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Abstract
In this paper, we prove some new generalizations of dynamic Opial-type inequalities
on time scales. From these inequalities, as special cases, we formulate some integral
and discrete inequalities proved in the literature and also extend some obtained
dynamic inequalities on time scales. The main results are proved by using some
algebraic inequalities, Hölder’s inequality, and a simple consequence of Keller’s chain
rule on time scales.

1 Introduction
In 1960, Opial [24] proved the following inequality:

∫ b

a

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ b – a
4

∫ b

a

∣∣x′(t)
∣∣2 dt, (1.1)

where x is absolutely continuous on [a, b] and x(a) = x(b) = 0, and the constant b–a
4 is the

best possible.
Equality holds in (1.1) if and only if

x(t) = c(t – a), for a ≤ x ≤ b – a
2

,

and

x(t) = c(b – t), for
b – a

2
≤ x ≤ b,

where c is a constant.
Opial’s inequality together with its numerous generalizations, extensions, and dis-

cretizations has been playing a fundamental role in the study of the existence and unique-
ness properties of solutions of initial and boundary value problems for differential equa-
tions as well as difference equations [3, 20]. In further simplifying the proof of Opial’s
inequality, which has already been simplified by Olech [23], Beescak [5], Levison [19],
Mallows [21], and Pederson [25], it is proved that if x is real absolutely continuous on
(0, b) and with x(0) = 0, then

∫ b

0

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ b
2

∫ b

0

∣∣x′(t)
∣∣2 dt. (1.2)
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For a generalization of (1.1), Beesack [5] proved that if x is an absolutely continuous func-
tion on [a, X] with x(a) = 0, then

∫ X

a

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ 1
2

∫ X

a

1
r(t)

dt
∫ X

a
r(t)

∣∣x′(t)
∣∣2 dt, (1.3)

where r(t) is a positive and continuous function with
∫ X

a
dt

r(t) < ∞, and if x(b) = 0, then

∫ b

X

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ 1
2

∫ b

X

1
r(t)

dt
∫ b

X
r(t)

∣∣x′(t)
∣∣2 dt. (1.4)

Yang [27] simplified Beesack’s proof and extended inequality (1.3) and proved that: If x is
an absolutely continuous function on (a, b) with x(a) = 0, then

∫ b

a
q(t)

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ 1
2

∫ b

a

1
r(t)

dt
∫ b

a
r(t)q(t)

∣∣x′(t)
∣∣2 dt, (1.5)

where r(t) is a positive and continuous function with
∫ X

a
dt

r(t) < ∞ and q(t) is a positive
bounded and nonincreasing function on [a, b].

Hua [15] extended inequality (1.2) and proved that: If x is an absolutely continuous func-
tion with x(a) = 0, then

∫ b

a

∣∣x(t)
∣∣p∣∣x′(t)

∣∣dt ≤ (b – a)p

p + 1

∫ b

a

∣∣x′(t)
∣∣p+1 dt, (1.6)

where p is a positive integer. We mentioned here that the result in [15] failed to apply for
general values of p.

Maroni [22] generalized (1.3) and proved that: If x is an absolutely continuous function
on [a, b] with x(a) = 0 = x(b), then

∫ b

a

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ 1
2

(∫ b

a

(
1

r(t)

)α–1

dt
) 2

α
(∫ b

a
r(t)

∣∣x′(t)
∣∣ν dt

) 2
ν

, (1.7)

where
∫ b

a ( 1
r(t) )α–1 < ∞, α ≥ 1, and 1

α
+ 1

ν
= 1.

