
Zhang et al. Advances in Difference Equations        (2019) 2019:435 
https://doi.org/10.1186/s13662-019-2373-0

R E S E A R C H Open Access

Some symmetries, similarity solutions and
various conservation laws of a type of
dispersive water waves
Yufeng Zhang1*, Na Bai2 and Hongyang Guan3

*Correspondence:
zyfxz@cumt.edu.cn
1College of Mathematics, China
University of Mining and
Technology, Xuzhou, P.R. China
Full list of author information is
available at the end of the article

Abstract
We investigate the point symmetries, Lie–Bäcklund symmetries for a type of
dispersive water waves. We obtain some Lie transformation groups, various
group-invariant solutions, and some similarity solutions. Besides, we produce different
formats of conservation laws of the dispersive water waves by using different
schemes. Finally, we consider some special solutions of the stationary dispersive
water-wave equations.
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1 Introduction
The classical dispersiveless long wave equations

ut + uux + hx, ht + (uh)x = 0 (1)

have a number of dispersive generalizations [1]. Kupershmidt [2] investigated the com-
muting hierarchy and the Hamiltonian structures of the following generation of (1):

⎧
⎨

⎩

ut = ( 1
2 u2 + h + βux)x,

ht = (uh + αuxx – βhx)x,
(2)

and further turned (2) into the following system:

⎧
⎨

⎩

ūt = ( 1
2 ū2 + h̄ + μū)x,

h̄t = (ūh̄ – μh̄x)x, μ = γ + β = ±√
(α2 + β2),

(3)

by using the invertible change of variables: u = ū, h = h̄ + γ ūx. For α = 1
3 , β = 0, system

(2) was given by Broer [1]. For β = 0, in terms of the potential ϕ : u = ϕx, system (2) was
derived by Kaup [3], who found its multisoliton solutions. Matveev and Yavor [4] algebro-
geometrically found a large class of almost periodic solutions of system (3). In the paper,
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we want to apply the Lie group analysis method [5] to study the point symmetries and Lie–
Bäcklund transformation symmetries of system (2). In fact, many symmetries, similarity
reductions, and conservation laws were obtained by Lie group analysis [6–10]. Lou et al.
[11, 12] applied the symmetry group method to study some coherent solutions of nonlocal
KdV systems and primary branch solutions of a first-order autonomous system. In addi-
tion, Ma [13] obtained some new conservation laws of some discrete evolution equations
by symmetries and adjoint symmetries. Qu and Ji [14] studied inhomogeneous nonlinear
diffusion equations by invariant subspace and conditional Lie–Backlund symmetry meth-
ods. It was shown that the equations admit a class of invariant subspaces governed by the
nonlinear ordinary differential equations, which is equivalent to a kind of higher-order
conditional Lie–Backlund symmetries of the equations. Ji and Qu [15] used the condi-
tional Lie–Backlund symmetry method to study the invariant subspaces of nonlinear dif-
fusion equations with convection and source terms and obtained a complete list of canon-
ical forms for such equations, which admit higher-order conditional Lie–Backlund sym-
metries and multidimensional invariant subspaces. Ma [16, 17] discussed the conservation
laws of differential and discrete equations, respectively. Recent studies by Ma et al. [18–
22] also show a remarkable richness of rational function solutions, called lumps, as well
as interaction solutions and solutions of other kinds. In addition, the invariant solutions
can be formulated from the invariant submanifold method in [23].

Ibragimov and Avdonina [24] applied the Lie group method to propose a new approach
for looking for conservation laws and exact solutions to nonlinear self-adjoint differential
equations. For a system of m differential equations

Fα(x, u, u(1), . . . , u(s)) = 0, α = 1, 2, . . . , m, (4)

where u(1) = {uα
i }, . . . , u(s) = {uα

i1···is}, the steps are as follows.
Step 1: Introducing the adjoint equations of (4) by using the variational derivative:

F∗
α(x, u, v, u(1), v(1), . . . , u(s), v(s)) =

δϕ

δuα
= 0, (5)

where ϕ =
∑m

β=1 vβFβ (x, u, u(1), . . . , u(s)).
Step 2: Let

vα = ψα(x, u), α = 1, 2, . . . , m, (6)

and require the following relations to be satisfied:

F∗
α

(
x, u,ψ(x, u), . . . , u(s),ψ(s)

)
= λβ

αFβ (x, u, . . . , u(s)). (7)

We say that system (4) is nonlinearly self-adjoint if (7) holds for the solutions of (4), where
λβ

α are functions dependent on x, u, u(1), . . . .
Step 3: Assume that the infinitesimal symmetry of the nonlinear self-adjoint system (4)

is given by

X = ξ i(x, u, u(1), . . .)
∂

∂xi + ηα(x, u, u(1), . . .)
∂

∂uα
. (8)
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Then a conservation law for the system is presented by

Di
(
Ci) = 0, (9)

where the components of the conserved vector are the following:

Ci = W α

[
∂ϕ

∂uα
i

– Dj

(
∂ϕ

∂uα
ij

)

+ DjDk

(
∂ϕ

∂uα
ijk

)

– · · ·
]

+ Dj
(
W α

)
[

∂ϕ

∂uα
ij

– Dk

(
∂ϕ

∂uα
ijk

)

+ · · ·
]

+ DjDk
(
W α

)
[

∂ϕ

∂uα
ijk

– · · ·
]

, (10)

where W α = ηα – ξ juα
j .

