–1∑

m=1

( p–1∑

a=0

e
(

ma3 + a
p

))3

= 2p2 – pd.

Proof Since the congruence equation x3 + 1 ≡ 0 mod p has three solutions in a reduced
residue system mod p, from (3) we have

p–1∑

m=1

( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=0

( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=0

( p–1∑

a=0

e
(

ma3 + a
p

))2

+
p–1∑

m=0

( p–1∑

a=0

e
(

ma3 + a
p

))2( p–1∑

a=1

e
(

ma3 + a
p

))

= p + 2
p–1∑

m=0

p–1∑

a=1

e
(

ma3 + a
p

)
+

p–1∑

m=0

( p–1∑

a=1

e
(

ma3 + a
p

))2

+
p–1∑

a=0

p–1∑

b=0

p–1∑

c=1

p–1∑

m=0

e
(

mc3(a3 + b3 + 1) + c(a + b + 1)
p

)

= p +
p–1∑

a=1

p–1∑

b=1

p–1∑

m=0

e
(

mb3(a3 + 1) + b(a + 1)
p

)
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+ p
p–1∑

a=0

p–1∑

b=0
a3+b3+1≡0 mod p

p–1∑

c=1

e
(

c(a + b + 1)
p

)

= p + p(p – 1) – 2p + p2
p–1∑

a=0

p–1∑

b=0
a3+b3+1≡0 mod p

a+b+1≡0 mod p

1 – p
p–1∑

a=0

p–1∑

b=0
a3+b3+1≡0 mod p

1. (9)

It is clear that the conditions a3 +b3 +1 ≡ 0 mod p and a+b+1 ≡ 0 mod p (0 ≤ a, b ≤ p–1)
imply a(a + 1) ≡ 0 mod p and a + b + 1 ≡ 0 mod p, or (a, b) = (0, p – 1) and (a, b) = (p – 1, 0).
So we have

p2
p–1∑

a=0

p–1∑

b=0
a3+b3+1≡0 mod p

a+b+1≡0 mod p

1 = 2p2. (10)

From (3), (7), Lemma 2, and the properties of Gauss sums we have

p
p–1∑

a=0

p–1∑

b=0
a3+b3+1≡0 mod p

1 =
p–1∑

m=0

p–1∑

a=0

p–1∑

b=0

e
(

m(a3 + b3 + 1)
p

)

= p2 +
p–1∑

m=1

e
(

m
p

)( p–1∑

a=0

e
(

ma3

p

))2

= p2 +
p–1∑

m=1

e
(

m
p

)(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)2

= p2 +
p–1∑

m=1

e
(

m
p

)(
ψ(m)τ 2(ψ) + 2p + ψ(m)τ 2(ψ)

)

= p2 + τ 3(ψ) – 2p + τ 3(ψ) = p2 – 2p + dp. (11)

Combining (9), (10), and (11), we have the identity

p–1∑

m=1

( p–1∑

a=0

e
(

ma3 + a
p

))3

= 2p2 – pd.

This proves Lemma 3. �

3 Proofs of the theorems
We achieve our main results in this part. First, we prove Theorem 1. For any integer m
with (m, p) = 1, from (7) and Lemma 2 we have

A3(3m) =

( p–1∑

a=0

e
(

3ma3

p

))3

=
(
ψ(3m)τ (ψ) + ψ(3m)τ (ψ)

)3

= τ 3(ψ) + τ 3(ψ) + 3p
(
ψ(3m)τ (ψ) + ψ(3m)τ (ψ)

)
= dp + 3pA(3m). (12)
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Applying (7) and Lemmas 1 and 2, we have

p–1∑

m=1

A(3m)

( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=1

(
ψ(3m)τ (ψ) + ψ(3m)τ (ψ)

)
( p–1∑

a=0

e
(

ma3 + a
p

))3

= ψ(3)τ (ψ)
(
ψ(3)pτ 2(ψ) – 3pτ (ψ)

)
+ ψ(3)τ (ψ)

(
ψ(3)pτ 2(ψ) – 3pτ (ψ)

)

= p
(
τ 3(ψ) + τ 3(ψ)

)
– 3p2(ψ(3) + ψ(3)

)
= dp2 + 3p2 – 3p2(1 + ψ(3) + ψ(3)

)

= p2(d + 3), (13)

where we have used the identity 1 + ψ(3) + ψ(3) = 0.
Applying Lemmas 1, 2, and 3 and (7), we have

p–1∑

m=1

( p–1∑

a=0

e
(

ma3

p

))2( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=1

(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)2
( p–1∑

a=0

e
(

ma3 + a
p

))3

= 2p
(
2p2 – dp

)
+ τ 2(ψ)

(
ψ(3)pτ 2(ψ) – 3pτ (ψ)

)

+ τ 2(ψ)
(
ψ(3)pτ 2(ψ) – 3pτ (ψ)

)

= 2p2(2p – d) +
(
ψ(3) + ψ(3)

)
p3 – 3p

(
τ 3(ψ) + τ 3(ψ)

)

= p2(3p – 5d). (14)

Applying Lemmas 1, 2, and 3 and (12), we have

p–1∑

m=1

( p–1∑

a=0

e
(

3ma3

p

))3( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=1

(
ψ(3m)τ (ψ) + ψ(3m)τ (ψ)

)3
( p–1∑

a=0

e
(

ma3 + a
p

))3

= dp
p–1∑

m=1

( p–1∑

a=0

e
(

ma3 + a
p

))3

+ 3p
p–1∑

m=1

A(3m)

( p–1∑

a=0

e
(

ma3 + a
p

))3

= dp
(
2p2 – pd

)
+ 3p

(
3p2 + dp2) = p2(5dp + 9p – d2). (15)

Now Theorem 1 follows from (13), (14), and (15).
If p ≡ 1 mod 3 and 3 is a cubic residue mod p, then ψ(3) = ψ(3) = 1. From Lemma 3 we

have

H0(1, p) = 2p2 – pd. (16)
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From (7) and Lemmas 1 and 2 we have

H1(1, p) = τ (ψ)
(
pτ 2(ψ) – 3pτ (ψ)

)
+ τ (ψ)

(
pτ 2(ψ) – 3pτ (ψ)

)

= p
(
τ 3(ψ) + τ 3(ψ)

)
– 6p2 = dp2 – 6p2. (17)

From (7) and Lemmas 1, 2, and 3 we also have

H2(1, p) = 2pH0(1, p) + τ 2(ψ)
(
pτ 2(ψ) – 3pτ (ψ)

)
+ τ 2(ψ)

(
pτ 2(ψ) – 3pτ (ψ)

)

= 2p2(2p – d) + 2p3 – 3p
(
τ 3(ψ) + τ 3(ψ)

)
= p2(6p – 5d). (18)

If k ≥ 3, then applying (12), we have

Hk(1, p) =
p–1∑

m=1

Ak(m)

( p–1∑

a=0

e
(

ma3 + a
p

))3

=
p–1∑

m=1

Ak–3(m)
(
dp + 3pA(m)

)
( p–1∑

a=0

e
(

ma3 + a
p

))3

= 3pHk–2(1, p) + dpHk–3(1, p). (19)

Now Theorem 2 follows from (16), (17), (18), and (19).
This completes the proofs of all our results.

4 Conclusion
The main work of this paper includes two theorems. In Theorem 1, we obtained some
exact values of (2) when k = 1, 2, and 3. In Theorem 2, we showed that Hk(1, p) satisfies an
interesting third-order linear recurrence formula. These works not only profoundly reveal
the regularity of a certain hybrid power mean of the trigonometric sums, but also provide
some new ideas and methods for further study of such problems.
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