In fact, the discrete analogy of (1.1), which has been proved by Lasota [17], is given by

h–1∑
i=1

|xi�xi| ≤ 1
2

[
h + 1

2

] h–1∑
i=0

|�xi|2, (1.8)

where {xi}0≤i≤h is a sequence of real numbers with x0 = xh = 0. The discrete analogy of
(1.2) is proved in [4, Theorem 5.2.2] and given by

h–1∑
i=1

|xi�xi| ≤ h – 1
2

h–1∑
i=0

|�xi|2, (1.9)

where {xi}0≤i≤h is a sequence of real numbers with x0 = 0.
In this paper, we are concerned with a certain class of Opial-type dynamic inequalities

on time scales and their extensions. If the time scale equals the real (or the integers), the
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results represent the classical results for differential (or difference) inequalities. The three
most popular examples of calculus on time scales are differential calculus, difference cal-
culus, and quantum calculus (see Kac and Cheung [16]), that is, when T = R, T = N, and
T = qN = {qt : t ∈ N0}, where q > 1. For more details on time scale analysis, we refer the
reader to the two books by Bohner and Peterson [7, 9] which summarize and organize
much of the time scale calculus.

In [6], Bohner and Kaymakcalan introduced the dynamic Opial inequality on time scales,
which unifies the continuous version (1.2) and the discrete version (1.9), and proved that
if x : [0, b] ∩T−→ R is delta differentiable with x(0) = 0, then

∫ h

0

∣∣x(t) + xσ (t)
∣∣∣∣x�(t)

∣∣�t ≤ h
∫ h

0

∣∣x�(t)
∣∣2

�t. (1.10)

In the following, we recall some of the related results that have been established for
differential inequalities and dynamic inequalities on time scales that serve and motivate
the contents of this paper.

In 1966, Yang [27] proved the following inequality which is a generalization of Opial’s in-
equality and some extensions of Beesack’s. He proved that, if u is an absolutely continuous
function on [a, X] with u(a) = 0, then

2
∫ X

a
s(x)

∣∣u(x)
∣∣∣∣u′(x)

∣∣dx ≤
∫ X

a

dx
l(x)

∫ X

a
l(x)s(x)u′(x)2 dx, (1.11)

where l is a positive and continuous function with
∫ X

a
dx
l(x) < ∞, and s is bounded, positive,

and nonincreasing on [a, X].
Also, in the same paper, the author proved that, if u(b) = 0, then

2
∫ b

X
s(x)

∣∣u(x)
∣∣∣∣u′(x)

∣∣dx ≤
∫ b

X

dx
l(x)

∫ b

X
l(x)s(x)

[
u′(x)

]2 dx, (1.12)

where s is a bounded, positive, and nonincreasing function on [X, b].
Also, as another extension of Opial’s inequality, Yang [27] proved that: If u(a) = u(b) = 0,

then

∫ b

a
|u|p∣∣u′∣∣q dx ≤ q

p + q

(
b – a

2

)p ∫ b

a

∣∣u′∣∣p+q dx, p, q ≥ 1. (1.13)

Cheng-Shyong Lee [18] generalized (1.11) and proved that: If u is an absolutely continuous
function on [a, X] with u(a) = 0, then

(p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u′(x)

∣∣q dx

≤ q
(∫ X

a
l(–q)(x) dx

)p(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u′(x)
∣∣(p+q) dx

)
, (1.14)

where p ≥ 0, q ≥ 1 and l is positive with
∫ X

a
dx
l(x) < ∞, and s is positive and nonincreasing

on [a, X].
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Also, in the same paper, the author gave a generalization of inequality (1.12) and proved
that: If u is an absolutely continuous function on [X, b] with u(b) = 0, then

(p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u′(x)

∣∣q dx

≤ q
(∫ b

X
l(–q)(x) dx

)p(∫ b

X
lq(p+q–1)(x)sq(x)

∣∣u′(x)
∣∣(p+q) dx

)
, (1.15)

where p ≥ 0, q ≥ 1, and l is a positive and continuous function with
∫ b

X
dx
l(x) < ∞, and s is

positive and nondecreasing on [X, b].
Also, Cheng-Shyong Lee in his paper extended inequality (1.13) and proved that: If u is

an absolutely continuous function on [a, b] with u(a) = u(b) = 0, then

(p + q)
∫ b

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u′(x)

∣∣q dx

≤ q
(∫ b

a
l(–q)(x) dx

)p(∫ b

a
lq(p+q–1)(x)sq(x)

∣∣u′(x)
∣∣(p+q) dx

)
. (1.16)

During the last decade, many inequalities have been studied by different authors (see [1,
2, 10–14, 26] and the references cited therein).