By applying (9) and (10) some conservation laws of some nonlinear self-adjoint differen-
tial equations were obtained in [5–9]. In addition, Göktas and Hereman [25] proposed a
new method for looking for conservation laws of nonlinear differential equations without
using the symmetries of differential equations. The explicit steps are as follows:

(1) Consider the form of conservation laws

Dt(ρ) + Dx(J) = 0 (11)

for system (4). Assuming the uniformity in rank in the ith equation, form the linear system

Ai = {ri,1, ri,2, . . . , ri,α}

and then gather the Ai to form the global linear system A =
⋃α

i=1 Ai.
(2) Solving for the unknown weights w(ui), w(∂t).
(3) Set V = {v1, . . . , vQ} to be the sorted list of all the variables with positive weights,

excluding ∂t . Form all monomials of rank R or less by taking combinations of the variables
in V and form sets consisting of ordered pairs.

Set B0 = {(1; 0)}. For q = 1, 2, . . . , Q, m = 0, 1, . . . , M – 1, where M is the number of pairs
in Bq–1, form Bq,m =

⋃pq,m
i=1 {(Tq,s; Wq,s)}, Tq,s = Tq–1,mvs

q, Wq,s = Wq–1,m + sw(vq), pq,m =
�

R–Wq–1,m
w(vq) �.

Denote Bq =
⋃M–1

m=0 Bq,m.
(4) Let G = BQ, which consists of all possible combinations of powers of the variables

that produce rank R or less. For each pair (TQ,s; Wq,s) in G , apply ∂ l

∂xl to the term TQ,s, where
l = R – WQ,s. Set H to contain the terms that result from computing the various ∂ l

∂xl (TQ,s).
(5) Removing those terms in H that can be written as a total derivative with respect to

x,or as a derivative up to terms kept previously in the set, we denote such a set by I .
(6) For all terms from I with desired rank R, let

ρ =
σ∑

i=1

ciI(i), (12)

where I(i) is the ith element in I , σ is the number of the terms in I , and ci are constants to
be determined later.
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(7) Computing Dt(ρ) and replacing the terms with derivatives with respect to ∂t by us-
ing the original system (4), we denote the result by E. Then act on E by the variational
derivatives δE

δuα (α = 1, . . . , m). Next, solving the system δE
δuα = 0 (α = 1, . . . , m), we obtain

the relations among the coefficients ci. Thus we get the density ρ in (12). Substituting ci

into the expression E, we can obtain the resulting fluxes of differential equations.
In the paper, we apply the Lie group analysis method and the above approach to inves-

tigate the conservation laws of system (2).

2 Point symmetries, Lie–Bäcklund symmetries, and conservation laws
By using the Lie-group analysis method we easily get the point symmetry of the system
(2):

⎧
⎨

⎩

V1 = ∂t , V2 = ∂x, V3 = t∂x – ∂u,

V4 = t∂t + x
2∂x – u

2 ∂u – h∂h.
(13)

Set

L = p(ut – uux – hx – βuxx) + q(ht – uxh – uhx – αuxxx + βhxx).

Then the adjoint equations of system (2) are given by

⎧
⎨

⎩

δL
δu = –pt + pxu – βpxx + qxh + αqxxx = 0,
δL
δh = –qt + px + uqx + βqxx = 0,

(14)

where u, h are solutions to system (2). System (14) has the solutions

p = h, q = u.

Hence system (2) is strictly self-adjoint. Besides, system (14) has some special solutions
for given u and h. For example, when u = h, (14) has the solution

p = –c1x + c2, q = c1(x – t) + c3,

where c1, c2, c3 are constants. In particular, for β = 0, system (2) reduces to

(
u′)2 = u2 –

1
3

u3. (15)

Obviously, (15) is solvable. Since system (2) is nonlinearly self-adjoint, we can look for the
conservation laws by using the Lie group method. For system (2), the conservation laws
are of the following form:

C1 = W u ∂L
∂ut

+ W h ∂L
∂ht

, (16)

C2 = W u
[

∂L
∂ux

– Dx

(
∂L
∂uxx

)

+ D2
x

(
∂L

∂uxxx

)]

+ Dx
(
W u)

[
∂L
∂uxx

– Dx

(
∂L

∂uxxx

)]

+ D2
x
(
W u) ∂L

∂uxxx
+ W h

[
∂L
∂hx

– Dx

(
∂L
∂hxx

)]

+ Dx
(
W h) ∂L

∂hxx
. (17)
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For the vector V3, the conservation law is

Dt
(
C1) + Dx

(
C2) = 0. (18)

Note that W u = –1 – tut and W h = –tht . Then we have

C1 = (1 + tut)p + thtq = h + Dt(thu) – uh,

C2 = (1 + tut)(2hu – βhx + βux + αuxxx) – tuxt(–βh + βu + αu) + αtuxxtu

+ tht
(
h + u2 + βux

)
– βthxtu.