In this article, we will state and prove some dynamic Opial-type inequalities on time
scales and the results obtained here generalize Theorems (1.14), (1.15), and (1.16). After
each result, we will study as special cases when T = R and T = N to obtain some continu-
ous and discrete results. The present article is arranged as follows: In Sect. 2, some basic
concepts of the calculus on time scales and useful lemmas are introduced. In Sect. 3, we
state and prove the main results. In Sect. 4, we write the conclusion of the paper.

2 Preliminaries and letmmas on time scales
Before proceeding to our main results, we mention some essentials on time scales and
universal symbols to be used in this paper. From now on, R and Z denote the set of all real
numbers and the set of all integers, respectively.

A time scale T is an arbitrary nonempty closed subset of R. We suppose throughout
the article that T has the topology that it inherits from the standard topology on R. The
forward jump operator σ : T → T is defined for any t ∈ T by

σ (t) := inf{s ∈ T : s > t},

and the backward jump operator ρ : T→ T is defined for any t ∈ T by

ρ(t) := sup{s ∈ T : s < t}.

In the previous two definitions, we set inf∅ = supT (i.e., if t is the maximum of T, then
σ (t) = t) and sup∅ = infT (i.e., if t is the minimum of T, then ρ(t) = t), where ∅ is the
empty set.

A point t ∈ T with infT < t < supT is said to be right-scattered if σ (t) > t, right-dense if
σ (t) = t, left-scattered if ρ(t) < t, and left-dense if ρ(t) = t. Points that are simultaneously
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right-dense and left-dense are called dense points. Whereas points that are simultaneously
right-scattered and left-scattered are called isolated points.

We define the forward graininess function μ : T → [0,∞) for any t ∈ T by μ(t) := σ (t)–t.
Let f : T → R be a function. Then the function f σ : T → R is defined by f σ (t) = f (σ (t)),

∀t ∈ T, that is, f σ = f ◦ σ . In a similar manner, the function f ρ : T → R is defined by
f ρ(t) = f (ρ(t)), ∀t ∈ T, that is, f ρ = f ◦ ρ .

We introduce the set Tκ as follows: If T has a left-scattered maximum t1, then T
κ =

T – {t1}, otherwise T
κ = T.

The interval [a, b] in T is defined by

[a, b]T = {t ∈ T : a ≤ t ≤ b}.

Open intervals and half-closed interval are defined similarly.
Suppose that f : T → R is a function and t ∈ T

κ . Then we say that f �(t) ∈ R is the delta
derivative of f at t if for any ε > 0 there exists a neighborhood U of t such that, for all s ∈ U ,
we have

∣∣[f
(
σ (t)

)
– f (s)

]
– f �(t)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣.
Furthermore, f is said to be delta differentiable on T

κ if it is delta differentiable at each
t ∈ T

κ .
If f , g : T →R are delta differentiable functions at t ∈ T

κ , then
(i) (f + g)�(t) = f �(t) + g�(t);

(ii) (fg)�(t) = f �(t)g(t) + f (σ (t))g�(t) = f (t)g�(t) + f �(t)g(σ (t));
(iii) ( f

g )�(t) = f �(t)g(t)–f (t)g�(t)
g(t)g(σ (t)) , g(t)g(σ (t)) �= 0.

A function g : T→R is called right-dense continuous (rd-continuous) if g is continuous
at the right-dense points in T and its left-sided limits exist at all left-dense points in T.