To cancel the trivial operation in computing conservation laws, we may assume that

C1|(2) = C̃1 + Dx
(
H2) + Dz

(
H3) + · · · . (19)

Then the conserved vector C = (X1, C2, . . . , cm) = 0 can be written as

C̃ =
(
C̃1, . . . , C̃m)

= 0 (20)

with the components

C̃1, C̃2 = C2 + D1
(
H2), . . . , C̃m = Cm + D1

(
Hm)

. (21)

Based on versions (18)–(21), we get the reduced forms of the components of the conserved
density:

C̃1 = h – uh,

C̃2 = C2 + Dt(thu)

= (1 + tut)(2hu – βhx + βux + αuxxx) – tuxt(–βh + βu + αu) + αtuxxtu

+ tht
(
h + u2 + βux

)
– βthxtu.

In particular, when u = h, p = –c1x + c2, and q = c1(x – t) + c3, we can obtain the special
components of the conserved density:

C̄1 = –c1x + c2 + tut(–c1t + c2 + c3),

C̄2 = (1 + tut)
[
(–c1t + c2 + c3)u + 2c1β

]
– tuxt

[
(2c1x – c1t + c3 – c2)β

+ αc1(x – t) + αc3
]

+ αtuxxt
[
c1(x – t) + c3

]

+ tut
[
–c1x + c2 +

(
c1(x – t) + c3

)
u + βc1

]
– βtuxt

[
c1(x – t) + c3

]
.

For the symmetry vector V4, we have that

W u = –
1
2

u – tut –
1
2

xux, W h = –h – tht –
1
2

xhx.
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Similarly as before, we can obtain the components of the density of system (2):

C1 =
(

1
2

u + tut +
1
2

xux

)

p +
(

h + tht +
1
2

xhx

)

q =
(

1
2

u + tut +
1
2

xux

)

h

+
(

h + tht +
1
2

xhx

)

u,

C2 =
(

1
2

u + tut +
1
2

xux

)

(pu + qh – βpx + βqx + αuxxx)

+
(

tuxt +
1
2

xuxx

)

(–βp + βq + αqxxx) – α

(

tuxxt +
1
2

uxx +
1
2

xuxxx

)

qxxx

+
(

h + tht +
1
2

xhx

)

(p + qu + βqxx) – β

(

thxt +
3
2

hx +
1
2

xhxx

)

q

=
(

1
2

u + tut +
1
2

xux

)

(2hu – βhx + βux + αuxxx)

+
(

tuxt +
1
2

xuxx

)

(–βh + βu + αuxxx) – α

(

tuxxt +
1
2

uxx +
1
2

xuxxx

)

uxxx

+
(

h + tht +
1
2

xhx

)
(
h + u2 + βuxx

)
– β

(

thxt +
3
2

hx +
1
2

xhxx

)

u.

In what follows, we investigate the Lie–Bäcklund symmetries of system (2) and the re-
sulting conservation laws.

Set

X = ηu(x, t, u, h, ux, hx, uxx, hxx, uxxx, hxxx)∂u

+ ηh(x, t, u, h, ux, hx, uxx, hxx, uxxx, hxxx)∂h. (22)

Substituting (22) into system (2), we infer the following Lie-Bäcklund symmetries by using
the software Maple:

X1 = hx∂h + ux∂u, X2 = hx∂h + (1 + tux)∂u,

X3 = (6ux + uhx + αuxxx – βhxx∂h + (uux + βuxx + hx)∂u,

X4 = (2thux + 2tuhx + 2αtuxxx – 2βthxx + hxx + 2h)∂h

+ (2tuux + 2βtuxx + 2thx + uxx + u)∂u,

X5 =
(
6huux + 3u2hx – 6βuxhx + 6αuuxxx – 6βuhxx + 12αuxhxx + 4β2hxxx

+ 6hhx + 4αhxxx
)
∂h +

(
3u2ux + 6βuuxx + 6βu2

x + 4β2uxxx

+ 6hux + 6uhx + 4αuxxx
)
∂u,

X6 =
(
6tuhux + 3tu2hx – 6βthxux + 6αtuuxxx – 6βtuhxx + 12αtuxuxx + 4β2thxxx

+ 6thhx + 2xhux + 2xuhx + 4αthxxx + 2αxuxxx – 2βxhxx + 4hu

– 10βhx + 6αuxx
)
∂h +

(
3tu2ux + 6βtuuxx + 6βth2

x + 4β2tuxxx + 6thux + 6tuhx

+ 4αtuxxx + 2xuux + 2βxuxx + 2xhx + u2 + 4h
)
∂u.
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Applying (10), we can deduce the components of the conserved density for system (2).
For X1, we have

C1 = uxp + hxq = uxh + hxu = Dx(uh), hence C̃1 = 0,

C2 = –2huux + βuhx – βu2
x – βhuxx + βuuxx – αuuxxx – hhx – u2hx

– βuxhx + βuhxhxx + βuhxx.

For X2, W u = ηu = 1 + tux and W h = ηh = hx; substituting into (16) and (17), we have that

C1 = W up + W hq = (1 + tux)p + hxq = (1 + tux)h + uhx,

C2 = (βpx – pu – qh – αqxx)W u + (αqx – βp)Dx
(
W u) – αqD2

x
(
W u)

– (p + qu + βqx)W h + βqDx
(
W h)

= (βpx – pu – qh – αqxx)(1 + tux) + (αqx – βp)tuxx – αqtuxxx

– (p + qu + βqx)hx + βqhxx.

Similarly, for X3, we get that

C1 = W up + W hq = p(uux + βuxx + hx) + q(6ux + uhx + αuxxx – βhxx),

C2 = (βpx – pu – qh – αqxx)(uux + βuxx + hx) + (αqx – βp)Dx(uux + βuxx + hx)

– αqD2
x(uux + βuxx + hx) – (p + qu + βqx)(6ux + uhx + αuxxx – βhxx)

+ βqDx(6ux + uhx + αuxxx – βhxx).

For X4, we have

C1 = p(2tuux + 2βtuxx + 2thx + uxx + u)∂u

+ q(2thux + 2tuhx + 2αtuxxx – 2βthxx + hxx + 2h),

C2 = (βpx – pu – qh – αqxx)(2tuux + 2βtuxx + 2thx + uxx + u)

+ (αqx – βp)Dx(2tuux + 2βtuxx + 2thx + uxx + u)

– αqD2
x(2tuux + 2βtuxx + 2thx + uxx + u)

– (p + qu + βqx)(2thux + 2tuhx + 2αtuxxx – 2βthxx + hxx + 2h)

+ βqDx(2thux + 2tuhx + 2αtuxxx – 2βthxx + hxx + 2h).

For X5, we have

C1 = p
(
3u2ux + 6βuuxx + 6βu2

x + 4β2uxxx + 6hux + 6uhx + 4αuxxx
)

+ q
(
6huux + 3u2hx – 6βuxhx + 6αuuxxx – 6βuhxx + 12αuxhxx

+ 4β2hxxx + 6hhx + 4αhxxx
)
,
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C2 = (βpx – pu – qh – αqxx) + (αqx – βp)Dx
(
3u2ux + 6βuuxx + 6βu2

x + 4β2uxxx

+ 6hux + 6uhx + 4αuxxx
)

– αqD2
x
(
3u2ux + 6βuuxx + 6βu2

x + 4β2uxxx + 6hux

+ 6uhx + 4αuxxx
)

– (p + qu + βqx)
(
6huux + 3u2hx – 6βuxhx + 6αuuxxx – 6βuhxx

+ 12αuxhxx + 4β2hxxx + 6hhx + 4αhxxx
)

+ βqDx
(
6huux + 3u2hx – 6βuxhx

+ 6αuuxxx – 6βuhxx + 12αuxhxx + 4β2hxxx + 6hhx + 4αhxxx
)
.

For X6, we infer that

C1 = p
(
3tu2ux + 6βtuuxx + 6βth2

x + 4β2tuxxx + 6thux + 6tuhx + 4αtuxxx

+ 2xuux + 2βxuxx + 2xhx + u2 + 4h
)

+ q
(
6tuhux + 3tu2hx – 6βthxux

+ 6αtuuxxx – 6βtuhxx + 12αtuxuxx + 4β2thxxx + 6thhx + 2xhux + 2xuhx

+ 4αthxxx + 2αxuxxx – 2βxhxx + 4hu – 10βhx + 6αuxx
)
,

C2 = (βpx – pu – qh – αqxx)
(
3tu2ux + 6βtuuxx + 6βth2

x + 4β2tuxxx + 6thux + 6tuhx

+ 4αtuxxx + 2xuux + 2βxuxx + 2xhx + u2 + 4h
)

+ (αqx – βp)Dx
(
3tu2ux + 6βtuuxx

+ 6βth2
x + 4β2tuxxx + 6thux + 6tuhx + 4αtuxxx + 2xuux + 2βxuxx + 2xhx

+ u2 + 4h
)

– αqD2
x
(
3tu2ux + 6βtuuxx + 6βth2

x + 4β2tuxxx + 6thux + 6tuhx

+ 4αtuxxx + 2xuux + 2βxuxx + 2xhx + u2 + 4h
)

– (p + qu + βqx)
(
6tuhux + 3tu2hx

– 6βthxux + 6αtuuxxx – 6βtuhxx + 12αtuxuxx + 4β2thxxx + 6thhx

+ 2xhux + 2xuhx + 4αthxxx + 2αxuxxx – 2βxhxx + 4hu – 10βhx + 6αuxx
)

+ βqDx
(
6tuhux + 3tu2hx – 6βthxux + 6αtuuxxx – 6βtuhxx + 12αtuxuxx

+ 4β2thxxx + 6thhx + 2xhux + 2xuhx + 4αthxxx + 2αxuxxx – 2βxhxx

+ 4hu – 10βhx + 6αuxx
)
,

where p = h and q = u, which can substituted into the above conserved densities so that
we obtain more explicit formulas for c1 and C2. Here we omit the computations.

3 Lie symmetry groups and similarity solutions
In this section, we apply the point symmetries (13) to consider the Lie symmetry groups
and some similarity solutions to system (2). Denote the Lie symmetry groups generated
by V1, V2, V3, V4 by g1, g2, g3, g4, respectively. It is easy to see that

g1 : (x, t, u, h) → (x, t + ε, u, h),

g2 : (x, t, u, h) → (x + ε, t, u, h),

g3 : (x, t, u, h) → (
x, eεt, u – ε, h

)
,

g4 : (x, t, u, h) → (
e

1
2 εx, eεt, e– 1

2 εu, e–εh
)
.
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If u = f (x, t), h = g(x, t) are solutions to e system (2), then we can get the following new
solutions based on these symmetry groups:

u(1) = u(x, t – ε) = f (x, t – ε), h(1) = g(x, t – ε),

u(2) = f (x – ε, t), h(2) = g(x – ε, t),

u(3) = f
(
x, e–εt

)
– ε, h(3) = g

(
x, e–εt

)
,

u(4) = e– 1
2 ε f

(
e– 1

2 εx, e–εt
)
, h(4) = e–εg

(
e– 1

2 εx, e–εt
)
.