A function F : T → R is said to be a delta antiderivative of f : T → R if F�(t) = f (t) for
all t ∈ T

κ . In this case, the definite delta integral of f is defined by

∫ b

a
f (t)�t = F(b) – F(a) for all a, b ∈ T.

If g ∈ Crd(T) and t, t0 ∈ T, then the definite integral G(t) :=
∫ t

t0
g(s)�s exists, and G�(t) =

g(t) holds.
Assume that a, b, c ∈ T, α ∈R, and f , g are continuous functions on [a, b]T. Then

(i)
∫ b

a [f (t) + g(t)]�t =
∫ b

a f (t)�t +
∫ b

a g(t)�t;
(ii)

∫ b
a αf (t)�t = α

∫ b
a f (t)�t;

(iii)
∫ b

a f (t)�t =
∫ c

a f (t)�t +
∫ b

c f (t)�t;
(iv)

∫ b
a f (t)�t = –

∫ a
b f (t)�t;

(v)
∫ a

a f (t)�t = 0;
(vi) if f (t) ≥ g(t) on [a, b]T, then

∫ b
a f (t)�t ≥ ∫ b

a g(t)�t.
We will need the following important relations between calculus on time scales T and

either continuous calculus on R or discrete calculus on Z. Note that:
(i) If T = R, then

σ (t) = t, μ(t) = 0, f �(t) = f ′(t),
∫ b

a
f (t)�t =

∫ b

a
f (t) dt.
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(ii) If T = Z, then

σ (t) = t + 1, μ(t) = 1, f �(t) = f (t + 1) – f (t),
∫ b

a
f (t)�t =

b–1∑
t=a

f (t).

In the following, we present the basic theorems that will be needed in the proof of our
main results.

Theorem 2.1 (Chain rule on time scales [8]) Assume g : R → R is continuous, g : T → R

is delta differentiable on T
κ , and f : R →R is continuously differentiable. Then there exists

c ∈ [t,σ (t)] with

(f ◦ g)�(t) = f ′(g(c)
)
g�(t). (2.1)

Theorem 2.2 (Chain rule on time scales [8]) Let f : R →R be continuously differentiable
and suppose g : T →R is delta differentiable. Then f ◦ g : T →R is delta differentiable and
the formula

(f ◦ g)�(t) =
{∫ 1

0

[
f ′(hgσ (t) + (1 – h)g(t)

)]
dh

}
g�(t)

holds.

Theorem 2.3 (Dynamic Hölder’s inequality [7]) Let a, b ∈ T and f , g ∈ Crd([a, b]T, [0,∞)).
If p, q > 1 with 1

p + 1
q = 1, then

∫ b

a
f (t)g(t)�t ≤

[∫ b

a
f p(t)�t

] 1
p
[∫ b

a
gq(t)�t

] 1
q

. (2.2)

3 Main results
In this section, we state and prove our main results. Throughout this section, p and q are
conjugate to each other, i.e., 1/p + 1/q = 1.

Theorem 3.1 Let T be a time scale with a, X ∈ T. Let l, s be positive rd-continuous func-
tions with s nonincreasing and

∫ X
a l–q(x)�x < ∞. Moreover, let u be a rd-continuous func-

tion on [a, X]T with u(a) = 0. Then, for all p ≥ 1 and q ≥ 1, we have

(p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ X

a
l–q(x)�x

)p(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

. (3.1)

Proof Define the function z by the following:

z(x) =
∫ x

a
lq(q–1)(t)sq2/(p+q)(t)

∣∣u�(t)
∣∣q

�t.

Using the fact that z(a) = 0, we have

z�(x) = lq(q–1)(x)sq2/(p+q)(x)
∣∣u�(x)

∣∣q.
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Since

∣∣u(x)
∣∣ =

∣∣u(x) – u(a)
∣∣ =

∣∣∣∣
∫ x

a
u�(t)�t

∣∣∣∣ ≤
∫ x

a

∣∣u�(t)
∣∣�t.