Of course, we can go on getting some iteration solutions following the work [8]:

⎧
⎨

⎩

u(3,1) = f (x, e–εt) – 2ε,

h(3,1) = g(x, e–εt),
⎧
⎨

⎩

u(4,1) = e–ε f (e– 1
2 εx, e–εt),

h(4,1) = e–2εg(e– 1
2 εx, e–εt),

. . . ,
⎧
⎨

⎩

u(4,n) = e– 2n–1
n ε f – 1

2εx, e–εt),

h(4,n) = e–nεg(e– 1
2 εx, e–εt),

where n ∈ N+.
For the transformation groups g1 and g2, the invariant solutions are traveling wave so-

lutions. Indeed, set

u = U(ξ ), h = H(ξ ), ξ = x – ct. (23)

Substituting (23) into system (2), we have

⎧
⎨

⎩

–cU ′ = UU ′ + H ′ + βU ′′,

–cH ′ = (UH)′ + αU ′′′ – βH ′′.

Integrating gives rise to

⎧
⎨

⎩

–cU = 1
2 U2 + H + βU ′,

–cH = UH + αU ′′ – βH ′.
(24)

From (24) we find that

(
α + β2)U ′′ –

1
2

U3 –
3
2

cU2 – c2U = 0. (25)

Let U ′ = y(ξ ). Then (25) turns to

(
U ′)2 =

1
α + β2

(
1
4

Uu + cU3 + c2U2
)

. (26)
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Suppose U ′ = aU + U2. Then inserting this into (26), we have that

α2 + β2 =
1
4

, a = 2 ± c.

Thus we get

U ′ = 2 ± cU + U2 =: 2εcU + U2. (27)

Solving (27) yields

U =
2εcc̄e2εcξ

1 – c̄e2εcξ , (28)

and hence

H = –
2εcc̄(εc – 2εcβ)e2εcξ

1 – c̄e2εcξ –
(

1
2

+ β

)
4c2c̄2e4εcξ

(1 – c̄e2εξ )2 , (29)

where c̄ is an integral constant, which does not vanish. Again applying (23) and (28)–(29),
we have

⎧
⎨

⎩

u(x, t) = 2εcc̄e2εc(x–ct)

1–c̄e2εc(x–ct) ,

h(x, t) = – 2εcc̄(εc–2εcβ)e2εc(x–ct)

1–c̄e2εc(x–ct) – ( 1
2 + β) 4c2 c̄2e4εc(x–ct)

(1–c̄e2ε(x–ct))2 .

The characteristic equation of the vector field V3 presents

dt
0

=
dx
t

=
du
–1

,

which gives

w = ξx + u, xξ = t.

The resulting group-invariant solution reads

u = f (t) – tx, h = g(t). (30)

Substituting (30) into system (2), we infer

⎧
⎨

⎩

df
dt + tf = x + t2x,
dg
dt = –tg(t),

which has the following set of solutions:s

⎧
⎨

⎩

f (t) = exp(– 1
2 t2)[x

∫ t exp( 1
2 t2) dt + x

3 t3e t2
2 – 2

3 xe t2
2 + c̃],

g(t) = c0 exp(– 1
2 t2),

(31)
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where c̃, c0 are constants. Substituting (31) into (30), we obtain the similarity solutions of
system (2):

⎧
⎨

⎩

u(x, t) = xe– 1
2 t2 ∫ t e 1

2 t2 dt + 1
3 x(t3 – 2) + c̃e– 1

2 t2 – tx,

h(x, t) = c0e– 1
2 t2.

Similarly, for g4, the characteristic equation reads

dt
t

=
dx
1
2 x

=
du

– 1
2 u

=
dh
–h

,

from which we get the invariants

ξ = x2t–1, u = x–1f (ξ ), h = x– 1
2 g(ξ ), (32)

where f (ξ ), g(ξ ) are arbitrary invariant functions with respect to the variable ξ . Inserting
(32) into the system, we get the following ordinary differential equations with variable
coefficients:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–f ′(ξ ) = (2β – 1)ξ–2f 2(ξ ) + 2(1 – β)ξ–1f ′(ξ ) – 2ξ–2g(ξ )

+ 2ξ–1g ′(ξ ) + 2βf ′′(ξ ),

–g ′(ξ ) = –3ξ 2f (ξ )g(ξ ) + 2ξ–1f ′(ξ )g(ξ ) + 2ξ–1f (ξ )g ′(ξ ) + 6αξ–2f (ξ )

– 2αξ–1f ′(ξ ) – 2αf ′′(ξ ) + 4αξ f ′′′(ξ ) – 6βξ–2g(ξ )

+ 6βξ–1g ′(ξ ) – 4βg ′′(ξ ).

(33)

Now we look for the formal series solutions to (33), so we assume that

f (ξ ) =
∞∑

n=0

anξ
n, g(ξ ) =

∞∑

n=0

bnξ
n. (34)

Substituting (34) into system (2) and comparing the coefficients of both sides in the system
(33), one infers that

2b0 = (2β – 1)a2
0,

(4β – 2)a0a1 + (2 – 2β)a1 = 0,

(4β – 2)a0a2 + 4a2 + 2b2 + (2β – 1)a2
1 + a1 = 0,

–2a2 + (4β – 2)a0a3 + (4β – 2)a1a2 + (6β + 6)a3 + 4b3 + 2a2 = 0,

. . . ,

–
4∑

k=0

aka4–k + 8(4 – β)a4 + 8b4 + 2β

4∑

k=0

aka4–k = 0,

(1 – n)an–1 = 2nbn + (2β – 1)
n∑

k=0

akan–k +
(
2n – 4βn + 2βn2)an, n ≥ 5,

a0b0 – 2αa0 + 2βb0 = 0,
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a0b1 + a1b0 – 4αa1 = 0,

a2b0 – a1b1 + a0b2 + 2a0b1 – 2αa2 – 14βb2 + b1 + 6βb1 = 0,

–3a3b0 + 2a1b2 + 3a0b3 + 2b2 + 12αa3 + 12βb3 = 0,

. . . ,

–3a3 = –3
4∑

k=0

akb4–k + 2
3∑

k=0

(3 – k)a3–k + 2
4∑

k=0

(4 – k)a4–k + 2
3∑

k=0

(3 – k)akb3–k

+ 2
4∑

k=0

(4 – k)akb4–k – 8αa4 – 24a4 – 30βb4,

–4a4 = –3
5∑

k=0

akb5–k + 2
5∑

k=0

(5 – k)a5–kbk + 2
5∑

k=0

(5 – k)akb5–k + 190αa5 – 56βb5,

. . . ,

(1 – n)an–1 = –3
n∑

k=0

akbn–k + 2
n∑

k=0

(n – k)an–kbk + 2
n∑

k=0

(n – k)akbn–k + 6αan–2

+
[
–2αn – 2αn(n – 1) + 4αn(n – 1)(n – 2)

]
an

+
[
6βn – 6β – 4βn(n – 1)

]
bn, n ≥ 6.

When a1 	= 0, there exists a constraint between α and β :

5β2 – 8αβ – 4β + 4α + 1 = 0.

In terms of the above relations among ai, bi (i = 0, 1, 2, . . . , n), we can write out the formal
series solutions where a1 is a free parameter. As for the convergence of the series, we skip
the discussion. However, we can follow the way presented in [8] to proceed.

4 A new scheme for seeking conservation laws of system (2)
In this section, we adopt the approach given by Göktas and Hereman to investigate the
conserved densities and the fluxes of the system for the given rank of ever term in the
equations. We rewrite the system (2) as follows

⎧
⎨

⎩

u1,t = u1u1,x + u2,x + βu1,2x,

u2,t = (u1u2)x + αu1,3x – βu2,2x,
(35)

where ui,nx denotes the nth derivative with respect to x for the variables ui (i = 1, 2). We
denote the weight of the variables ui and derivative ∂t by w(ui) and w(∂t), respectively. We
easily find that

r1,1 = w(u1) + w(∂t), r1,2 = 1 + w(u1) + w(u2),

r1,3 = 3 + w(u1), r1,4 = 2 + w(u2),

r2,1 = w(u2) + w(∂t), r2,2 = 1 + w(u1) + w(u2),

r2,3 = 3 + w(u1), r2,4 = 2 + w(u2).
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Solving

⎧
⎨

⎩

r1,1 = r1,2 = r1,3 = r1,4,

r2,1 = r2,2 = r2,3 = r2,4,

we get

w(u1) = 1, w(u2) = 2, w(∂t) = 2.

List of the variables in system (2):

V = {v1, v2}, v1 = u2, v2 = u1.

In what follows, we consider the case where rank = 4 and

B0 =
{

(1; 0)
}

.

For q = 1 and m = 0, a direct calculation gives

T1,s = vs
1 = us

2, W1,s = sw(v1) = 2s, p1,0 =
�

4 – 0
w(v1)

�

= 2.

Hence s = 0, 1, 2, and

B1 = B1,0 =
{

(1; 0), (u2; 2),
(
u2

2; 4
)}

.

For q = 2 and m = 0, we have

T2,s = us
1, W2,s = W1,0 + sw(v2) = s, p2,0 =

�
4 – 0

1

�

= 4.

Hence s = 0, 1, 2, 3, 4, and

B2,0 =
{

(1; 0), (u1; 1),
(
u2

1; 2
)
,
(
u3

1; 3
)
,
(
u4

1; 4
)}

.

For q = 2 and m = 1, we have that

T2,s = u2us
1, W2,s = 2 + s, p2,1 =

�
4 – 2

1

�

= 2.

Thus s = 0, 1, 2. It follows that

B2,1 =
{

(u2; 2), (u1u2; 3),
(
u2u2

1; 4
)}

.

For q = 2 and m = 2, we find that

T2,s = u2us
1, W2,s = 4 + s, p2,2 =

�
4 – W1,2

w(v2)

�

=
�

4 – 4
1

�

= 0.
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Hence s = 0. Thus we get

B2,2 =
{(

u2
2; 4

)}
,

B2 = B2,0 ∪ B2,1 ∪ B2,2

=
{

(1; 0), (u1; 1),
(
u2

1; 2
)
,
(
u3

1; 3
)
,
(
u4

1; 4
)
, (u2; 2), (u1u2; 3),

(
u2i2

1; 4
)
,
(
u2

2; 4
)}

.