By using the dynamic Hölder inequality (2.2) with indices q and q/(q – 1), we deduce

∣∣u(x)
∣∣ ≤

∫ x

a
l1–q(t)lq–1(t)

∣∣u�(t)
∣∣�t

≤
(∫ x

a

(
l1–q(t)

)q/(q–1)
�t

)(q–1)/q(∫ x

a

(
lq–1(t)

)q∣∣u�(t)
∣∣q

�t
)1/q

=
(∫ x

a
l–q(t)�t

)(q–1)/q(∫ x

a
lq(q–1)(t)

∣∣u�(t)
∣∣q

�t
)1/q

.

Therefore

∣∣u(x)
∣∣p ≤

(∫ x

a
l–q(t)�t

)p(q–1)/q(∫ x

a
lq(q–1)(t)

∣∣u�(t)
∣∣q

�t
)p/q

.

Since s is positive and nonincreasing on [a, X]T, we have

spq/(p+q)(x)
∣∣u(x)

∣∣p ≤ spq/(p+q)(x)
(∫ x

a
l–q(t)�t

)p(q–1)/q(∫ x

a
lq(q–1)(t)

∣∣u�(t)
∣∣q

�t
)p/q

≤
(∫ X

a
l–q(t)�t

)p(q–1)/q(∫ x

a
lq(q–1)(t)sq2/(p+q)(t)

∣∣u�(t)
∣∣q

�t
)p/q

=
(∫ X

a
l–q(t)�t

)p(q–1)/q

zp/q(x). (3.2)

Then multiplying the both sides of (3.2) by lq(q–1)(x)sq2/(p+q)(x)|u�(x)|q ≥ 0, we get

lq(q–1)(x)spq/(p+q)(x)sq2/(p+q)(x)
∣∣u(x)

∣∣p∣∣u�(x)
∣∣q

≤ lq(q–1)(x)
(∫ X

a
l–q(t)�t

)p(q–1)/q

zp/q(x)sq2/(p+q)(x)
∣∣u�(x)

∣∣q. (3.3)

Multiplying (3.3) by (p + q) and integrating it from a to X, we obtain

(p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ (p + q)
(∫ X

a
l–q(x)�t

)p(q–1)/q ∫ X

a
zp/q(x)z�(x)�x. (3.4)

Now, from the chain rule on time scales (2.1), we have

(
z(p+q)/q)�(x) =

p + q
q

zp/q(c)z�(x), c ∈ [
x,σ (x)

]
.

Since z�(x) ≥ 0 and x ≤ c, we get

(
z(p+q)/q)�(x) =

p + q
q

zp/q(c)z�(x) ≥ p + q
q

zp/q(x)z�(x), (3.5)
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from (3.4) and (3.5), we have (note that z(a) = 0)

(p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ X

a
l–q(x)�x

)p(q–1)/q(∫ X

a

[
z(p+q)/q(x)

]�
�x

)

≤ q
(∫ X

a
l–q(x)�x

)p(q–1)/q

z(p+q)/q(X)

= q
(∫ X

a
l–q(x)�x

)p(q–1)/q(∫ X

a
lq(q–1)(x)sq2/(p+q)(x)

∣∣u�(x)
∣∣q

�x
)(p+q)/q

. (3.6)

Applying the dynamic Hölder inequality (2.2) with indices (p + q)/p and (p + q)/q, we ob-
tain

[∫ X

a
lq(q–1)(x)sq2/(p+q)(x)

∣∣u�(x)
∣∣q

�x
](p+q)/q

=
(∫ X

a
l–pq/(p+q)(x)lq2(1– 1

p+q )(x)sq2(p+q)(x)
∣∣u�(x)

∣∣q
�x

) p+q
q

≤
[(∫ X

a

(
l–pq/(p+q)(x)

) p+q
p �x

) p
p+q

×
(∫ X

a

(
lq2(1– 1

p+q )(x)sq2/(p+q)(x)
∣∣u�(x)

∣∣q
�x

) p+q
q

) q
p+q

] p+q
q

=
(∫ X

a
l–q(x)�x

)p/q(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

. (3.7)

By combining (3.6) and (3.7), we obtain

(p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ X

a
l–q(x)�x

)p(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

,

which is the required inequality (3.1). This completes the proof. �

Corollary 3.2 When T = R, the inequality (3.1) reduces to the following inequality of
Cheng-Shyong Lee [18, Theorem 1.1]

(p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u′(x)

∣∣q dx

≤ q
(∫ X

a
l–q(x) dx

)p(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u′(x)
∣∣p+q dx

)
.

Remark 3.3 If T = R and take p = q = 1, we get the following inequality of Yang [27, The-
orem 3] which is a generalization of Opial’s inequality

2
∫ X

a
s(x)

∣∣u(x)
∣∣∣∣u′(x)

∣∣dx ≤
∫ x

a
l–1(x) dx

∫ X

a
l(x)s(x)u′2(x) dx.
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Corollary 3.4 If T = N. Assume that p, q are positive real numbers such that p ≥ 0, q ≥ 1
and {li}0≤i≤N is a nonnegative real sequence. If {ui}0≤i≤N is a sequence of real numbers with
u(0) = 0, then

(p + q)
N–1∑
n=a

lq(q–1)(n)sq(n)
∣∣u(n)

∣∣p∣∣�u(n)
∣∣q

≤ q

(N–1∑
n=a

l–q(n)

)p(N–1∑
n=a

lq(p+q–1)(n)sq(n)
∣∣�u(n)

∣∣p+q
)

.

Theorem 3.5 Let T be a time scale with X, b ∈ T. Let l, s be positive rd-continuous func-
tions with s nondecreasing and

∫ b
X l–q(x)�x < ∞. Moreover, let u be an rd-continuous func-

tion on [X, b]T with u(b) = 0. Then, for all p ≥ 1 and q ≥ 1, we have

(p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣uσ (x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ b

X
l–q(x)�x

)p(∫ b

X
l(q(p+q–1))(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

. (3.8)

Proof Define the function z by the following:

z(x) = –
∫ b

x
lq(q–1)(t)sq2/(p+q)(t)

∣∣u�(t)
∣∣q

�t.

Using the fact that z(b) = 0, we have

z�(x) = lq(q–1)(x)sq2/(p+q)(x)
∣∣u�(x)

∣∣q.

Since |uσ (x)| = | – uσ (x)| = |u(b) – uσ (x)| = | ∫ b
σ (x) u�(t)�t| ≤ ∫ b

σ (x) |u�(t)|�t.
By using the dynamic Hölder inequality (2.2) with indices q and q/(q – 1), we have

∣∣uσ (x)
∣∣ ≤

∫ b

σ (x)
l1–q(t)lq–1(t)

∣∣u�(t)
∣∣�t

≤
(∫ b

σ (x)

(
l1–q(t)

)q/(q–1)
�t

)(q–1)/q(∫ b

σ (x)

(
lq–1(t)

)q∣∣u�(t)
∣∣q

�t
)1/q

=
(∫ b

σ (x)
l–q(t)�t

)(q–1)/q(∫ b

σ (x)
lq(q–1)(t)

∣∣u�(t)
∣∣q

�t
)1/q

.

Therefore

∣∣uσ (x)
∣∣p ≤

(∫ b

σ (x)
l–q(t)�t

)p(q–1)/q(∫ b

σ (x)
lq(q–1)(t)

∣∣u�(t)
∣∣q

�t
)p/q

.