Computation of l for each pair of B2 reads

l = 4, 3, 2, 1, 0, 2, 1, 0, 0.

Gathering the terms by applying the number l of partial derivatives with respect to x, we
get that

H =
{

0, u1,3x, u2
1,x, u1u1,2x, u2

1u1,x, u4
1, u2,2x, u1,xu2, u1u2,x, u2u2

1, u2
2
}

.

Removing from H the constant terms and the terms that can be written as an x-derivative,
or an x-derivative up to terms retained earlier in the set H, we have that

I =
{

u2
1,x, u4

1, u1u2,x, u2u2
1, u2

2
}

.

Let

ρ = c1u2
1,x + c2u4

1 + c3u1u2,x + c4u2u2
1 + c5u2

2,

where ci (i = 1, 2, 3, 4) are constants to be determined. Then we have

Dt(ρ) = 2c1u1,xu1,xt + 4c2u3
1u1,t + c3(u1,tu2,x + u1u2,xt)

+ c4u2,tu2
1 + 2c4u1u2u1,t + 2c5u2u2,t . (36)

Substituting (35) into (36) to cancel the terms with t-derivatives, we get

Dt(ρ)|(35) = 2c1u1,x
(
u2

1,x + u1u1,2x + u2,2x + βu1,3x
)

+ 4c2u3
1(u1u1,x + u2,x + βu1,2x)

+ c3
[
u2,x(u1u1,x + u2,x + βu1,2x) + u1(u2u1,2x + 2u1,xu2,x

+ u1u2,2x + αu1,3x – βu2,3c)
]

+ 2c4u1u2(u1u1,x + u2,x + βu1,2x)

+ c4u2
1(u1,xu2 + u1u2,x + αu1,4x – βu2,3x)

+ 2c5u2(u1,xu2 + u1u2,x + αu1,3x – βu2,2x).

Acting on the variational derivative to Dt(ρ)|(35) and comparing the coefficients of the
same terms, we get the following relations:

S = {αc4 + c1 = 0, 2βc4 + c3 = 0, 2βc4 + c3 = 0, 2αc3 – 4βc1 = 0,αc5 + c1 = 0,

2βc5 + c3 = 0, c4 – c5 = 0}.
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Solving S gives that

c1 = –αc4, c3 = –2βc4, c5 = c4, (37)

where c4 is a free parameter, and c2 can be an arbitrary constant.
Suppose c4 = 1 and c2 = 0. Then c1 = –α, c3 = –2β , c5 = 1. Thus, we have the conserved

density:

ρ = –αu – 1, x2 – 2βu1u2,x + u2u2
1 + u2

2.

The resulting flux of system (2) when rank = 4 is given by

J = α
(
2u1u2

1,x – u2
1u1,2x

)
+ 2α(u1,xu2,x – u2u1,2x) + 2αβu1u1,3x

– 2β2u1u2,2x + 2βu2u2,x + 3βu2
1u2,x + u3

1u2 + 2u2
2u1.

If c1 = c3 = c4 = c5 = 0 and c2 	= 0, then the conserved density is of the form

ρ = c2u4
1,

whereas

Dt(ρ) = 4c2u3
1(u1u1,x + u2,x + βu1,2x)

= Dx

[
1
5

c2u5
1 + 4c2u3

1u1,x + 4c2βu3
1u2 – 12c2D–1

x
(
u2

1u2
1,x

)
– 12c2βD–1

x
(
u2

1u2u1,x
)
]

.

Hence the flux has nonlocal differential form

J = c2

[

–
1
5

u5
1 – 4u3

1u1,x – 4βu3
1u2 + 12D–1

x
(
u2

1u2
1,x

)
+ 12βD–1

x
(
u2

1u2u1,x
)
]

.

When rank = 5, 6, . . . , we can obtain the resulting conserved densities and fluxes of system
(2), and we omit the complicated computations.

5 Special solutions of the stationary system (2)
An important application of the conservation laws of evolution equations is the study of
nonvariant solutions of symmetry groups. In this section, we want to apply the conser-
vation laws of system (2) to investigating some noninvariant solutions of the symmetries.
For simplicity, we only choose simpler conservation laws and only consider the solutions
of the stationary system (2). System (2) can be written as

ut =
(

1
2

u2 + h + βux

)

x
, ht = (uh + αuxx – βhx)x, (38)

where the conserved densities are u and h, and the corresponding fluxes are 1
2 u2 + h + βux

and uh + αuxx – βhx, which are the simplest conservation laws. We further want to use
them to deduce some stationary solutions of system (2). Taking

u = g(x),
1
2

u2 + h + βux = f (t),
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and substituting into the second conserved equation in (38), we have that

f ′(t) = g ′(x)f (t) –
3
2

g2g ′(x) – 2βg ′(x)2 – 2βgg ′′ + αg ′′′ + β2gg ′′′. (39)

Assume that f (t) = 0 and then integrate (39):

(
β2g + α

)
g ′′ –

1
2
β2(g ′)2 – 2βgg ′ –

1
2

g3 = 0. (40)

Case 1: When α > 0, β = 0, Eq. (39) reduces to

αg ′′ –
1
2

g3 = 0,

which has a special solution

g = –
2
√

α

εx
, ε = ±1.