Since s is positive and nondecreasing on [X, b]T, we have

spq/(p+q)(x)
∣∣uσ (x)

∣∣p ≤ spq/(p+q)(x)
(∫ b

σ (x)
l–q(t)�t

)p(q–1)/q(∫ b

σ (x)
lq(q–1)(t)

∣∣u�(t)
∣∣q

�t
)p/q
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≤
(∫ b

X
l–q(t)�t

)p(q–1)/q(∫ b

σ (x)
lq(q–1)(t)sq2/(p+q)(t)

∣∣u�(t)
∣∣q

�t
)p/q

=
(∫ b

X
l–q(t)�t

)p(q–1)/q(
–zσ (x)

)p/q. (3.9)

Then multiplying the both sides of (3.9) by lq(q–1)(x)sq2/(p+q)(x)|u�(x)|q ≥ 0, we get

lq(q–1)(x)spq/(p+q)(x)sq2/(p+q)(x)
∣∣uσ (x)

∣∣p∣∣u�(x)
∣∣q

≤ lq(q–1)(x)
(∫ b

X
l–q(t)�t

)p(q–1)/q(
–zσ (x)

)p/qsq2/(p+q)(x)
∣∣u�(x)

∣∣q. (3.10)

We can write (3.10) in the following form:

lq(q–1)(x)sq(x)
∣∣uσ (x)

∣∣p∣∣u�(x)
∣∣q

�x ≤
(∫ b

X
l–q(t)�t

)p(q–1)/q(
–zσ (x)

)p/qz�(x). (3.11)

Multiplying (3.11) by (p + q) and integrating it from X to b, we get

(p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣uσ (x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ (p + q)
(∫ b

X
l–q(t)�t

)p(q–1)/q ∫ b

X

(
–zσ (x)

)p/qz�(x)�x. (3.12)

Now, from the chain rule on time scales (2.1), we have

(
–(–z)(p+q)/q)�(x) =

p + q
q

(–z)p/q(c)z�(x), c ∈ [
x,σ (x)

]
.

Since z�(x) ≥ 0 and c ≤ σ (x), we get

(
–(–z)(p+q)/q)�(x) =

p + q
q

(–z)p/q(c)z�(x) ≥ p + q
q

(
(–z)σ (x)

)p/qz�(x). (3.13)

From (3.12) and (3.13), we have (note that z(b) = 0)

(p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣uσ (x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ b

X
l–q(x)�x

)p(q–1)/q(∫ b

X

[
–(–z)(p+q)/q(x)

]�
�x

)

≤ q
(∫ b

X
l–q(x)�x

)p(q–1)/q

(–z)(p+q)/q(X)

= q
(∫ b

X
l–q(x)�x

)p(q–1)/q(∫ b

X
lq(q–1)(x)sq2/(p+q)(x)

∣∣u�(x)
∣∣q

�x
)(p+q)/q

. (3.14)
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Applying the dynamic Hölder inequality (2.2) with indices (p + q)/p and (p + q)/q, we ob-
tain

[∫ b

X
lq(q–1)(x)sq2/(p+q)(x)

∣∣u�(x)
∣∣q

�x
](p+q)/q

=
(∫ b

X
l–pq/(p+q)(x)lq2(1– 1

p+q )(x)sq2(p+q)(x)
∣∣u�(x)

∣∣q
�x

) p+q
q

≤
[(∫ b

X

(
l–pq/(p+q)(x)�x

) p+q
p

) p
p+q

×
(∫ b

X

(
lq2(1– 1

p+q )(x)sq2/(p+q)(x)
∣∣u�(x)

∣∣q
�x

) p+q
q

) q
p+q

] p+q
q

=
(∫ b

X
l–q(x)�x

)p/q(∫ b

X
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

. (3.15)

By combining (3.14) and (3.15), we obtain

(p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣uσ (x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ b

X
l–q(x)�x

)p(∫ b

X
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

,

which is the desired inequality (3.8). This completes the proof. �

Corollary 3.6 When T = R, inequality (3.8) reduces to the following inequality of Cheng-
Shyong Lee [18, Theorem 1.2]

(p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u′(x)

∣∣q dx

≤ q
(∫ b

X
l–q(x) dx

)p(∫ b

X
lq(p+q–1)(x)sq(x)

∣∣u′(x)
∣∣p+q dx

)
.