Thus we obtain a set of special solutions to system (2):

u = –
2
√

α

εx
, h = –

2α

x2 . (41)

Case 2: When β 	= 0, assume a formal solution of (40)

g =
A

B + Cx
. (42)

Then we get

g ′ =
AC

(B + Cx)2 , g ′′ =
2A2C

(B + Cx)3 . (43)

Inserting (42) and (43) into (40) and comparing the coefficients at the powers of x, we infer
that

A = –
α

β
C, β = 4. (44)

Taking B = 1, we have the special solution to system (2)

⎧
⎨

⎩

u = – αC
4(1+Cx) ,

h = – α2C2

32(1+Cx)2 + αC
(1+Cx)2 ,

(45)

where C 	= 0 is a parameter.
In the case f (t) = 0, we find that ut = ht = 0. Hence the system becomes the following

ordinary differential equations:

⎧
⎨

⎩

Dx( 1
2 u2 + h + βux) = 0,

Dx(hu + αuxx – βhx) = 0,
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which can be written as

1
2

u2 + h + βux = c1, hu + αuxx – βhx = c2, (46)

where c1, c2 are integral constants. It is easy to rewrite (46) as the following differential
equation with respect to the variable u:

1
2

u3 –
(
α + β2)uxx = c1u – c2. (47)

When c1 = c2 = 0, solving (47) yields

u = –
2
√

α + β2

εx
. (48)

Substituting (48) into the first equation in (46), we get

h = –βux –
1
2

u2 =
2
√

α + β2

εx2 –
2(α + β2)

x2 . (49)

When c1 	= 0 and c2 	= 0, (47) becomes

uxx +
1

2(α + β2)
u3 –

c1u
α + β2 +

c2

α + β2 = 0. (50)

Let ux = y. Then (50) can be written as

y
dy
du

+
u3

2(α + β2)
–

c1u
α + β2 +

c2

α + β2 = 0. (51)

Integrating (5) with respect to u, we get

1
2

y2 +
1

8(α + β2)
u4 –

c1u2

2(α + β2)
+

c2u
α + β2 + c0 = 0, (52)

where c0 is an integral constant. Thus (52) can be written as

u′ =

√
c1u2

α + β2 –
1

4(α + β2)
u4 –

2c2u
α + β2 – 2c0. (53)

Fan [26] studied the solutions to the formal ODE (53) taking different parameters. Now
we follow his method to give some exact solutions to (53).

(i) When c0 = 0, (53) has the following solutions:

u =
√

4c1 sech

(√
c1

α + β2 x
)

, c1 > 0,α + β2 > 0,

u =
√

4c1 sec

(√

–
c1

α + β2 x
)

, c1 > 0,α + β2 < 0,

u = –
1

√
–4(α + β2)x

, c1 = 0,α + β2 < 0.
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(ii) Equation (53) still has the following three Jacobi elliptic function solutions: when
c1

α+β2 > 0, c0 = 2c2
1m2(m2–1)

(α+β2)(2m2–1)2 ,

u =
√

4c1m2

2m2 – 1
cn

(√
c1

(α + β2)(2m2 – 1)
x
)

;

when c1
α+β2 < 0, c0 = 2c2

1m2

(α+β2)(m2+1) ,

u =
√

4c1m2

m2 + 1
sn

(√
–c1

(α + β2)(m2 + 1)
x
)

;

when c1
α+β2 > 0, c0 = 2c2

1(1–m2)
(α+β2)(2–m2)2 ,

u =
√

4c1

2 – m2 dn

(√
c1

(α + β2)(2 – m2)
x
)

,

where m denotes the module of Jacobi elliptic functions. Substituting all these u into (46),
we can obtain the resulting h.

From the above discussion we find that we indeed obtain some new special solutions
of system (2). However, there are two questions to further consider. One is that when
f (t) 	= 0, can we obtain solutions dependent on the variable t? Of course, we can. Because
we may investigate the traveling-wave solutions of system (2) by setting ξ = x – ct, which
can transform system (2) to the ODEs with respect to the variable ξ . As for this, we do
not further discuss them. Another one is that when f (t) = 0, can we obtain solutions only
dependent on the variable x and not on the variable t? We do not think so. In fact, if we
replace system (2) with the system

⎧
⎨

⎩

ut = ( 1
2 u2 + h + βhx)x,

ht = (uh + αuxx – βhx)x,
(54)

then we can get a set of solutions dependent on the variable t. In fact, taking ut = g(x),
1
2 u2 + h + βhx = 0, we have

hx +
1
β

h = –
1

2β
g2(x).

Substituting this into the second equation in (54) gives rise to

Gx +
1
β

G = 0,

where G(x, t) = hg(x) + αgxx – βhx, which has the solution

G = σ (t)e
–1
β

x,

from which we have

hg(x) + αgxx – βhx = σ (t)e
–1
β

x,
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where σ (t) is a function to be determined. A direct verification indicates that

g(x) = –1, h = –
1
2

+ e(– 1
β

x+ 1
2 t)

is a set of solutions of (54). We see that the function h is dependent on the variable t.
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