Remark 3.7 If T = R and take p = q = 1, we get the following inequality of Yang [27, The-
orem 3] which is a generalization of Opial’s inequality

2
∫ b

x
s(x)

∣∣u(x)
∣∣∣∣u′(x)

∣∣dx ≤
∫ b

x
l–1(x) dx

∫ b

x
l(x)s(x)u′2(x) dx.

Corollary 3.8 When T = N. Assume that p, q are positive real numbers such that p ≥ 0,
q ≥ 1 and {li}0≤i≤N is a nonnegative real sequence. If {ui}0≤i≤N is a sequence of real numbers
with u(0) = 0, then

(p + q)
b–1∑
n=N

lq(q–1)(n)sq(n)
∣∣u(n + 1)

∣∣p∣∣�u(n)
∣∣q

≤ q

( b–1∑
n=N

l–q(n)

)p( b–1∑
n=N

lq(p+q–1)(n)sq(n)
∣∣�u(n)

∣∣p+q
)

.
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Theorem 3.9 LetT be a time scale with a, b ∈ T. Let l, s be positive rd-continuous functions
with s nonincreasing on [a, X]T and nondecreasing on [X, b]T. Let K = (

∫ X
a l–q(x)�x)p =

(
∫ b

X l–q(x)�x)p. Moreover, let u be a nondecreasing rd-continuous function on [a, b]T with
u(a) = u(b) = 0. Then, for all p ≥ 1 and q ≥ 1, we have

(p + q)
∫ b

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ qK
∫ b

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x. (3.16)

Proof

(p + q)
∫ b

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

= (p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

+ (p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x. (3.17)

Since u is nondecreasing and σ (x) ≥ x, then uσ (x) ≥ u(x). From (3.1), (3.8), and (3.17), we
get

(p + q)
∫ b

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ (p + q)
∫ X

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u�(x)

∣∣q
�x

+ (p + q)
∫ b

X
lq(q–1)(x)sq(x)

∣∣uσ (x)
∣∣p∣∣u�(x)

∣∣q
�x

≤ q
(∫ X

a
l–q(x)�x

)p(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

+ q
(∫ b

X
l–q(x)�x

)p(∫ b

X
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

= qK
(∫ X

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x +
∫ b

X
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x
)

= qK
∫ b

a
lq(p+q–1)(x)sq(x)

∣∣u�(x)
∣∣p+q

�x,

which is the desired inequality (3.16). This completes the proof. �

Corollary 3.10 When T = R, we get the following inequality of Cheng-Shyong Lee [18, The-
orem 2]

(p + q)
∫ b

a
lq(q–1)(x)sq(x)

∣∣u(x)
∣∣p∣∣u′(x)

∣∣q dx ≤ qK
∫ b

a
lq(p+q–1)(x)sq(x)

∣∣u′(x)
∣∣p+q dx.

Corollary 3.11 When T = N. Assume that p, q are positive real numbers such that p ≥ 0,
q ≥ 1 and {li}0≤i≤N is a nonnegative real sequence. If {ui}0≤i≤N is a sequence of real numbers



KH et al. Advances in Difference Equations        (2019) 2019:323 Page 13 of 14

with u(0) = 0, then

(p + q)
b–1∑
n=a

lq(q–1)(n)sq(n)
∣∣u(n)

∣∣p∣∣�u(n)
∣∣q ≤ qK

( b–1∑
n=a

lq(p+q–1)(n)sq(n)
∣∣�u(n)

∣∣p+q
)

.

4 Conclusion
We have proved some new generalizations of dynamic Opial-type inequalities on time
scales. As special cases of these dynamic inequalities, we obtained some integral and dis-
crete inequalities known in the literature and also extended some existing dynamic in-
equalities on time scales.
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